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Abstract—The paper is concerned with scheduling the two-way traffic between two stations
connected by a single-track railway with a siding. It is shown that if, for each station, the
order in which trains leave this station is known or can be found, then for various objective
functions an optimal schedule can be constructed in polynomial time using the method of dy-
namic programming. Based on this result, the paper also presents a polynomial-time algorithm
minimising the weighted number of late trains.
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1. INTRODUCTION

This paper presents a generalisation of the problem of scheduling the movement of trains on a
single-track railway, previously considered in [1]. For the objective functions, considered in [1], the
proofs below are a new justification of the corresponding algorithms.

The single-track railways are part of many railway networks and often are used for transportation
within factories. The considered problem also arises in situations when one of the tracks of a two-
track railway becomes inaccessible due to maintenance or accidents.

Detailed surveys on models and methods for railway planning are presented in [2–4]. This paper
is a sequel of [1] where the reader can find the related literature review. In particular, [1] analyses
the publications [5–11] which contain interesting results on planning the movement of trains on a
single-track railway.

The considered problem can be stated as follows. There are two sets of trains: N1 and N2.
Trains in the set N1 are at station 1 and must go to station 2, whereas the trains in the set N2

are at station 2 and must go to station 1. The station number that is opposite to the station with
number s ∈ {1, 2} will be denoted by s̄. There is a siding between stations, permitting oncoming
trains to pass each other, which can accommodate one train. In the siding, there is the main line
for non-stop movement of trains and the additional line for a train to wait. The train on the main
line goes through the siding without stopping. The speed of trains is the same for all trains and
is constant. The time required for a train to cover the distance between station 1 and the siding,
and between station 2 and the siding, is p1 and p2 respectively. Without loss of generality, it will
be assumed that p1 � p2. The number of trains in N1 is n1, and the number of trains in N2 is n2.
The trains can depart their stations starting from the point in time t = 0.
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SCHEDULING THE TWO-WAY TRAFFIC 507

There are given minimal possible times between departures of two trains from the same station,
arrivals of two trains at the siding, and between the arrival of a train at a station and the departure
of a train from the same station. It is assumed that all these times are equal to β. It is assumed that
β < p2 � p1. The time interval of length β > 0 will be called the safety interval. The assumption
that the all listed above safety intervals have the same length simplifies the presentation of the
results below, although these results can be generalised to the case when this assumption does not
hold.

It is required to construct a schedule of train movements σ, satisfying the conditions listed above,
i.e., to specify:

• the departure time Si
s(σ) for each train i ∈ Ns, s ∈ {1, 2};

• the time τ is(σ), which each train i ∈ Ns, s ∈ {1, 2} spends in the siding.

Therefore, the arrival time of train i ∈ Ns at its destination is

Ci
s(σ) = Si

s(σ) + p1 + p2 + τ is(σ). (1.1)

Consider the problem of minimisation of the objective function

γ(σ) =
n1⊙

i=1

ϕi
1(C

i
1(σ)) �

n2⊙

i=1

ϕi
2(C

i
2(σ)), (1.2)

where ϕi
s(·) is a non-decreasing function, and � is some associative and commutative operation

such that for any numbers a1, a2, b1, b2, satisfying the inequalities a1 � a2 and b1 � b2,

a1 � b1 � a2 � b2. (1.3)

The operation � can be, for example, addition or the operation of taking the maximum. Many
objective functions, used in practice, have the form (1.2), for example, the maximum lateness, the
weighted sum of train arrival times, and the number of late trains.

Following [1], the considered problem can be denoted as S2S1|siding = 1, tj = t|�ϕj , where S2
designates two stations, S1 specifies a single siding, siding = 1 defines the siding capacity, tj = t
indicates that all trains have the same speed.

In what follows, if it is clear what schedule σ is considered, the notations Ci
s, S

i
s, τ

i
s will be used

instead of the notations Ci
s(σ), S

i
s(σ), τ

i
s(σ).

2. SCHEDULE PROPERTIES

The algorithm below constructs a schedule considering only the departure times of the trains
that do not stop in the siding. In order to show that the information available at these points
in time is sufficient for the construction of an optimum schedule, consider properties of feasible
schedules.

Definition 1. Train i ∈ Ns, s ∈ {1, 2}, will be called an express if it goes through the siding
without stopping, i.e., if τ is = 0. Trains which stop in the siding we be referred to as non-expresses.

Definition 2. Train i from station s is active at time t, if Si
s � t � Ci

s.

Lemma 1. If two trains from different stations are active simultaneously at some point in time,
then one of them is a non-express and the other is an express that passes this non-express.

Proof. Consider a schedule where two trains, train i from station s and train j from station s̄,
are active simultaneously at some point in time. Since the trains depart from different stations,
the existence of the safety interval implies that Si

s �= Cj
s̄ and Sj

s̄ �= Ci
s. Therefore, if i and j are
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both expresses, then at the point in time max{Si
s, S

j
s̄}, these trains should move towards each other

which contradicts the feasibility of the schedule.

These trains cannot be two non-expresses either. Indeed, let i and j be non-expresses. Without
loss of generality, assume that train i departs first. Then, taking into account that Ci

s �= Sj
s̄ , at

some point in time, these trains must move toward each other. Hence, one of them must pass the
other and therefore cannot stop in the siding.

Thus, one of these trains must be an express and the other must be a non-express. Without loss
of generality, assume that i is an express and j in a non-express. Since the arrival time of one of
these trains cannot coincide with the departure time of the other, for some period since the point
in time max{Si

s, S
j
s̄}, they move towards each other. Therefore, non-express j must be in the siding

when i goes through the siding. �

Lemma 2. There exists an optimal schedule such that, for any two trains i and j from the same
station s, the inequality Si

s < Sj
s implies Ci

s < Cj
s .

Proof. Assume the contrary. Let, for two trains i and j from station s, the inequalities Si
s < Sj

s

and Ci
s � Cj

s hold. Because of the existence of the safety interval, the latter inequality implies
Ci
s > Cj

s . Thus, train j overtakes train i, and therefore train j arrives at the siding at least β after i.
On the other hand, by Lemma 1, since i is a non-express, any train g from station s̄ which is active
in the time interval [Sj

s , C
j
s ] must be an express that passes i when i is in the siding. According

to the same lemma, train j also must allow g to pass it, which is impossible since the siding can
accommodate only one train. Consequently, in the time interval [Sj

s , C
j
s ] there are no active trains

from station s̄, and therefore i can leave the siding β before the arrival of train j at the siding. In
this case the new arrival time of train i is Cj

s − β. Since the objective function is non-decreasing,
such change of the schedule does not increase the objective function. �

Thus, it will be assumed that no train overtakes a non-express from the same station. According
to the following lemma, it is possible to assume that for each non-express there is at least one train
from the opposite station which passes it.

