
Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping
cytochrome oxidase
Maria S. Muntyana,1, Dmitry A. Cherepanova, Anssi M. Malinenb, Dmitry A. Blocha,c,2, Dimitry Y. Sorokind,e,
Inna I. Severinaa,3, Tatiana V. Ivashinaf, Reijo Lahtib, Gerard Muyzerg, and Vladimir P. Skulacheva,1

aBelozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; bDepartment of Biochemistry, University of
Turku, 20014 Turku, Finland; cInstitute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; dWinogradsky Institute of Microbiology, Russian
Academy of Sciences, Moscow 117312, Russia; eDepartment of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands; fSkryabin
Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; and gMicrobial Systems Ecology,
Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved May 15, 2015 (received for review September 4, 2014)

Cytochrome c oxidases (Coxs) are the basic energy transducers in
the respiratory chain of the majority of aerobic organisms. Coxs
studied to date are redox-driven proton-pumping enzymes be-
longing to one of three subfamilies: A-, B-, and C-type oxidases.
The C-type oxidases (cbb3 cytochromes), which are widespread
among pathogenic bacteria, are the least understood. In particular,
the proton-pumping machinery of these Coxs has not yet been
elucidated despite the availability of X-ray structure information.
Here, we report the discovery of the first (to our knowledge)
sodium-pumping Cox (Scox), a cbb3 cytochrome from the ex-
tremely alkaliphilic bacterium Thioalkalivibrio versutus. This find-
ing offers clues to the previously unknown structure of the ion-
pumping channel in the C-type Coxs and provides insight into the
functional properties of this enzyme.
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The known terminal oxidases according to the structure of
their active centers and their phylogenetic relations are

4cytc2++4H+
in,chem+4H+

in,pump+O2→4cytc3++4H+
out,pump+ 2H2O.

In A-type Coxs, two H+ pathways in the main subunit were iden-
tified, the so-called D channel, conducting all pumped and part of
chemical H+, and the K channel, conducting most of chemical H+

(9). In C-type Coxs, only a K-channel analog was found (10). The
described catalytic events are accomplished through generation
of a transmembrane difference in H+ potentials (ΔμH + ), which is
used as a convertible membrane-linked biological currency. Micro-
organisms living in an alkaline environment maintain a nearly neu-
tral cytoplasmic pH (11). This presents a problem for alkaliphiles
because it gives rise to an inverted pH gradient that decreases
the ΔμH
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subdivided into two superfamilies (1). One is composed of nu-
merous representatives containing a heme-copper binuclear ac-
tive center (BNC). Oxidases belonging to the other superfamily

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1417071112&domain=pdf&date_stamp=2015-06-06
https://www.ncbi.nlm.nih.gov/nuccore/HE575403.1
mailto:muntyan@genebee.msu.ru
mailto:skulach@genebee.msu.ru
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417071112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417071112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1417071112
MM
Polygon

MM
Polygon

MM
Polygon

MM
Polygon



Electrical membrane potential generation in right-side-out membrane
vesicles was monitored by the safranine method (49) or by tetraphenyl-
phosphonium-selective electrode (50) at 25 °C.

H+ release in intact cells and membrane vesicles in O2-pulse experiments
was assessed by a standard method (51) in 1 mL of anoxic incubation mix-
ture. Respiration of samples was initiated by addition of water (5–20 μL)
saturated with air O2 at 25 °C. The evoked changes in pH in the incubation
mixture were estimated by titration with argon-saturated 0.5 mM H2SO4.

Respiratory activity was assessed using a Clark-type electrode at 25 °C.
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