ГИДРОДИНАМИЧЕСКИЕ НЕУСТОЙЧИВОСТИ И ВОЛНЫ НА ПОВЕРХНОСТИ ЦИЛИНДРИЧЕСКОГО СТОЛБА МАГНИТНОЙ ЖИДКОСТИ, ОКРУЖАЮЩЕЙ ДЛИННОЕ ПОРИСТОЕ ЯДРО

Н.Г.Тактаров, О.А.Рунова

Мордовский государственный педагогический институт им. М.Е.Евсевьева, Саранск, Россия

Магнитные жидкости представляют собой искусственно созданные суспензии ферромагнитных частиц в жидкости-носителе. Такие жидкости широко используются в различных областях техники и технологии [1].

Задача о волнах на поверхности струи магнитной жидкости рассмотрена в [2]. Распространение поверхностных волн в слое жидкости на пористом основании исследовано в [3]. Задача о распространении волн на заряженной поверхности цилиндрического столба электропроводной жидкости, окружающей длинное пористое ядро, решена в [4].

1. Математическая модель. Предполагается, что внутри цилиндрического объема магнитной жидкости находится ядро из пористого материала в форме коаксиально расположенного круглого цилиндра. Учитывается наличие поверхностного натяжения. Сила тяжести отсутствует. Ось пористого цилиндра совпадает с осью коаксиально расположенного соленоида, создающего однородное магнитное поле \overline{H}_0 . Задача решается в цилиндрической системе координат (r, θ, z) , в которой жидкий столб покоится. Ось *z* направлена по оси пористого цилиндра. Радиус пористого цилиндра, невозмущенной поверхности и соленоида обозначим *a*, *a*₀ и в соответственно. Величины, относящиеся к пористой среде, свободной жидкости (вне пористой среды) и промежутку между жидкостью и соленоидом (воздух), будем обозначать в необходимых случаях индексами 1, 2 и 3 соответственно. Магнитная проницаемость μ_1 , μ_2 , μ_3 в областях 1, 2, 3 предполагается постоянной. Предполагаем, что $\mu_3 = 1$, а магнитная проницаемость среды в области 1 (жидкость плюс пористый материал) равна $\mu_1 = \mu_2 \Gamma + \mu_s (1 - \Gamma)$, где μ_s – проницаемость пористой матрицы, Г – пористость (отношение объема пор ко всему элементарному объему среды). При постоянной проницаемости магнитная сила равна нулю, однако это не означает, что магнитное поле не влияет на движение жидкости. В самом деле, на поверхностях раздела сред существуют механические напряжения, посредством которых и происходит взаимодействие поля со средой.

Уравнения движения магнитной жидкости в пористой среде (при сделанных предположениях) имеют вид [3, 5]:

$$\frac{\rho}{\Gamma} \frac{\partial \overline{u}_1}{\partial t} = -\text{grad} \ p_1 - \frac{\eta}{K} \overline{u}_1, \quad \text{div} \ \overline{u}_1 = 0.$$
(1)

Здесь ρ – плотность жидкости, η – вязкость, *K* – коэффициент проницаемости пористой среды, p_1 – давление, \overline{u}_1 – макроскопическая скорость фильтрации, связанная со средней скоростью \overline{v}_1 жидкости в порах соотношением $\overline{u}_1 = \Gamma \overline{v}_1$.

Уравнения движения свободной жидкости, в предположении, что амплитуда волны значительно меньше ее длины, запишем в линейном приближении [6]

$$\rho \frac{\partial u_2}{\partial t} = -\text{grad} \, p_2, \quad \text{div} \overline{u}_2 = 0. \tag{2}$$

Здесь \bar{u}_2 – скорость свободной жидкости. Ограничиваемся случаем волн достаточно большой длины λ , существенно превышающей радиус a_0 жидкого столба, с тем, чтобы пренебречь слагаемыми, содержащими $\Delta \bar{u}_1$ и $\Delta \bar{u}_2$ в уравнениях (1) и (2). Вязкостью в правой части первого уравнения (2) в длинноволновом приближении пренебрегается в предположении отсутствия прилипания жидкости на поверхности пористого цилиндра. В рассматриваемой модели не

накладывается никаких ограничений на касательный к поверхности пористого цилиндра компонент скорости, требуется лишь непрерывность потока жидкости в нормальном к этой поверхности направлении.