Lemma 3. There exists an optimal schedule such that each non-express leaves the siding simul-
taneously with some express.

Proof. Consider a non-express j from station s. If no express passes j, let t = Sj
s + ps, i.e., in

this case t is the arrival time of j at the siding. If there are expresses that pass j, let t = Si
s̄ + ps̄,

where i is the last of these expresses, i.e., in this case t is the moment when the last express goes
through the siding.

From the point in time t until the point in time Cj
s between the siding and station s̄ there are

no active trains from station s̄, because otherwise, according to Lemma 1, such train must pass j
which contradicts the choice of the point in time t. Consequently, j can leave the siding at the
point in time t which does not lead to the increase of the objective function. If t = Sj

s + ps, then
in the new schedule j is an express. �

In what follows, only schedules which satisfy Lemma 2 and Lemma 3 will be considered. Each
schedule defines a sequence of the departure times of expresses. Two expresses cannot leave simul-
taneously the opposite stations, because in this case they are moving towards each other which
contradicts the feasibility of the schedule. On the other hand, taking into account the existence
of the safety interval, two trains cannot leave simultaneously the same station. Therefore, in the
defined sequence all expresses have different departure times. The following lemma shows what
trains can be active between the consecutive departure times of two expresses, and therefore plays a
key role in the proof that a schedule can be constructed by making decisions only at the departure
times of expresses.
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Lemma 4. Let e and e′ be two consecutive expresses, departing from stations x and x′ respec-
tively. Then, for any train j from station s which is active in the time interval [Se

x, C
e′
x′ ] and

neither e nor e′ passes it, either s = x and Sj
s < Se

x, or s = x′ and Sj
s > Se′

x′.

Proof. Let Sj
s < Se

x and s �= x. Since j is active at some point in the time interval [Se
x, C

e′
x′ ], train j

is active at the point in time Se
x. According to Lemma 1, e must pass train j which contradicts the

choice of j. Suppose that Sj
s > Se′

x′ and s �= x′. Train j is active at some point in the time interval
[Se

x, C
e′
x′ ], and hence Sj

s � Ce′
x′ , therefore at the point in time Sj

s train j is active together with the
express e′, and according to Lemma 1, e′ must pass j, which contradicts the selection of j.

Suppose now that Sj
s ∈ [Se

x, S
e′
x′ ]. Since all departure times of expresses are different and since e

and e′ are two consecutive expresses, train j cannot be an express. According to the choice of j, the
expresses e and e′ do not pass j, and therefore by Lemma 3, j is stationary in the siding when some
express g goes through the siding. Since e and e′ are two consecutive expresses, express g departs
from its station either before Se

x or after Se′
x′ . Assume that g departs before Se

x. If g departs from
station x, then it arrives at the siding before e. Consequently, j also arrives at the siding before e.
Then, by Sj

s ∈ [Se
x, S

e′
x′ ], trains e and j are active at the point in time Sj

s . Since g passes j, the
train j departs from station x̄ and, according to Lemma 1, e must pass j which contradicts the
choice of j. Suppose that g departs from station x̄ and the inequality Sg

x̄ < Se
x holds. Since two

expresses from different stations cannot be active simultaneously, Cg
x̄ < Se

x � Sj
s which contradicts

that train g passes j.

Suppose that g departs after Se′
x′ . If g arrives at the siding before e′, then these two trains are

from different stations and are active simultaneously at the departure time of g. This, by Lemma 1,
contradicts that g is an express. Suppose that g arrives at the siding after e′. If j also arrives at the
siding after e′, then by Sj

s ∈ [Se
x, S

e′
x′ ] it departs from the station x̄′ and at the point in time Se′

x′ is
active simultaneously with e′. Then, by Lemma 1, e′ passes train j which contradicts the selection
of j. If j arrives at the siding before e′, then g passes it only if e′ passes j which contradicts the
choice of j. �

3. EXPRESS TYPES AND DEPARTURE TIMES OF TRAINS

All expresses can be partitioned into six types depending on the station from which the express
departs, the existence of a non-express which this express passes, and if such a non-express exists,
whether or not this train remains in the siding after the express goes through the siding.

Definition 3. The set of all expresses that pass the same non-express will be called a batch.

Definition 4. A pair (s, b), where s specifies the station from which the express departs and
b assumes

• 0, if the express goes through an empty siding;

• 1, if the express is part of a batch and is not last in this batch;

• 2, if the express is the last in a batch;

will be called the type of this express.

As will be shown below, the process of schedule construction can be viewed as a sequential process,
where each step determines the type of the next express. It is shown below that, without loss
of generality, the set of considered schedules can be limited to the schedules where each express
departs as early as possible, and the formulae will be given for the calculation of these moments.

Lemma 5. There exists an optimal schedule in which for any express i of type (s, b), where b �= 1,
and express i′ of type (s′, b′), where b′ �= 0, which immediately follows express i and passes some
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non-express g′, train g′ has the following departure time:

Sg′
s̄′ =

⎧
⎪⎨

⎪⎩

Ci
s + β, if s = s′

Si
s + β, if s �= s′, b = 0

Si
s + 2ps + β, if s �= s′, b = 2.

(3.1)

Proof. Suppose that the lemma does not hold for two consecutive expresses i and i′ and a non-
express g′ such that i′ passes g′. If s = s′, then g′ departs from station s̄. Since b �= 1, express i
does not pass g′, and therefore, according to Lemma 1, g′ cannot be active simultaneously with i.
In other words,

[Sg′
s̄ , Cg′

s̄ ] ∩ [Si
s, C

i
s] = ∅. (3.2)

Because i′ passes g′ and i departs earlier than i′, the inequalities Cg′
s̄ > Si′

s′ > Si
s hold. Therefore,

according to (3.2), Sg′
s̄ > Ci

s, and taking into account the safety interval, Sg′
s̄ � Ci

s + β.

If there exists a train that causes train g′ to depart after the point in time Ci
s + β, then this

train must be active at some point in the time interval [Ci
s, S

i′
s′ + ps′ ], where S

i′
s′ + ps′ is the time of

arrival of train i′ at the siding. According to Lemma 4 and Lemma 2, in this time interval, there
can be active only train g such that i passes g and some train j from station s such that Sj

s > Si′
s′ .

