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Abstract—Quasi-cyclic (QC) codes are a wide class of error-
correcting codes possessing nice theoretical properties and having
many practical applications. This paper provides a new approach
to the problem of efficient encoding of QC codes based on the
Chinese remainder theorem (CRT). We present a number of fast
systematic CRT-based encoding algorithms that have superior
asymptotic complexity than the previous methods based on shift
registers. We also consider the encoding problem for QC low-
density parity-check (LDPC) codes. In the special case when
the parity part of a sparse parity-check QC matrix has a QC
generalized inverse we propose a systematic CRT-based encoding
algorithm that can exploit the parity-check matrix sparseness. We
also give necessary and sufficient conditions when a QC matrix
over an arbitrary field has a QC generalized inverse of the same
circulant size.

I. INTRODUCTION

Quasi-cyclic (QC) codes introduced by Townsend and Wel-
don [1] are an important class of linear codes having reach
algebraic structure and widely used in applications. A linear
(N,K)-code is said to be a QC code of index n, where n | N ,
if the right cyclic shift by n positions of any codeword is also
a codeword. Thus cyclic codes are just a special case of QC
codes when n = 1. It is known [2] that in the class of QC
codes there are asymptotically good codes meeting a Gilbert-
Varshamov type bound. At the same time, the question whether
there exists an asymptotically good class of cyclic codes is a
long-standing problem [3].

Since the reinvention of the capacity-approaching low-
density parity-check (LDPC) codes in 1990s, first introduced
by Gallager in 1960s [4], a subclass of QC codes with sparse
parity-check matrices called QC LDPC codes has gained
significant attention [5]. The quasi-cyclic structure of these
codes makes them particularly convenient for encoding and
decoding.

In this paper we address the problem of efficient encoding of
QC codes. It is very well known that QC codes can be encoded
by multiplying of an information vector by a generator QC
matrix, which can be implemented in hardware using shift
registers (see [6] for a good reference on this topic). Despite
the regular structure of such algorithms, which simplifies the
hardware implementation, their bit complexity is still propor-
tional to the number of non-zero elements in the generator
matrix. This makes them less attractive for high-throughput
applications in modern communications and storage systems.

Thus a development of faster encoding methods for QC and
QC LDPC codes is of significant theoretical and practical
importance.

In fact, a vector by a QC matrix multiplication can be
implemented much more efficiently if one uses the polynomial
representation of QC matrices. Suppose we have an m`× n`
QC matrix over Fq consisting of m×n circulant submatrices of
size `×`. It can be represented [7], [8] as the polynomial m×n
matrix with coefficients from the ring F〈`〉q = Fq[x]/(x

` − 1).
Thus we need mn multiplications1 in the ring F〈`〉q to multiply
by this matrix. A straightforward approach to implement mul-
tiplication in F〈`〉q leads to O(`2) arithmetic operations in the
field Fq but using the classical Fast Fourier Transform (FFT)
based polynomial multiplication algorithms2 [9, Chapter 8]
it is possible to use only O(` log ` log log `) field operations.
Hence the total complexity of the FFT-based multiplication
by an m`×n` QC matrix is O(mn` log ` log log `) arithmetic
operations in the field Fq . Some other types of asymptotically
fast algorithms for QC matrix multiplication were considered
in [10] in the context of the McEliece cryptosystem.

Despite good asymptotic properties of the FFT-based and
other asymptotically fast polynomial multiplication algo-
rithms, their complexity for finite values of ` is not so good
and can be even worse than in the straightforward imple-
mentation [9, Section 9.7]. In this paper we propose another
approach to this problem. We use the Chinese Remainder
Theorem (CRT) to represent all the polynomials involved in
the QC matrix multiplication as elements of the product:

Fq1 × · · · × Fqs . (1)

This CRT representation allows us to find the product of
polynomials in F〈`〉q as the pointwise product in (1), which
is usually much simpler. After the QC matrix multiplication
is done we transform all the output data back into the original
representation. The proposed algorithm can be viewed as
a generalization of the Winograd polynomial multiplication
algorithm [11, Chapter VI]. Such algorithms that use the CRT
representation for fast calculations are quite common in com-
puter algebra and called modular algorithms [9, Chapter 5].