Уравнения для магнитного поля в системе СГС [7]:

$$\operatorname{rot}\overline{H}_{i} = 0 , \operatorname{div}\mu_{i}\overline{H}_{i} = 0 \quad (i = 1, 2, 3).$$
(3)

Из уравнений (1) – (3) следует

$$\overline{u}_1 = \nabla \varphi_1, \ \overline{u}_2 = \nabla \varphi_2, \ \overline{H}_i = \nabla \psi_i,$$

$$\Delta \varphi_1 = 0, \ \Delta \varphi_2 = 0, \ \Delta \psi_i = 0 \quad (i = 1, 2, 3).$$
(4)

Далее все величины будем записывать в виде

$$p_{1} = p_{10} + p_{1w}, \quad p_{2} = p_{20} + p_{2w}, \quad H_{i} = H_{i0} + H_{iw},$$

$$\Psi_{i} = \Psi_{i0} + \Psi_{iw} = zH_{i0} + \Psi_{iw}.$$
 (5)

Здесь индексами 0 и *w* обозначены соответственно невозмущенные величины и малые возмущения, связанные с волной; $H_{10} = H_{20} = H_{30} \equiv H_0$. Возмущения Ψ_{iw} также должны удовлетворять уравнениям Лапласа (4).

Система граничных условий имеет вид:

1)
$$u_{1r} = u_{2r}$$
, 2) $\psi_1 = \psi_2$, 3) $\mu_1 \overline{n} \nabla \psi_1 = \mu_2 \overline{n} \nabla \psi_2$, (6)
4) $p_1 - \frac{\mu_1}{4\pi} H_{1n}^2 + \frac{\mu_1}{8\pi} \overline{H}_1^2 = p_2 - \frac{\mu_2}{4\pi} H_{2n}^2 + \frac{\mu_2}{8\pi} \overline{H}_2^2$,

на свободной поверхности жидкости $r = a_0 + \xi(\theta, z, t)$:

5) $u_{2r} = \frac{d\xi}{dt}$, 6) $\Psi_2 = \Psi_3$, 7) $\mu_2 \overline{n} \nabla \Psi_2 = \mu_3 \overline{n} \nabla \Psi_3$, 8) $p_2 - \frac{\mu_2}{4\pi} H_{2n}^2 + \frac{\mu_2}{8\pi} \overline{H}_2^2 - \left(p_3 - \frac{\mu_3}{4\pi} H_{3n}^2 + \frac{\mu_3}{8\pi} \overline{H}_3^2 \right) = 2\alpha C$,

на поверхности соленоида (r = b):

9) $\psi_{3_w} = 0$ (возмущение потенциала ψ_3 равно нулю).

Здесь α – коэффициент поверхностного натяжения, C – средняя кривизна поверхности, \overline{n} – единичная нормаль к соответствующей поверхности.

Для возмущений давления из (1) и (2) с учетом (5) следует

$$p_{1w} = -\frac{\rho}{\Gamma} \frac{\partial \varphi_1}{\partial t} - \frac{\eta}{K} \varphi_1, \quad p_{2w} = -\rho \frac{\partial \varphi_2}{\partial t}.$$
(7)

С учетом вышеизложенного, граничные условия (6) в линейном приближении принимают вид:

$$1) \frac{\partial \varphi_{1}}{\partial r} = \frac{\partial \varphi_{2}}{\partial r} \quad (r=a), \qquad 2) \quad \psi_{1w} = \psi_{2w} \quad (r=a), \qquad 3) \quad \mu_{1} \frac{\partial \psi_{1w}}{\partial r} = \mu_{2} \frac{\partial \psi_{2w}}{\partial r} \quad (r=a), \qquad (8)$$

$$4) \quad p_{1w} + \frac{\mu_{1}H_{0}}{4\pi} \frac{\partial \psi_{1w}}{\partial z} = p_{2w} + \frac{\mu_{2}H_{0}}{4\pi} \frac{\partial \psi_{2w}}{\partial z} \quad (r=a), \qquad 5) \quad \frac{\partial \varphi_{2}}{\partial r} = \frac{d\xi}{dt} \quad (r=a_{0}), \qquad 6) \quad \psi_{2w} = \psi_{3w} \quad (r=a_{0}),$$

$$7) \quad \mu_{2} \left(H_{0} \frac{\partial \xi}{\partial z} - \frac{\partial \psi_{2w}}{\partial r} \right) = \mu_{3} \left(H_{0} \frac{\partial \xi}{\partial z} - \frac{\partial \psi_{3w}}{\partial r} \right) \quad (r=a_{0}),$$