Taking into account that i passes g,

Sg′
s̄ � Ci

s + β > Sg
s̄ + β.

Because g and g′ depart from the same station, by Lemma 2, train g cannot cause g′ to depart
after the point in time Ci

s + β. Train j cannot do it either, because g′ and i′ meet in the siding
before the arrival of j at the siding.

Assume that s �= s′. Then, g′ departs from station s and Si′
s′ > Ci

s because, by Lemma 1, the
expresses i and i′ cannot be active simultaneously. If Sg′

s < Si
s, then taking into account Lemma 2,

Cg′
s < Ci

s < Si′
s′ which contradicts that i′ passes g′. Therefore, Sg′

s > Si
s and, taking into account

the safety interval, Sg′
s � Si

s + β.

It can be shown that if b = 0, then Si
s + β is the earliest possible departure time of g′. Indeed,

otherwise there exists a train, active at some point in the time interval [Si
s, S

i′
s′ + ps′ ], which causes

g′ to depart later. According to Lemma 4, only train j from station s, satisfying Sj
s < Si

s, or train j′

from station s′, satisfying Sj′
s′ > Si′

s′ can be active on this interval. It is easy to see that by Lemma 2,
train j cannot cause g′ to depart later than Si

s + β. Train j′ cannot do this either, because g′ and i′

meet in the siding before j′ arrives at the siding.

If b = 2, then in contrast to the case when b = 0, in the time interval [Si
s, S

i′
s′ + ps′ ] there is an

active train g from station s̄ such that i passes g and g determines the earliest possible departure
time of g′. Indeed, since g and g′ are non-expresses from different stations, by Lemma 1 they

cannot be active simultaneously. Therefore, Cg
s̄ < Sg′

s̄′ which taking into account the safety interval

and the equality Cg
s̄ = Si

s + 2ps, which follows from Lemma 3, implies that the smallest possible
departure time of g′ is Si

s + 2ps + β.

The above implies that train g′ can have a departure time specified by Eq. (3.1) without changing
the schedule of the other trains. So, any optimal schedule can be transformed into a schedule that
satisfies this lemma. �

Consider express i of type (s, b), and express i′ of type (s′, b′) which immediately follows i.
Lemma 4 implies that Si′

s′ is determined only by express i, non-express g which i passes if such
a non-express exists, and non-express g′ which i′ passes if such a non-express exists. Taking into
account Lemma 5, it will be assumed that the departure time of g′ is determined by (3.1), and
therefore depends only on Si

s. Furthermore, in the case when b = 2, by Lemma 3, express i also
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determines the time when non-express g leaves the siding. In the case when b = 1, non-express g
does not affect the departure time of i′. Since this observation holds for every express and the
objective function is non-decreasing, it is reasonable that i′ departs as early as possible.

As far as the most early departure time of i′ is concerned, it is easy to see that if s �= s′, then by
virtue of Lemma 1, the inequality Si′

s′ � Ci
s + β must hold, whereas if s = s′, then the inequality

Si′
s′ � Si

s + β must hold. As far as the restrictions on Si′
s′ imposed by non-express g are concerned,

consider the case s �= s′. Then, g and i′ depart from the same station and, because of the existence
of the safety interval, Sg

s̄ + β � Ci
s and Ci

s + β � Si′
s′ . So, in this case, g does not impose any

restrictions on the departure time of i′. Assume that s = s′. It is easy to see that in this case,
if b = 1 then g does not impose any restrictions of the departure time of i′, and if b = 2, then by
Lemma 1 and Lemma 3 and the existence of the safety interval

Si′
s′ � Cg

s̄ + β = Si
s + 2ps + β.

Assume that g′ exists. If g = g′, then, as it has been mentioned before, this train does not
impose any restrictions on Si′

s′. If g �= g′, assume that g′ has the earliest possible departure time,
defined by Lemma 5. Since g′ should arrive at the siding at least β prior to i′, the inequality

Si′
s′ � Sg′

s̄′ + ps̄′ + β − ps′ holds.

The following lemma summaries the discussion above and show how to calculate the earliest
possible departure time for i′.

Lemma 6. There exists an optimal schedule such that, for any expresses i of type (s, b) and
immediately following it i′ of type (s′, b′), train i′ has departure time

Si′
s′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Si
s + β, if s = s′ and b = 1

Si
s + β, if s = s′ and b = b′ = 0

max{Si
s + 2ps + β, Sg′

s̄′ + ps̄′ + β − ps′}, if s = s′, b = 2, b′ �= 0

Si
s + 2ps + β, if s = s′, b = 2, b′ = 0

Sg′
s̄′ + ps̄′ + β − ps′ , if s = s′, b = 0, b′ �= 0

Ci
s + β, if s �= s′, b′ = 0

max{Ci
s + β, Sg′

s̄′ + ps̄′ + β − ps′}, if s �= s′, b′ �= 0,

(3.3)

where g′ is the non-express that i′ passes if such non-express exists, and Sg′
s̄′ is calculated according

to Lemma 5.

Let express i of type (s, b) and express i′ of type (s′, b′) be two consecutive expresses. In what
follows, there will be considered only schedules where the difference Si′

s′ − Si
s is defined by (3.3).

Since the difference between their departure times depends only on the types, this difference will
be denoted by h(s, b, s′, b′). Taking into account (3.1) and (3.3),

h(s, b, s′, b′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β, if s = s′ and b = 1

β, if s = s′ and b = b′ = 0

max{2ps + β, 2(ps̄ + β)}, if s = s′, b = 2, b′ �= 0

2ps + β, if s = s′, b = 2, b′ = 0

2(ps̄ + β), if s = s′, b = 0, b′ �= 0

ps + ps̄ + β, if s �= s′, b′ = 0

ps + ps̄ + β, if s �= s′, b = 0, b′ �= 0

max{ps + ps̄ + β, 3ps + 2β − ps̄}, if s �= s′, b = 2, b′ �= 0.

(3.4)

The following four lemmas and the corollary together with Lemmas 3–6 show that the express
types determine the schedule.
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Lemma 7. If the last express departs from station s, then it is the last train departing from
station s.