1The addition in the ring F〈`〉q has the complexity of O(`) and is not taken
into account.

2To reduce the result of polynomial multiplication modulo x`−1 we need
only O(`) arithmetic operations.



We show that the complexity of the proposed CRT-based
QC matrix multiplication algorithm is O(nm` log `) arithmetic
operations for the CRT domain calculations plus additional
O((n+m)` log2 ` log log `) operations to transform the data
into the CRT domain and back.

We also consider the problem of encoding for high-rate QC
LDPC codes, where it is possible to utilize the sparseness
of its QC parity-check matrix H. In this case we can use
a decomposition H = (Hu,Hp), where the QC submatrices
Hu and Hp correspond respectively to the information part
u and the parity part p of the codeword. The encoding can
be done [6] in two stages: (1) calculate s = −Huu and (2)
find p as a solution to the equation Hpp = s. We propose
to use a generalized inverse3 H+

p of Hp to find a solution
p = H+

p s in the second stage. Though every QC matrix Hp

has a generalized inverse there exist QC matrices that do not
have QC generalized inverses4. Thus it is not always possible
to use fast CRT-based QC matrix multiplication in the second
stage. In this paper we give necessary and sufficient conditions
when this QC generalized inverse exists and show how to
find it. As a consequence, we show that it always exists if the
circulant size ` is coprime to the characteristic of the field Fq .

The remainder of the paper is organized as follows. In Sec-
tion II we review some standard encoding algorithms for
QC codes. In Section III we describe the CRT-based QC
matrix multiplication algorithm and analyze its complexity.
In Section IV we study generalized inverses for QC matrices.
In the last section we give some final remarks and compare
our algorithm with the one proposed recently in [12].

II. ENCODING ALGORITHMS FOR QC CODES

Usually a QC (N,K)-code over a finite field Fq , where
N = n`, is represented by an m` × n` block parity-check
matrix

H =

H1,1 . . . H1,k

...
. . .

...
Hm,1 . . . Hm,k︸ ︷︷ ︸
Hu (information part)

H1,k+1 . . . H1,n

...
. . .

...
Hm,k+1 . . . Hm,n︸ ︷︷ ︸

Hp (parity part)

 , (2)

where each block Hij is an `×` circulant matrix over Fq . We
call a row (column) of circulant submatrices a circulant row
(column). Let m′ ≥ m be the minimal number of circulant
columns such that the corresponding QC submatrix Hp has
the same rank as the matrix H. In almost all applications
m′ is equal or close to the number of circulant rows m. Let
k = n −m′ and suppose that we have already permuted the
circulant columns of the matrix H such that the information
vector u correspond to the first k circulant columns (submatrix
Hu) and the parity vector p to the last m′ circulant columns
(submatrix Hp).

If rankHp = N − K < m′` then some of the parity
symbols from p could be used as information symbols. In this

3It is defined in the next section and coincides with the inverse H−1
p if

Hp is invertible.
4Of the same circulant size `.

paper we suppose that the difference m′`− rankHp is small
enough that we can safely ignore these additional information
symbols and use them as parity symbols.

Most practical systematic encoding algorithms for QC codes
can be roughly divided into two main categories:
• Algorithms based on a QC generator matrix G of the

code. Let us call them G-based. Given a systematic QC
generator matrix G = (I | Gp) (for an algorithm to
obtain it from H, see [6]) we calculate the parity vector

p = GT
pu, (3)

where GT
p is also a QC matrix.

• Algorithms based on the parity-check matrix H of the
code. Let us call them H-based. We use the decomposi-
tion (2) of the parity-check matrix H and write the parity-
check equations in the following form:

Huu+Hpp = 0.

Then we calculate the vector

s = −Huu (4)

and find the parity vector p as a solution5 of the equation

Hpp = s. (5)

As we can see from the description of G-based encoding
algorithms they use only one QC matrix multiplication. This
makes their implementation very simple and regular. The main
drawback of G-based encoders for QC LDPC codes is that
they usually can not utilize the sparseness of the parity-check
matrix H. At the same time H-based encoders utilize the
sparseness of H when they perform matrix multiplication (4).
This is particularly important for high-rate QC LDPC codes,
where the matrix Hp is small compared to Hu. Unfortunately,
the way that one usually finds a solution to equation (5) heavily
depends on the type of the matrix Hp and does not work
equally well for all QC matrices.