$$8) \quad p_{2w} + \frac{\mu_{2}H_{0}}{4\pi} \frac{\partial \psi_{2w}}{\partial z} - \frac{\mu_{3}H_{0}}{4\pi} \frac{\partial \psi_{3w}}{\partial z} = -\alpha \left(\frac{\xi}{a_{0}^{2}} + \frac{1}{a_{0}^{2}} \frac{\partial^{2}\xi}{\partial \theta^{2}} + \frac{\partial^{2}\xi}{\partial z^{2}} \right) \quad (r=a_{0}), \qquad 9) \quad \psi_{3w}(b) = 0.$$

Кроме того, на оси пористого цилиндра (r=0) решения уравнений должны быть конечными. В граничных условиях (8) вместо p_{1w} , p_{2w} надо подставить их выражения (7).

Математическая модель является, таким образом, краевой задачей.

2. Решение краевой задачи. Решение уравнений (4) с граничными условиями (8) ищем в виде

$$\{\phi_{1},\phi_{2},\psi_{1w},\psi_{2w},\psi_{3w},\xi\} = \{\phi_{1}(r),\phi_{2}(r),\psi_{1w}(r),\psi_{2w}(r),\psi_{3w}(r),\xi\} \cdot \exp(-\gamma t + ikz + im\theta).$$
(9)

Здесь, например, $\varphi_1(r, \theta, z, t) = \hat{\varphi}_1(r) \exp(-\gamma t + ikz + im\theta)$, где $\hat{\varphi}_1(r)$ – неизвестная амплитуда, $k = 2\pi/\lambda$ – волновое число, $m = 0, 1, 2, ...; \gamma = \gamma_r + i\gamma_i$, $\omega = |\gamma_i|$ – частота, $\beta = \gamma_r$ – коэффициент, который может быть как положительным (при затухании возмущения), так и отрицательным (при неустойчивости, приводящей к нарастанию возмущения).

Подставляя выражения (9) для ϕ_i (i = 1, 2) и для ψ_{jw} (j = 1, 2, 3) в уравнения Лапласа, записанные в цилиндрических координатах, получим систему пяти модифицированных уравнений Бесселя порядка *m* для амплитуд, решения которых имеют вид

$$\hat{\varphi}_1 = C_1 I_m(kr) + C_2 K_m(kr), \qquad \hat{\varphi}_2 = C_3 I_m(kr) + C_4 K_m(kr),$$
$$\hat{\psi}_{1w} = C_5 I_m(kr) + C_6 K_m(kr), \qquad \hat{\psi}_{2w} = C_7 I_m(kr) + C_8 K_m(kr), \qquad \hat{\psi}_{3w} = C_9 I_m(kr) + C_{10} K_m(kr).$$

Здесь I_m и K_m – модифицированные функции Бесселя первого и второго рода порядка m. Следует положить $C_2 = 0$ и $C_6 = 0$, т. к. $K_m(kr) \to \infty$ при $r \to 0$.

Граничные условия (8) принимают для амплитуд вид
1)
$$C_1 I'_m(ka) = C_3 I'_m(ka) + C_4 K'_m(ka)$$
, 2) $C_5 I_m(ka) = C_7 I_m(ka) + C_8 K_m(ka)$,
3) $\mu_1 C_5 I_m(ka) = \mu_2 C_7 I'_m(ka) + \mu_2 C_8 K'_m(ka)$,
4) $-\frac{\rho \gamma}{\Gamma} C_1 I_m(ka) + \frac{\eta}{K} C_1 I_m(ka) - \frac{ik\mu_1 H_0}{4\pi} C_5 I_m(ka) =$
 $= -\rho \gamma [C_3 I_m(ka) + C_4 K_m(ka)] - \frac{ik\mu_2 H_0}{4\pi} [C_7 I_m(ka) + C_8 K_m(ka)],$
5) $kC_3 I'_m(ka_0) + kC_4 K'_m(ka_0) = -\gamma \hat{\xi}$, 6) $C_7 I_m(ka_0) + C_8 K_m(ka_0) = C_9 I_m(ka_0) + C_{10} K_m(ka_0)$, (10)
7) $\mu_2 \Big\{ ikH_0 \hat{\xi} - C_7 k I'_m(ka_0) - C_8 k K'_m(ka_0) \Big\} = \mu_3 \Big\{ ikH_0 \hat{\xi} - C_9 k I'_m(ka_0) - C_{10} k K'_m(ka_0) \Big\},$
8) $\rho \gamma^2 [C_3 I_m(ka_0) + C_4 K_m(ka_0)] + \frac{ik\mu_2 \gamma H_0}{4\pi} [C_7 I_m(ka_0) + C_8 K_m(ka_0)] - (-\frac{ik\mu_3 \gamma H_0}{4\pi} [C_9 I_m(ka_0) + C_{10} K_m(ka_0)] = -\frac{\alpha \gamma \hat{\xi}}{a_0^2} (1 - m^2 - ka_0^2), 9) C_9 I_m(kb) + C_{10} K_m(kb) = 0.$