Proof. Let train i from station s be the express with the latest departure time. Suppose that
there exists train j from station s such that Sj

s > Si
s. Since j cannot be an express, some express i′

from station s̄ should pass it. Trains i and i′ are both expresses, and according to Lemma 1, they
cannot be active simultaneously. This implies Si′

s̄ > Ci
s which contradicts the choice of i. �

Lemma 8. Let train i from station s be the express with the latest departure time among all
expresses and let train j from station s̄ satisfy Cj

s̄ > Si
s. Then j is the last train from station s̄

and i passes j.

Proof. If Sj
s̄ � Si

s, then by Lemma 2, j is a non-express and i passes j. If Sj
s̄ > Si

s, then j is a non-
express by the choice of i. Taking into account that Sj

s̄ > Si
s and that i is the last express, i should

pass j. Because an express cannot pass two non-expresses, j is the last train from station s̄. �
Lemma 9. The first express always is the first train that departs from the corresponding station.

Proof. Let train i from station s be the express with the earliest departure time among all
expresses. Assume that there exists train j from station s such that Sj

s < Si
s. Because i is the

earliest express, train j is a non-express and some train i′ from station s̄ passes it. By Lemma 1,
i and i′ cannot be active simultaneously, and by Lemma 2, Ci′

s̄ < Si
s which contradicts the choice

of i. Thus, i is the first train from station s. �
Lemma 10. Let express i from station s have the earliest departure time among all expresses. If

train i′ from station s′ satisfies the equality Si′
s′ � Si

s, then i′ is the first train from station s̄ and i
passes this train.

Proof. By Lemma 9, s′ = s̄, and by virtue of the choice of i, train i′ can not be an express.
Therefore, according to Lemma 2, i should pass this train. Since an express can not pass several
non-expresses, i′ is the first train from station s̄. �

Observe that if the first express passes a train, then this train must arrive at the siding β prior
to the arrival there of this express. This observation together with two latter lemmas implies the
following corollary.

Corollary. There exists an optimal schedule in which the first express has the departure time

t =

{
0, if b = 0
max{0, ps̄ + β − ps}, if b �= 0,

(3.5)

where (s, b) is the type of this express.

4. STATES AT THE DEPARTURE TIMES OF THE EXPRESSES

Let i be an express of type (s, b). The number of trains at station s at the point in time Si
s,

including i, will be denoted by ks. As far as the station s̄ is concerned, consider the set of trains,
comprised of the non-express that i passes (if it exists) plus all other train that are at station s̄ at
the point in time Si

s. The number of trains in this set will be denoted by ks̄. It is easy to see that
the 4-tuple (k1, k2, s, b) satisfies the following constraints:

(1) ks � 1 and ks̄ � 0;

(2) if b �= 0, then ks̄ � 1;

(3) if b = 1, then ks � 2.

Any 4-tuple, satisfying the conditions mentioned above, will be called a state. Thus, the departure
time of each express is associated with some state.
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SCHEDULING THE TWO-WAY TRAFFIC 513

Lemma 11. Let (k1, k2, s, b) and (k′1, k′2, s′, b′) be states, corresponding to two consecutive ex-
presses. Then

k′s = ks − 1, k′s̄ =

{
ks̄ − 1, if b = 2
ks̄, otherwise.

(4.1)

Proof. Assume that the state (k1, k2, s, b) corresponds to the departure time of express i and
the state (k′1, k′2, s′, b′) corresponds to the departure time of express i′. According to Lemma 4,
i′ must pass every train which departs from station s between the points in time Si

s and Si′
s′ .

Since an express cannot pass two trains, in the time interval [Si
s, S

i′
s′ ], besides i, only one train can

depart from station s. If train that i′ passes exists, then it is counted in the calculation of k′s. So,
k′s = ks − 1.

If b = 0, then, at the point in time Si
s, there are ks̄ trains at station s̄. By Lemma 4, i′ passes

each train that departs from station s̄ between the points in time Si
s and Si′

s′ , and therefore, such
train is counted in the calculation of k′̄s. Hence, in this case k′̄s = ks̄. If b = 1, then no train can
depart from station s̄ in the time interval [Si

s, S
i′
s′ ] except the train that is passed by expresses i

and i′. Indeed, otherwise, by Lemma 4, either i or i′ must pass this train, whereas an express cannot
pass two trains. Hence, k′̄s = ks̄ when b = 1. For b = 2, by Lemma 3, the train that i passes leaves
the siding at the same time as i and therefore is not counted in the calculation of k′̄s. By Lemma 4,
i′ passes any other train that departs from station s̄ between the points in time Si

s and Si′
s′ , and

therefore this train is counted in the calculation of k′̄s. Hence, k′̄s = ks̄ − 1 when b = 2. �

5. ORDERED COST FUNCTIONS

Assume that, for each station, there is given a linear order on the set of trains departing from
this station such that, for any trains i and j from station s, where j precedes i in this order, and
for any points in time t1 < t2,

ϕj
s(t1)� ϕi

s(t2) � ϕj
s(t2)� ϕi

s(t1). (5.1)

Lemma 12. There exists an optimal schedule in which the trains depart from each station ac-
cording to the linear order for this station.

Proof. Suppose that there is no schedule, satisfying the lemma. Then, for every optimal sched-
ule σ, there exists a pair of trains i and j from the same station s, for which

Ci
s(σ) < Cj

s(σ)

and train j precedes i in the linear order for station s. For each schedule σ among all these pairs
choose a pair, where Ci

s(σ) is minimal, and denote this pairs i(σ) and j(σ) and the station, from
which these trains depart, denote by s(σ). Among all optimal schedules select a schedule, for which

C
i(σ)
s(σ)(σ) is maximal. Denote this schedule by η.

The value of the objective function for the schedule η is specified by the expression (1.2), which
since � is associative and commutative, can be written as

γ(η)=

(
ϕ
i(η)
s(η)

(
C

i(η)
s(η)(η)

)
� ϕ

j(η)
s(η)

(
C

j(η)
s(η) (η)

))
�
⎛

⎝
⊙

g /∈{i(η),j(η)}
ϕg
s(η)

(
Cg
s(η)(η)

)
�

ns̄(η)⊙

g=1

ϕg
s̄(η)

(
Cg
s̄(η)(η)

)
⎞

⎠ .

Consider schedule π, according to which all trains, except i(η) and j(η), are scheduled as in η.
Train i(η) proceeds in schedule π as train j(η) in schedule η, whereas train j(η) proceeds in

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 3 2018



514 ZINDER et al.

schedule π as i(η) in schedule η. Thus,

Cg
s(η)(π) = Cg

s(η)(η), g ∈ {1, 2, . . . , ns(η)}\{i(η), j(η)},
Cg
s̄(η)(π) = Cg

s̄(η)(η), g ∈ {1, 2, . . . , ns̄(η)},

C
i(η)
s(η)(π) = C

j(η)
s(η) (η), C

j(η)
s(η) (π) = C

i(η)
s(η)(η).