There have been proposed many methods for solving equa-
tion (5) in an H-based encoder for some specific classes of QC
LDPC codes. When the matrix Hp is invertible one general
approach to solve equation (5) is to use the inverse H−1p

and obtain p = H−1p u. It can be proved [6] that if Hp is
a QC matrix then H−1p is also a QC matrix. Thus the CRT-
based QC matrix multiplication algorithm described in the next
section can also be used to perform the multiplication H−1p u.
Unfortunately, there are many practical cases when the matrix
Hp is not invertible. For example, when the column weight of
a column-regular QC LDPC code over F2 is even the matrix
Hp can never be invertible since the sum of all its rows is the
all-zero vector. If Hp is not invertible then it is possible to
use a generalized inverse of the matrix Hp instead of H−1p .
A generalized inverse of an m×n matrix A is an n×m matrix
G such that AGA = A. The matrix G may not exist and is
not necessary unique. It can be used to obtain a solution x of
the equation Ax = b from the vector b when it is known that

5It is not unique when Hp is not invertible.



this equation has some solution6 x0. Indeed, we can always
set x = Gb since

AGb = AGAx0 = Ax0 = b.

Hence when the matrix Hp has a generalized inverse H+
p we

can find a solution to equation (5) as follows

p = H+
p u. (6)

In this paper we propose a new general approach to system-
atic encoding of QC codes based on the Chinese remainder
theorem (CRT). It can either be used with G-based or H-based
encoder. The main idea of this approach is to apply the fast
CRT-based QC matrix multiplication algorithm introduced in
the next section to the step (3) of the G-based encoder and if
Hp has a QC generalized inverse to the steps (4) and (6) of the
H-based encoder. It should be mentioned that we do not need
to apply the CRT-based algorithm to the step (4) for QC LDPC
codes since Hu is a sparse matrix. Hence the complexity of
the proposed G-based and H-based encoders is defined by the
complexity of the CRT-based algorithm analyzed in the next
section.

III. CRT-BASED QC MATRIX MULTIPLICATION

A. Polynomial Representation of QC Matrices

In this paper we adopt the polynomial representation of QC
matrices used in [7], [8]. Let F be a field. Denote by F[x] the
ring of polynomials over F. For any polynomial p(x) ∈ F[x]
of degree d we consider the ring F[x]/(p(x)) of polynomials
f0 + f1x+ · · ·+ fd−1x

d−1 ∈ F[x] with addition and multi-
plication modulo p(x). By Fd denote the d-dimensional space
of the d × 1 column vectors over F. We identify an element
f(x) ∈ F[x]/(p(x)) with the corresponding column vector
f = (f0, . . . , fd−1)

T ∈ Fd.
By F〈`〉 denote the ring F[x]/(x`− 1). We use the standard

identification of the circulant ` × ` matrices over F with the
elements of the ring F〈`〉, where a column vector f ∈ F〈`〉
corresponds to the circulant matrix with the first column equal
to f . Using this identification we can consider an m`×n` QC
matrix over F of circulant size ` as an m× n matrix over the
ring F〈`〉. We also consider n× 1 column vectors over F〈`〉 as
n`× 1 column vectors over F. Given the above identification
we consider multiplication of an m` × n` QC matrix by an
n` × 1 column vector over F as multiplication of an m × n
matrix by an n× 1 column vector over F〈`〉.

B. The Chinese Remainder Theorem

Here we briefly remind the Chinese Remainder Theorem
(CRT) for the ring F[x] (see [9, Section 5.4] for a proof) and
show how it can be used for fast QC matrix multiplication. We
say that polynomials p1(x), . . . , ps(x) are pairwise coprime if
we have gcd(pi(x), pj(x)) = 1 for all i 6= j.

6This is always the case for equation (5).

Fd
q-domain CRT-domain

u1, . . . ,un T u′1, . . . ,u
′
n

A′u′

v1, . . . ,vm T−1 v′1, . . . ,v
′
m

Fig. 1. CRT-based QC matrix multiplication

Theorem 1 (CRT). If p1(x), . . . , ps(x) are pairwise coprime
polynomials from F[x] and p(x) = p1(x) . . . ps(x), then the
ring F[x]/(p(x)) is isomorphic to the direct product of rings

F[x]/(p1(x))× · · · × F[x]/(ps(x))

with the following one-to-one correspondence between ele-
ments

f(x)←→ (f(x) mod p1(x), . . . , f(x) mod ps(x)).