Имеем систему девяти уравнений (10) для девяти неизвестных: C_1 , C_3 , C_4 , C_5 , C_7 , C_8 , C_9 , C_{10} , $\hat{\xi}$. Для упрощения вычислений далее предполагаем, что $a_0/b << 1$ (соленоид достаточно большого радиуса). Приравнивая затем определитель системы (10) к нулю, получим дисперсионное уравнение для поверхностных волн, кубическое относительно γ :

$$A_1 \gamma^3 + A_2 \gamma^2 + A_3 \gamma + A_4 = 0.$$
 (11)

Здесь A_1, A_2, A_3, A_4 – некоторые коэффициенты, зависящие от ρ , α , η , Γ , K, k, H_0 , μ_1 , μ_2 , μ_3 , μ_3 .

Отметим, что при $\Gamma \to 1$, $\eta/K \to 0$ (замена пористой среды жидкостью) первое уравнение (1) переходит в уравнение Эйлера, а из уравнения (11) при $a \to 0$ следует квадратное относительно γ дисперсионное уравнение, полученное в работе [2], результаты которой согласуются с экспериментом. Наконец, при $H_0 = 0$ (либо при $\mu_1 = \mu_2 = \mu_3 = 1$) получается классический результат Релея о распаде струи обычной жидкости.

Уравнение (11) – кубическое и может быть приведено к так называемому неполному кубическому уравнению [8] с дискриминантом $Q = (p/3)^3 + (q/2)^2$, где p и q выражаются через коэффициенты уравнения (11). При условии Q > 0 существует волновое движение, поскольку уравнение (11) имеет при этом два комплексно сопряженных корня. При $Q \le 0$ волновых движений нет, так как все три корня уравнения (11) действительные.

3. Анализ модели. Конкретные числовые расчёты с дисперсионным уравнением (11) проводились для следующих значений параметров: $\rho = 1 \text{ г/см}^3$; $\alpha = 20 \text{ г/c}^2$; $\eta = 0.01 \text{ г/см} \cdot \text{c}$; $\Gamma = 0.8$; $K = 0.02 \text{ см}^2$; $0 < k < 1.8 \text{ см}^{-1}$; $0 \le H_0 \le 40$ Э (эрстед); $\mu_1 = 1.8$; $\mu_2 = 2$; $\mu_3 = 1$; $\mu_s = 1$ (1 Э ≈ 89,6 А/м).

Для симметричных возмущений (m = 0) и фиксированных значений a = 0,5 см, $a_0 = 1,1$ см, $0 \le H_0 \le 40$ Э интервал 0 < k < 1,8 см⁻¹ делится критической точкой k_c ($\lambda_c = 2\pi/k_c$), которая находится из условия Q = 0, на два интервала. В интервале $0 < k < k_c$ волны отсутствуют: происходит нарастание возмущений ($\beta < 0$). Амплитуда возмущения растет с наибольшей скоростью при $k = k_m$, при котором $|\beta|$ достигает максимума. Размер образующихся при распаде жидкого столба капель равен $\lambda_m \approx 2\pi/k_m$ [2]. При $k \to k_c$ движение жидкости замедляется, т.е. $\omega \to 0$, $\beta \to 0$. В интервале $k_c < k < 1,8$ см⁻¹ существуют затухающие ($\beta > 0$) волны.

На рисунке 1 приведены графики зависимостей безразмерных величин $\tilde{\omega}(k) = \omega(k)(\alpha/\rho a_0^3)^{-1/2}$ и $\tilde{\beta}(k) = \beta(k)(\alpha/\rho a_0^3)^{-1/2}$ при m = 0 для различных значений невозмущенного магнитного поля H_0 .