The value of the objective function, corresponding to the schedule π, is

γ(π)=

(
ϕ
i(η)
s(η)(C

j(η)
s(η) (η))� ϕ

j(η)
s(η)(C

i(η)
s(η)(η))

)
�
⎛

⎝
⊙

g /∈{i(η),j(η)}
ϕg
s(η)(C

g
s(η)(η)) �

ns̄(η)⊙

g=1

ϕg
s̄(η)(C

g
s̄(η)(η))

⎞

⎠ .

By virtue of (5.1) and C
i(η)
s(η)(η) < C

j(η)
s(η)(η), the inequality

ϕ
i(η)
s(η)

(
C

j(η)
s(η) (η)

)
� ϕ

j(η)
s(η)

(
C

i(η)
s(η)(η)

)
� ϕ

i(η)
s(η)

(
C

i(η)
s(η)(η)

)
� ϕ

j(η)
s(η)

(
C

j(η)
s(η)(η)

)

holds which, according to (1.3), implies γ(π) � γ(η).

Consequently, schedule π is optimal. If in this schedule the trains from each station depart
in the given linear order, then the lemma is proven. If there exists a pair i(π) and j(π) and

C
i(π)
s(π)(π) > C

i(η)
s(η)(η), then this contradicts the choice of η.

It remains to consider the case C
i(π)
s(π)(π) = C

i(η)
s(η)(η). In this case, π can be transformed into the

schedule α where all trains, except i(π) and j(π), are scheduled as in π; train i(π) proceeds in
schedule α as train j(π) in schedule π, and train j(π) proceeds in schedule α as i(π) in schedule π.
As above, γ(α) � γ(π), i.e., schedule α is optimal. The lemma follows from the observation that
such transformation is possible only finite number of times because, in all pairs that trigger this
transformation, the trains with the smaller departure time are different. �

In what follows, only schedules, in which trains from each station depart according to the
given linear order, will be considered. The departure time of each express can be obtained by the
sequential application of (3.4), starting from the departure time of the first express given by (3.5).
Taking into account (3.4) and (3.5), it can be seen that the departure time of any express can be
written as

t = m1p1 +m2p2 +m3β,

where m1, m2 and m3 are some integers. According to (3.4) and (3.5), from the departure of one
express to the departure of the next one, the coefficients m1 and m2 increase at most by 3 and
decrease at most by 1, whereas the coefficient m3 increases at most by 2. Thus, the coefficients m1

and m2 do not exceed 3(n1+n2) and are not less than −(n1+n2), whereas the coefficient m3 does
not exceed 2(n1+n2). Consequently, all possible departure times of the expresses belong to the set

T =
{
t| t � 0, t = m1p1 +m2p2 +m3β,

m1 ∈ {−(n1 + n2), . . . , 0, 1, . . . , 3(n1 + n2)},
m2 ∈ {−(n1 + n2), . . . , 0, 1, . . . , 3(n1 + n2)},m3 ∈ {0, 1, . . . , 2(n1 + n2)}

}
.

(5.2)

The cardinality of T is O((n1 + n2)
3).

Number trains at each station in the reverse order of the order of their departure times, i.e., for
any trains i and j from the same station s,

i < j implies Si
s > Sj

s .
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For any state (k1, k2, s, b), let Ω(k1, k2, s, b) be the set of all states (k
′
1, k

′
2, s

′, b′), satisfying Lemma 11
and the condition: if b = 1, then s′ = s and b′ �= 0. If Ω(k1, k2, s, b) = ∅, then state (k1, k2, s, b) is
called final. According to Lemmas 7, 8 and 11, an express is the last in a schedule if and only if its
departure time corresponds to the final state.

Let i be an express that departs at time t ∈ T associated with state (k1, k2, s, b). Then, i = ks.
The corresponding schedule induces the sequence of expresses, comprised of the express i and all ex-
presses that depart after express i. This sequence, in turn, induces the sequence of states that corre-
spond to the departure times of these expresses. Thus, the first state in this sequence is (k1, k2, s, b),
the last is a final state, and for any two consecutive states (k′1, k′2, s′, b′) and (k′′1 , k′′2 , s′′, b′′),

(k′′1 , k
′′
2 , s

′′, b′′) ∈ Ω(k′1, k
′
2, s

′, b′). (5.3)

Call feasible any sequence of states, in which any two consecutive states (k′1, k′2, s′, b′) and
(k′′1 , k′′2 , s′′, b′′) satisfy (5.3) and the last in this sequence is a final state.

It is easy to see that, for any feasible sequence of states (k11 , k
1
2 , s

1, b1), . . . , (ka1 , k
a
2 , s

a, ba), there
exists a schedule such that the train k1s1 is an express and all subsequent expresses are the trains
k2s2 , . . . , k

a
sa . Observe that there are infinitely many such schedules, including schedules, in which

the trains depart as early as possible.

Consider all schedules, in which express i from station s departs at the point in time t associated
with state (k1, k2, s, b). Let G(t, k1, k2, s, b) be the minimal value of

⊙

j∈{1,...,k1}
ϕj
1

(
Cj
1(σ)

)
�

⊙

g∈{1,...,k2}
ϕg
2 (C

g
2 (σ)) (5.4)

among all these schedules σ. As has been mentioned above, since all cost functions are nonde-
creasing, it suffices to consider only schedules in which trains depart as early as possible. Then,
G(t, k1, k2, s, b) can be viewed as the minimal value attained on all feasible sequences that start
with state (k1, k2, s, b).

Assume that a feasible sequence, on which the value G(t, k1, k2, s, b) is attained, consists of only
one state, which therefore is final. It is easy to see that only states (1, 0, 1, 0), (0, 1, 2, 0), (1, 1, 1, 2),
(1, 1, 2, 2) are final states. Thus,

G(t, 1, 0, 1, 0) = ϕ1
1(t+ p1 + p2), (5.5)

G(t, 0, 1, 2, 0) = ϕ1
2(t+ p1 + p2), (5.6)

G(t, 1, 1, 1, 2) = ϕ1
1(t+ p1 + p2)� ϕ1

2(t+ 2p1), (5.7)

G(t, 1, 1, 2, 2) = ϕ1
1(t+ 2p2)� ϕ1

2(t+ p1 + p2). (5.8)

If (k1, k2, s, b) is not a final state, then

G(t, k1, k2, s, b) = Φ(t, k1, k2, s, b)� min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
G(t+ h(s, b, s′, b′), k′1, k

′
2, s

′, b′), (5.9)

where

Φ(t, k1, k2, s, b) =

{
ϕks
s (t+ p1 + p2)� ϕks̄

s̄ (t+ 2ps), if b = 2

ϕks
s (t+ p1 + p2), otherwise.