Let di = deg pi(x), i = 1, s, and d = deg p(x) =
d1 + · · · + ds. As we mentioned earlier we represent ele-
ments of F[x]/(p(x)) as column vectors over F. We refer
to this representation as the Fd-domain. From Theorem 1 it
follows that each element u ∈ F[x]/(p(x)) can be uniquely
represented as the column vector (u1, . . . ,us)

T ∈ Fd, where
ui ∈ F[x]/(pi(x)), i = 1, s. We refer to this representation as
the CRT domain. It is readily seen that the transformation T
from the Fd-domain to the CRT domain is F-linear. The same
is also true for the inverse transformation T −1 from the CRT
domain back to the Fd-domain. By T and T−1 denote the
d× d matrices over the field F for the linear operators T and
T −1 respectively. It is not hard to see that the j-th column of
the matrix T is the column vector (t1, . . . , ts)T ∈ Fd, where
ti(x) = xj−1 mod pi(x), i = 1, s, j = 1, d. The matrix T−1

is the matrix inverse of T.

C. Algorithm Description

Let us fix a natural number ` and a finite field Fq . Consider
a matrix A = (aij)m×n and a vector u = (u1, . . . ,un)

T

over the ring F〈`〉q . We also choose7 a polynomial p(x) =
p1(x) . . . ps(x) of degree d ≥ `, where p1(x), . . . , ps(x) are
distinct irreducible polynomials over Fq . In order to find the
vector v = (v1, . . . ,vn)

T, where v = Au, we use the CRT-
domain for the polynomial p(x). First consider the simpler
case, where d = ` and ` is coprime to the characteristic of Fq .
In this case we can choose p(x) = x`−1 since the polynomial
p(x) is square-free8 and it factors into irreducible polynomials
over Fq . We proceed with the following steps (see Fig. 1):

1) Convert the input vector u = (u1, . . . , un)
T into the

CRT-domain: u′i = T ui, i = 1, n;

7We describe below how to choose it properly.
8This follows from gcd

(
(x` − 1)′, x` − 1

)
= gcd

(
`x`−1, x` − 1

)
= 1.



2) Compute v′ = A′u′ in the CRT domain using the stan-
dard matrix multiplication algorithm, where A′ is the
matrix A in the CRT domain and u′ = (u′1, . . . ,u

′
n)

T;
3) Convert the vector v = (v1, . . . ,vm)T back into the

Fd
q-domain: vi = T −1v′i, i = 1,m.

Now consider the general case where ` is not necessary
coprime to the characteristic of the field Fq . We choose any
square-free polynomial p(x) such that d = deg p(x) ≥ 2`−1.
Since ` ≤ d and hence F〈`〉q ⊆ Fq[x]/(p(x)), we can identify
the elements of F〈`〉q with the column vectors from Fd

q that
have zeros at the last d − ` positions. Thus we can proceed
with all three steps described above and obtain the vector
v = (v1, . . . ,vm)T. Since v is in the Fd

q-domain, we need
to reduce each vi, i = 1,m, modulo x` − 1 to obtain an
element of F〈`〉q . This extra step requires only O(m`) additions
in the field Fq and has a negligible impact on the total
algorithm complexity. The correctness of the above algorithm
follows from the following fact. If we multiply A by u in the
ring Fq[x] instead of F〈`〉q and then reduce the result modulo
x` − 1, then the polynomials we obtain are exactly the same
as if we would do all the calculations in F〈`〉q . On the other
hand, it is clear that every polynomial involved in the above
calculations in F[x] has a degree of no more than 2(` − 1).
Thus we can use the ring F[x]/(p(x)) instead of F[x] since
deg p(x) = d > 2(` − 1) and it has enough “precision” to
correctly perform the calculations.