Рисунок 1. Зависимость безразмерной частоты $\tilde{\omega}$ (а) и коэффициента затухания $\tilde{\beta}$ (б) от волнового числа $k: H_0 = 0, 10, 20, 30, 40 \ni (1-5); m = 0; a = 0,5$ см; $a_0 = 1,1$ см

При m = 1 частота больше, а затухание возмущений сильнее, чем при m = 0 при одинаковых значениях прочих параметров. При $m \ge 2$ движение является апериодическим, с сильным затуханием всех возмущений.

На рисунке 2 приведены графики зависимостей $\tilde{\omega}(k)$ и $\tilde{\beta}(k)$ при m = 0 и фиксированных значениях $H_0 = 20$ Э, a = 0.5 см, для разных значений a_0 . Они показывают влияние радиуса a_0 на безразмерные частоту и декремент возмущений различных длин волн.

Рисунок 2. Зависимость безразмерной частоты $\widetilde{\omega}$ (а) и коэффициента затухания $\widetilde{\beta}$ (б) от волнового числа k: $a_0 = 0,7; 0,8; 0,9; 1,0; 1,1$ см (1-5); a = 0,5 см; $m = 0; H_0 = 20$ Э

Показано, что при m = 0, $a_0 = 1,1$ см, $H_0 = 20$ Э и изменении a от 0,5 см до 0,9 см безмерная частота слабо зависит от радиуса пористого цилиндра. Изучена зависимость $\tilde{\beta}(k)$ при m = 0 и фиксированных значениях $H_0 = 20$ Э, $a_0 = 1,1$ см для разных значений a. Показано, что при изменении a в пределах a = 0,5 см до a = 0,9 см величина $\tilde{\beta}(k)$ возрастает с ростом a при каждом фиксированном значении волнового числа.

Заключение. Исследовано распространение и неустойчивость волн на поверхности цилиндрического столба магнитной жидкости, окружающей ядро из пористого материала в приложенном магнитном поле, направленном вдоль оси жидкого столба. Рассмотрена область длинных волн ($0 < k < 1,8 \text{ см}^{-1}$), которая при симметричных возмущениях (m = 0) и достаточно слабых полях ($0 \le H_0 \le 40$ Э) делится критической точкой k_c на два интервала. В интервале $0 < k < k_c$ происходит апериодическое движение ($\beta < 0$) с нарастающей амплитудой, приводящее к образованию капель, размер которых равен $\lambda_m = 2\pi/k_m$. Показано, что размер капель увеличивается с ростом магнитного поля H_0 , т.е. магнитное поле оказывает стабилизирующее влияние на распад жидкого столба, препятствуя его разбрызгиванию.

При $k \to k_c$ ($\lambda \to \lambda_c = 2\pi/k_c$) движение жидкости замедляется, т.е. $\omega \to 0$, $\beta \to 0$, что связано с взаимной нейтрализацией капиллярных и магнитных сил, действующих на поверхности жидкости.

В интервале $k_c < k < 1,8$ см⁻¹ существует затухающее волновое движение с безразмерной частотой $\tilde{\omega}(k)$, монотонно возрастающей с ростом волнового числа k. Зависимость $\tilde{\beta}(k)$ имеет более сложный характер и не является монотонной.

Список литературы

1. Р.Розенцвейг. Феррогидродинамика // М.: Мир, 1989, 356с.

- 2. Н.Г.Тактаров. Распад струи магнитной жидкости // Магнитная гидродинамика, 1975, №2, с. 35–38.
- 3. И.В.Столяров, Н.Г.Тактаров. Распространение волн в слое жидкости на пористом основании // Известия АН СССР. Механика жидкости и газа, 1987, №5, с. 183–186.
- 4. С.М.Миронова, Н.Г.Тактаров. Распространение волн на заряженной поверхности цилиндрического столба жидкости, окружающей длинное пористое ядро // Известия РАН. Механика жидкости и газа, 2012, №4, с. 104–110.
- 5. Н.Г.Тактаров, А.Б.Иванов. К исследованию фильтрации магнитных жидкостей // Магнитная гидродинамика, 1990, №3, с. 138–139.
- 6. Л.И.Седов. Механика сплошной среды // М.: Наука, 1976, Т. 1., 536с.
- 7. И.Е.Тамм. Основы теории электричества // М.: Наука, 1976, 616с.
- 8. А. Г. Курош. Курс высшей алгебры // М.: Наука, 1975, 431с.