(5.10)

Denote by X(n1, n2) the set of all feasible pairs (s, b) for n1 and n2. Then, taking into account
Lemma 9 and Corollary, the optimal value of the objective function is

γ∗ = min
(s,b)∈X(n1,n2)

G(Sns
s , n1, n2, s, b),
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where Sns
s is calculated using (3.5). This value can be obtained by dynamic programming, us-

ing (5.5)–(5.8) and the Bellman equation (5.9).

Observe that if n1 = 0 or n2 = 0, then the problem is trivial. Indeed, in this case all trains are
expresses that depart in the optimal schedule every β time units. In the case when n1 �= 0 and
n2 �= 0, the computational complexity of the proposed algorithm is O(n1n2(n1+n2)

3), where n1n2

reflects the cardinality of the set of all states, whereas (n1 + n2)
3 reflects the cardinality of T .

6. A MODIFIED ALGORITHM FOR TWO IMPORTANT OBJECTIVE FUNCTIONS

It will be shown that in the case of some frequently used in practice objective functions the
computational complexity of the algorithm can be substantially reduced. Consider the set of all
schedules in which express i from station s departs at time t associated with state (k1, k2, s, b). Each
such schedule determines a feasible sequence of states that starts with (k1, k2, s, b). According to
Lemmas 3, 5 and 6, the point in time t and this feasible sequence give the arrival times of each train
from the set {1, 2, . . . , k1} from station 1 and from the set {1, 2, . . . , k2} from station 2. Therefore,
for any train j that departs from station s′ and belongs to one of these sets,

Cj
s′ = t+K(j, s′, l), (6.1)

where K(j, s′, l) is determined by the corresponding feasible sequence of states l. Denote by
L(k1, k2, s, b) the set of all feasible sequences in which (k1, k2, s, b) is the first state.

6.1. Maximum Lateness

Consider the maximum lateness problem

Lmax(σ) = max
i∈Ns, s∈{1, 2}

{Ci
s(σ)− dis}, (6.2)

where dis is the time by which it is desired for train i from station s to arrive at its destination. In
the scheduling literature this time is commonly referred to as the due date. It is easy to see that,
in this case, the order of departures from each station is specified by the due dates, i.e., for any
trains i and j from the same station s, the inequality dis < djs implies the inequality Si

s < Sj
s .

In this case, the Bellman equation (5.9) is

G(t, k1, k2, s, b) = max

{
Φ(t, k1, k2, s, b),

min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)

{
G(t+ h(s, b, s′, b′), k′1, k

′
2, s

′, b′)
}
}
, (6.3)

where

Φ(t, k1, k2, s, b) =

{
max

{
t+ p1 + p2 − dkss , t+ 2ps − dks̄s̄

}
, if b = 2

t+ p1 + p2 − dkss , otherwise.
(6.4)

By virtue of (6.1), the value G(t, k1, k2, s, b)− t depends only on the feasible sequence of states.
Denote this difference by F (k1, k2, s, b) and introduce the notation L(k1, k2, s, b)=Φ(t, k1, k2, s, b)−t,
i.e.,

L(k1, k2, s, b) =

{
max

{
p1 + p2 − dkss , 2ps − dks̄s̄

}
, if b = 2

p1 + p2 − dkss , otherwise.
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According to (5.5)–(5.8), the values of F for the final states are

F (1, 0, 1, 0) = p1 + p2 − d11, (6.5)

F (0, 1, 2, 0) = p1 + p2 − d12, (6.6)

F (1, 1, 1, 2) = max
{
p1 + p2 − d11, 2p1 − d12

}
, (6.7)

F (1, 1, 2, 2) = max
{
2p2 − d11, p1 + p2 − d12

}
. (6.8)

Subtracting t from both sides of the Eq. (6.3),

F (k1, k2, s, b) = G(t, k1, k2, s, b)− t

= max

{
Φ(t, k1, k2, s, b)− t,

min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
G(t+ h(s, b, s′, b′), k′1, k

′
2, s

′, b′)− t

}

= max

{
L(k1, k2, s, b),

min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
min

l∈L(k′1,k′2,s′,b′)
max

{
max

j∈{1,...,k′1}

{
t+ h(s, b, s′, b′)

+K(j, 1, l) − dj1 − t
}
, max
g∈{1,...,k′2}

{
t+ h(s, b, s′, b′) +K(g, 2, l) − dg2 − t

}
}}

= max

{
L(k1, k2, s, b),

min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
min

l∈L(k′1,k′2,s′,b′)
max

{
max

j∈{1,...,k′1}

{
K(j, 1, l) − dj1

}
,

max
g∈{1,...,k′2}

{K(g, 2, l) − dg2}
}
+ h(s, b, s′, b′)

}

= max

{
L(k1, k2, s, b), min

(k′1,k
′
2,s

′,b′)∈Ω(k1,k2,s,b)

{
G(0, k′1, k

′
2, s

′, b′) + h(s, b, s′, b′)
}
}

= max

{
L(k1, k2, s, b), min

(k′1,k
′
2,s

′,b′)∈Ω(k1,k2,s,b)

{
F (k′1, k

′
2, s

′, b′) + h(s, b, s′, b′)
}
}
.

As in above, Lemma 9 and Corollary lead to the following optimal value of the objective function

min
(s,b)∈X(n1,n2)

{F (n1, n2, s, b) + Sns
s } , (6.9)

where Sns
s is calculated using (3.5). This value can be obtained by dynamic programming, using

(6.5)–(6.8) and the obtained above Bellman equation

F (k1, k2, s, b) = max

{
L(k1, k2, s, b), min

(k′1,k
′
2,s

′,b′)∈Ω(k1,k2,s,b)
{F (k′1, k

′
2, s

′, b′) + h(s, b, s′, b′)}
}
.

As before, if n1 = 0 or n2 = 0, then the problem becomes trivial and in the optimal schedule all
trains are expresses that depart from the same station every β time units. In the case when n1 �= 0
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and n2 �= 0, since the set Ω(k1, k2, s, b) contains not more than six elements, the computational
complexity is determined by the number of states which implies O(n1n2).