D. Complexity Analysis

We estimate the complexity of the CRT-based algorithm
in terms of arithmetic operations in Fq . It is known [9,
Section 10.3] that the transformations T and T −1 can be
implemented using O(` log2 ` log log `) operations9. Thus the
complexity of the steps 1 and 3 is O((n+m)` log2 ` log log `).
For the field F2 the transformations T and T −1 can also
be implemented as ` × ` binary matrix multiplication. This
requires at most `2 two-input XOR gates when we implement
it in hardware.

The complexity of the step 2 can be estimated as follows.
First, it is not hard to show that there is a constant C
such that multiplication in each ring Fq[x]/(pi(x)), i = 1, s,
can be implemented using at most Cd2i operations, where
di = deg pi(x). Thus the complexity of one multiplication
in the CRT domain is at most C

∑s
i=1 d

2
i operations. If we

set p(x) = xqt−1−1, where t =
⌈
logq 2`

⌉
; then 2`−1 ≤ qt−1

and since each irreducible factor pi(x) of p(x) is the minimal
polynomial of some element from the extension field Fqt , we
see that di = deg pi(x) ≤ t . Hence we obtain

C

s∑
i=1

d2i ≤ Ct

s∑
i=1

di = Ct(qt − 1) = O(` log `).

and the complexity of the step 2 is O(nm` log `) since it uses
at most 2nm additions and multiplications in the CRT domain.

9To be more precise, it is equal to O(M(`) log `), where M(`) =
O(` log ` log log `) is the complexity of two degree ` polynomials multi-
plication.

The amount of memory required to store the matrix A′ is
the same as for the initial matrix A in the simple case, where `
is coprime to the characteristic of Fq . However in the general
case A′ requires asymptotically two times more space than A.

IV. GENERALIZED INVERSES OF QC MATRICES

A. Regular Matrices over Rings

Consider some m×n matrix A over a ring10 R. An n×m
matrix G is said to be a generalized inverse of A if AGA =
A. We say that A is regular if it has a generalized inverse.
Thus to give necessary and sufficient conditions when a QC
matrix over a field F has a QC generalized inverse we need
to describe all regular matrices over the ring F〈`〉.

We also say that a ∈ R is regular if there exists an element
g ∈ R such that aga = a. In that case we also call g a
generalized inverse of the element a and denote11 it by a+.
A ring R is called (von Neumann) regular if every element of
R is regular. It is readily seen that any field is a regular ring
and x+ = x−1 for x 6= 0 and 0+ = 0. It is also clear that a
direct product of regular rings is regular.

In this section we review some simple facts about regular
matrices over general rings (see [13], pp. 32–40). Let R be
a ring. We say that two m × n matrices A and A′ over R
are equivalent if A′ = UAV for some invertible matrices U
and V. It is easy to see that this relation is reflexive, symmetric
and transitive. Thus it is indeed an equivalence relation on the
set of all m × n matrices over the ring R. Moreover, as the
following lemma shows the property of a matrix to be regular
is invariant under this equivalence relation.

Lemma 1. For any two equivalent m×n matrices A and A′

over a ring R such that A′ = UAV the following conditions
hold:
(i) The matrix A is regular iff the matrix A′ is regular.

(ii) If a matrix G is a generalized inverse of A, then the
matrix G′ = V−1GU−1 is a generalized inverse of A′.

In the general case, it is not easy to say whether a matrix
A = (aij)m×n over a ring R is regular, even if we know all
the regular elements in R. However, when the matrix A is
diagonal (i.e., aij = 0 whenever i 6= j) the following lemma
gives a complete characterization of regular matrices in terms
of regular elements in the ring R.

Lemma 2. For any diagonal matrix A = (aij)m×n over
a ring R the following conditions hold:
(i) The matrix A is regular iff all its diagonal elements aii

are regular in R.
(ii) If every diagonal element aii of the matrix A has a gen-

eralized inverse a+ii in R, then the matrix G = (gij)n×m
is a generalized inverse of A, where

gij =

{
a+ii , if i = j

0, if i 6= j
. (7)

10In this section, by a ring we mean a commutative ring with identity.
Though most of the results are also valid for general rings.

11It is not necessary unique.