6.2. Weighted Sum of Arrival Times

The algorithm below allows to minimise the weighted sum of arrival times

∑

i∈Ns, s∈{1, 2}
wi
sC

i
s(σ), (6.10)

where wi
s is the weight (priority) of train i from station s. If, in some schedule, for two trains i

and j from the same station s, wi
s < wj

s and Si
s < Sj

s , then train j can depart instead of train i and
train i can depart instead of train j without changing the rest of the schedule. As a result, the
value of (6.10) will decrease. Therefore, in what follows, will be considered only schedules where,
for any two trains i and j from the same station s, the inequality wi

s < wj
s implies Si

s > Sj
s .

As before, consider express i from station s that departs at time t associated with state
(k1, k2, s, b). Instead of function F (k1, k2, s, b), introduced in the previous section, consider

H(k1, k2, s, b) = G(t, k1, k2, s, b)− t

⎛

⎝
k1∑

j=1

wj
1 +

k2∑

g=1

wg
2

⎞

⎠ .

Then, according to (5.5)–(5.8),

H(1, 0, 1, 0) = (p1 + p2)w
1
1, (6.11)

H(0, 1, 2, 0) = (p1 + p2)w
1
2, (6.12)

H(1, 1, 2, 2) = 2p2w
1
1 + (p2 + p1)w

1
2 , (6.13)

H(1, 1, 1, 2) = 2p1w
1
2 + (p2 + p1)w

1
1 . (6.14)

Taking into account (5.9), (6.1) and that � is addition,

H(k1, k2, s, b) = G(t, k1, k2, s, b)− t

⎛

⎝
k1∑

j=1

wj
1 +

k2∑

g=1

wg
2

⎞

⎠

= Φ(t, k1, k2, s, b) + min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
G(t+ h(s, b, s′, b′), k′1, k

′
2, s

′, b′)− t

⎛

⎝
k1∑

j=1

wj
1 +

k2∑

g=1

wg
2

⎞

⎠

= Φ(t, k1, k2, s, b) + min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
min

l∈L(k′1,k′2,s′,b′)

⎧
⎨

⎩

k′1∑

j=1

wj
1(t+ h(s, b, s′, b′) +K(j, 1, l))

+

k′2∑

g=1

wg
2(t+ h(s, b, s′, b′) +K(g, 2, l))

⎫
⎬

⎭ − t

⎛

⎝
k1∑

j=1

wj
1 +

k2∑

g=1

wg
2

⎞

⎠

= Φ(t, k1, k2, s, b) + min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)
min

l∈L(k′1,k′2,s′,b′)

⎧
⎨

⎩

k′1∑

j=1

wj
1K(j, 1, l)

+

k′2∑

g=1

wg
2K(g, 2, l) +

⎛

⎝
k′1∑

j=1

wj
1 +

k′2∑

g=1

wg
2

⎞

⎠h(s, b, s′, b′) + t

⎛

⎝
k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2

⎞

⎠

⎫
⎬

⎭ .
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By virtue of Lemma 11,

k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2 =

{ −wks
s − wks̄

s̄ , if b = 2

−wks
s , otherwise.

(6.15)

Consequently,

t

⎛

⎝
k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2

⎞

⎠

does not depend on the state (k′1, k′2, s′, b′). Therefore

H(k1, k2, s, b) = Φ(t, k1, k2, s, b) + t

⎛

⎝
k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2

⎞

⎠

+ min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)

⎧
⎨

⎩ min
l∈L(k′1,k′2,s′,b′)

⎧
⎨

⎩

k′1∑

j=1

wj
1K(j, 1, l) +

k′2∑

g=1

wg
2K(g, 2, l)

⎫
⎬

⎭

+

⎛

⎝
k′1∑

j=1

wj
1 +

k′2∑

g=1

wg
2

⎞

⎠h(s, b, s′, b′)

⎫
⎬

⎭

= Φ(t, k1, k2, s, b) + t

⎛

⎝
k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2

⎞

⎠

+ min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)

⎧
⎨

⎩G(0, k′1, k
′
2, s

′, b′) +

⎛

⎝
k′1∑

j=1

wj
1 +

k′2∑

g=1

wg
2

⎞

⎠h(s, b, s′, b′)

⎫
⎬

⎭ .

Then, according to (6.15) and because, by (5.10),

Φ(t, k1, k2, s, b) =

{
wks
s (t+ p1 + p2) + (t+ 2ps)w

ks̄
s̄ , if b = 2

wks
s (t+ p1 + p2), otherwise,

Φ(t, k1, k2, s, b) + t

⎛

⎝
k′1∑

j=1

wj
1 −

k1∑

j=1

wj
1 +

k′2∑

g=1

wg
2 −

k2∑

g=1

wg
2

⎞

⎠

=

{
wks
s (p1 + p2) + 2psw

ks̄
s̄ , if b = 2

wks
s (p1 + p2), otherwise.

Then,

H(k1, k2, s, b) = Ψ(k1, k2, s, b)

+ min
(k′1,k

′
2,s

′,b′)∈Ω(k1,k2,s,b)

⎧
⎨

⎩H(k′1, k
′
2, s

′, b′) +

⎛

⎝
k′1∑

j=1

wj
1 +

k′2∑

g=1

wg
2

⎞

⎠h(s, b, s′, b′)

⎫
⎬

⎭ , (6.16)

where

Ψ(k1, k2, s, b) =

{
wks
s (p1 + p2) + 2psw

ks̄
s̄ , if b = 2

wks
s (p1 + p2), otherwise.
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By Lemma 9 and Corollary, the optimal value of the objective function is

min
(s,b)∈X(n1,n2)

⎧
⎨

⎩H(n1, n2, s, b) +

⎛

⎝
n1∑

j=1

wj
1 +

n2∑

g=1

wg
2

⎞

⎠Sns
s

⎫
⎬

⎭ ,

where Sns
s is calculated using (3.5). This value can be found by dynamic programming using (6.11)–

(6.14) and the Bellman equation (6.16). As in the case of Lmax, the computational complexity of
the proposed algorithm is O(n1n2).