B. Regular Matrices over the Ring F〈`〉

Here we describe all regular matrices over the ring F〈`〉 in
terms of regular elements of F〈`〉. We first show that any m×n
matrix A over the ring F〈`〉 is equivalent to a diagonal matrix.
Indeed, since the elements of F〈`〉 are polynomials12, we can
regard A as a matrix with entries in the ring F[x]. It is very
well known (see [14], pp. 130–141) that any such matrix can
be represented as

A = UDV (over F[x]), (8)

where D is diagonal and U, V are invertible matrices over
the ring F[x]. Under appropriate assumptions on the diagonal
matrix D, it is unique and called the Smith normal form over
F[x] of the matrix A. In equation (8) the matrices are over the
ring F[x]. Considering this equation modulo x` − 1, we get

A = U′D′V′ (over F〈`〉), (9)

where U′, D′, and V′ are correspondingly the matrices U, D,
and V modulo x`− 1. Since U and V are invertible matrices
over F[x], it follows that their determinants are non-zero
constant polynomials. Hence these determinants are invertible
modulo x` − 1 and the matrices U′ and V′ are invertible
over the ring F〈`〉. Therefore we proved that the matrix A is
equivalent (over F〈`〉) to the diagonal matrix D′, which we call
the Smith normal form over F〈`〉 of A. This fact, combined
with Lemmas 1 and 2, gives us the following result.

Theorem 2. An m×n matrix over the ring F〈`〉 is regular iff
all the diagonal elements in its Smith normal form over F〈`〉
are regular in F〈`〉.

C. Regular Elements of the Ring F〈`〉

From Theorem 2 it follows that to give a complete char-
acterization of regular matrices over the ring F〈`〉 we need
to describe all regular elements in F〈`〉. Moreover combined
with Lemmas 1 and 2 it gives us a way to find a generalized
inverse of a regular matrix over F〈`〉. It is known [15] that if
the characteristic p of the field F is zero or coprime to ` the
ring F〈`〉 is isomorphic to a direct product of fields. Hence
F〈`〉 is regular13 and any matrix over it is regular. If ` = pe`′,
where p - `′ and e > 0, the ring F〈`〉 is isomorphic [15] to the
direct product R1×· · ·×Rs of the rings Ri = F[x]/

(
fi(x)

)pe

,
i = 1, s. It is easy to see that an element a of this product is
regular iff each its component ai is regular in Ri, i = 1, s.
If a = (a1, . . . , as) is regular we can use a+ = (a+1 , . . . , a

+
s )

as its generalized inverse, where a+i is a generalized inverse
of ai, i = 1, s. Hence to finish the classification of regular
elements in F〈`〉 we need to describe regular elements of the
rings R1, . . . , Rs. It turns out that the only regular elements
in a ring of this type are its zero and its units14.

12We assume in this paper that the elements of F〈`〉 = F[x]/(x` − 1) are
polynomials a0 + a1x+ · · ·+ a`−1x

`−1.
13As a direct product of regular rings.
14A unit or an invertible element of a ring R is an element u ∈ R such

that it has the multiplicative inverse u−1 ∈ R, i.e., uu−1 = u−1u = 1.

Lemma 3. Let R = F[x]/
(
f(x)

)n
, where f(x) is an irre-

ducible polynomial over the field F. Then a polynomial a(x)
is regular in R iff it is either 0 or coprime to f(x).

V. CONCLUSION AND RELATED WORK

We have shown that a systematic encoding can be imple-
mented with much less complexity using the CRT-based QC
matrix multiplication algorithm. In [12] the ETD encoder was
proposed, which has a similar complexity. It uses the Fourier
transform domain instead of the CRT domain to speed-up the
computations. Unfortunately, it is not systematic. Moreover,
it has a high complexity for some particular circulant sizes `
(e.g., ` = 2s and the field F2). At the same time the CRT-based
encoder is systematic and has a low complexity independently
of the circulant size. However it is more efficient and requires
less memory when the circulant size ` is coprime with the field
characteristic. In the latter case it is also possible to use the
H-based encoder since every QC matrix has a QC generalized
inverse.
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APPENDIX A
ALGEBRAIC STRUCTURE OF THE RING F〈`〉

Let F be a field of characteristic p. The algebraic structure
of the ring F〈`〉 is well studied in the coding literature (see,
e.g., [15]). Here we briefly review it in a slightly more general
form when the field F is not required to be finite.

First, let us consider the special case when p - `, i.e., the
characteristic p of the field F is either zero or coprime to `.
In this case the polynomial x` − 1 factors into a product of
irreducible polynomials over F

x` − 1 = f1(x) · · · fs(x). (10)

This is true, since

gcd
(
(x` − 1)′, x` − 1

)
= gcd

(
`x`−1, x` − 1

)
= 1,

and the polynomial x` − 1 is square-free.
In the general case we have15 ` = pe`′, where p - `′. Hence

it follows that

x` − 1 = xpe`′ − 1 = (x`′ − 1)p
e

.

Moreover, since p - `′, we can apply the factorization (10) to
the polynomial x`′ − 1 and obtain that

x` − 1 =
(
f1(x)

)pe

· · ·
(
fs(x)

)pe

. (11)

Since the polynomials (f1(x)
)pe

, . . . , (fs(x)
)pe

are pair-
wise coprime, from the Chinese remainder theorem it follows
that the ring F〈`〉 is isomorphic to the direct product

R1 × · · · ×Rs (12)

of the rings Ri = F[x]/
(
fi(x)

)pe

, i = 1, s.
In the case p - ` we have e = 0 and the rings R1, . . . , Rs

are in fact fields, since the polynomials f1(x), . . . , fs(x) are
irreducible over F.

APPENDIX B
PROOF OF LEMMA 1

Proof: Since the equivalence relation on matrices is
symmetric, it is clear that (ii) implies (i). The proof of (ii)
follows from the direct calculation:

A′G′A′ = UAVV−1GU−1UAV = UAV = A′,

where we use the fact that AGA = A.

APPENDIX C
PROOF OF LEMMA 2

Proof: Let A = (aij)m×n be a diagonal matrix over
a ring R. For any matrix G = (gij)n×m over R the equation
AGA = A can be written as

aij =
∑

1≤p≤n
1≤q≤m

aipgpqaqj .

15We assume here that 00 = 1 in order to include the case p = 0 and
e = 0.

It is convenient to assume here that aij = 0 and gpq = 0
whenever some of the indexes i, j, p, or q are out of the range.
This assumption enables us to rewrite the previous equation
in the form

aij =
∑
p,q

aipgpqaqj , (13)

where the sum is over all pairs of natural numbers. Since the
matrix A is diagonal, it follows that a term aipgpqaqj in the
last sum can be non-zero only if p = i and q = j. Thus we
can simplify equation (13) as follows

aij = aiigijajj . (14)

Suppose now that the matrix A is regular and there exists
a matrix G such that AGA = A; then from equation (14)
we have aii = aiigiiaii for all i and hence all the diagonal
elements aii of A are regular in the ring R.

On the other hand, if every diagonal element aii of the
matrix A is regular and has a generalized inverse a+ii in R,
then it is easy to see that the matrix G defined by equation (7)
satisfies equation (14). Hence we have AGA = A and G is
a generalized inverse of A.

APPENDIX D
PROOF OF LEMMA 3

The proof is obvious when n = 1 since R is a field
in this case. Thus assume that n > 1. It is known [9,
Section 4.2] that the units of the ring R are precisely the
elements coprime to

(
f(x)

)n
and hence to f(x). Let us denote

this set by U(R). Clearly, the elements from U(R) ∪ {0}
are regular in any ring. Therefore we need only prove that
there are no other regular elements in the ring R. Assume
the converse. Then there exists a regular a(x) ∈ R such that
a(x) /∈ U(R)∪{0}. Let g(x) be its generalized inverse. Then
we have a(x)g(x)a(x) ≡ a(x)mod

(
f(x)

)n
. We can rewrite

this as follows(
a(x)

)2
g(x) + q(x)

(
f(x)

)n
= a(x), (15)

where q(x) ∈ F[x]. Since a(x) /∈ U(R)∪{0}, we have a(x) =(
f(x)

)s
b(x), where 0 < s < n and f(x) - b(x). If we replace

a(x) by
(
f(x)

)s
b(x) in (15) and divide both sides by

(
f(x)

)s
,

we obtain(
f(x)

)s(
b(x)

)2
g(x) + q(x)

(
f(x)

)n−s
= b(x).

Since n− s > 0, we have that f(x) | b(x). This contradiction
proves the lemma.