7. WEIGHTED NUMBER OF LATE TRAINS

Consider minimisation of the weighted number of late trains
∑

i∈Ns, s∈{1, 2}
wi
sU

i
s(σ), (7.1)

where

U i
s(σ) =

⎧
⎨

⎩
0, if Ci

s(σ) � dis

1, if Ci
s(σ) > dis,

(7.2)

and the due date dis, as before, is the time by which it is desired for train i from station s to
arrive at its destination. Contrary to the previous sections, in this case, the cost functions are not
ordered. Moreover, each train can be an express, or a non-express, which some express passes at
the siding, or a train that is late. By virtue of the objective function, all late trains can depart in
any order after the arrival of all trains that are on time. Therefore, in what follows, only the choice
of trains that are on time and their scheduling are considered.

Each train i from station s that is on time arrives by its due date dis. Taking into account
Subsection 6.1, it will be assumed that all trains from the same station that are on time depart in
a nondecreasing order of their due dates. As in Subsection 6.1, it will be assumed that all trains
from each station are numbered in a nonincreasing order of their due dates.

Let express i depart from station s at the point in time t. As before, the departure time of this
express will be associated with a state (k1, k2, s, b), where ks is the number of trains at station s
at the departure time of express i, and ks̄ is the number of trains g from station s̄ that satisfy at
least one of the following two conditions:

• the express i passes train g;
• at the point in time t, train g is situated at station s̄.

Express i and the train that i passes (if such train exists) meet their due dates, therefore taking
into account that i = ks,

t+ p1 + p2 � dkss . (7.3)

In the case b = 2, the inequality

t+ 2ps � dks̄s̄ (7.4)

holds. Observe that some trains from station s that belong to the set {1, . . . , ks − 1} can be late.
Therefore, when b = 1, the next express will be j ∈ {1, . . . , ks − 1}, which is not necessarily the
train ks − 1, and

t+ β + p1 + p2 � djs, (7.5)

t+ β + 2ps � dks̄s̄ . (7.6)
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Assume that after i the next express is i′ and its departure time is associated with state
(k′1, k′2, s′, b′). By Lemma 11 and because some trains that depart after the point in time t can
be late,

k′s � ks − 1; (7.7)

k′s̄ � ks̄ − 1, if b = 2; k′s̄ = ks̄, if b = 1; and k′s̄ � ks̄, if b = 0. (7.8)

Analogously to (7.3),

t+ h(s, b, s′, b′) + p1 + p2 � d
ks′
s′ , (7.9)

and in the case b′ = 2,

t+ h(s, b, s′, b′) + 2ps′ � d
k
s̄′

s̄′ , (7.10)

furthermore, in the case when b′ = 1 and the next express is j′ ∈ {1, . . . , i′ − 1},
t+ h(s, b, s′, b′) + β + p1 + p2 � dj

′
s′ , (7.11)

t+ h(s, b, s′, b′) + β + 2ps′ � d
k
s̄′

s̄′ . (7.12)

The set of all states (k′1, k′2, s′, b′), satisfying (7.7)–(7.12), will be denoted by Ψ(t, k1, k2, s, b). In
other words, if there exists an express that is next after i, then its departure time is associated with
a state in Ψ(t, k1, k2, s, b), and every state in this set specifies the next possible express after i.

Consider all schedules, according to which train ks from station s is an express that has the
departure time t associated with the state (k1, k2, s, b). Let G(t, k1, k2, s, b) be the minimal possible
value of

∑

j∈{1,...,k1}
wj
1U

j
1 (σ) +

∑

g∈{1,...,k2}
wg
2U

g
2 (σ) (7.13)

on the set of all these schedules σ. Observe that if Ψ(t, k1, k2, s, b) = ∅, then b �= 1. If
Ψ(t, k1, k2, s, b) = ∅, then by Lemmas 7 and 8, ks is the last on time train from station s, and
if there exists an on time train from station s̄ with the departure time greater than t, then it is ks̄
and ks passes non-express ks̄. Therefore, for every t ∈ T , where T is defined in (5.2), and every
state (k1, k2, s, b) such that Ψ(t, k1, k2, s, b) = ∅,

G(t, k1, k2, s, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i<ks

wi
s +

∑

i�ks̄

wi
s̄, if b = 0

∑

i<ks

wi
s +

∑

i<ks̄

wi
s̄, if b = 2.

(7.14)

If, for some (k1, k2, s, b) and t ∈ T such that (7.3)–(7.6) hold, Ψ(t, k1, k2, s, b) �= ∅, then
G(t, k1, k2, s, b)

= min
(k′1,k

′
2,s

′,b′)∈Ψ(t,k1,k2,s,b)

{
G(t+ h(s, b, s′, b′), k′1, k

′
2, s

′, b′) +W (k1, k2, s, b, k
′
1, k

′
2)
}
, (7.15)

where

W (k1, k2, s, b, k
′
1, k

′
2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

k′s<i<ks

wi
s +

∑

k′̄s<i�ks̄

wi
s̄, if b �= 2

∑

k′s<i<ks

wi
s +

∑

k′̄s<i<ks̄

wi
s̄, if b = 2.

(7.16)
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LetD be the set of all states (k1, k2, s, b) that satisfy (7.3)–(7.6) for t = Sks
s calculated using (3.5).

Then the optimal value of the objective function

min
(k1,k2,s,b)∈D

⎧
⎨

⎩G(Sks
s , k1, k2, s, b) +

∑

i>ks

wi
s +

∑

i>ks̄

wi
s̄

⎫
⎬

⎭

can be calculated by dynamic programming, using (7.14)–(7.15).

In the case when n1 �= 0 and n2 �= 0, taking into account the cardinality of T and the cardinality
of the set of all states, the computational complexity of this algorithm is O(n2

1n
2
2(n1 + n2)

3). If
n1 = 0 or n2 = 0, an optimal schedule can be constructed using a more efficient algorithm. In order
to describe the idea of this algorithm, without loss of generality, assume that n1 �= 0 and number
all trains in a nondecreasing order of the due dates. According to the algorithm, the schedule is
constructed where the trains depart in the increasing order of their numbers, i.e., in a nondecreasing
order of the due dates. Thus, the first train has the departure time t = 0, the second departs at
t = β, etc. Let i be the train with the smallest number among the trains that do not meet their
due dates. Among all trains j such that j � i choose train j′ with the minimal wj

1. This train will
be late and is excluded from the set of considered trains. Then, the process repeats for the new set
of trains.

8. CONCLUSION

The algorithms, presented above, were developed for the case of two stations and a single siding
that can accommodate only one train. The directions of further research may include cases with
several sidings, sidings with different capacity, and a more complex structure of the railway network.
Another direction of research is problems with restrictions on the departure times.
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