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Abstract

We consider optical effects accompanying the dynamical Bragg diffraction in the Laue geometry in
one-dimensional photonic crystals (PhC). We predict theoretically, and observe in the experiment, the
diffraction-induced pulse splitting of femtosecond light pulse, the optical switching due to the optical
pendular effect, and the effects of selective compression and focusing. These effects originate from the
interaction of two spatial eigenmodes of the photonic crystal: Borrmann and anti-Borrmann, which
are spatially localized within a PhC in the layers with low and high dielectric constants, respectively.

Keywords: dynamical diffraction, photonic crystals, Laue geometry, femtosecond phenomena, pulse

shaping, optical switching, porous silicon.

1. Introduction

The control of light propagation at small scales of time and space is a promising development nowa-

days. Photonic crystals (PhC), being spatially periodic dielectric structures, have several advantages

such as low losses, scalability, and integration to optical chips [1]. They reveal plenty of optical effects

enabling the control of the light propagation: modulation of the spontaneous emission decay known as

the Purcell effect [2, 3], extremely low group velocity [4, 5], an enhancement of the linear and nonlinear

effects like the second-harmonic generation [6], Raman scattering [7], magneto-optical effects [8], etc.

The dynamical Bragg diffraction of light in a PhC is a subject of extensive research [9]. The Laue

transmission geometry can reveal the dynamical diffraction effects by means of the interaction of two

spatial modes, the so-called Borrmann and anti-Borrmann modes [10], which are localized inside a PhC

in the layers of low and high dielectric constants, respectively. This brings about different group velocities

and dispersion of these modes, which provides selective control over the mode propagations within a PhC.

The interaction of the Borrmann and anti-Borrmann modes leads to a number of specific effects, such as
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the Borrmann phenomenon, pendular effect [11], diffraction-induced pulse splitting (DIPS) [12], second-

harmonic generation [13].

In this paper, we discuss our recent theoretical and experimental results on the dynamical diffraction

of short light pulses in 1D PhC.

This paper is organized as follows.

In Sec. 2, we present the theory of diffraction-induced pulse splitting. In Sec. 3, we describe the

production technique of the 1D porous silicon PhC. We devote Sec. 4 to the experimental observation of

the DIPS effect, and we discuss its polarization properties in Sec. 5. We demonstrate the control over

the spatial pulse propagation in Sec. 6, deal with the diffraction of phase-modulated pulses in Sec. 7, and

consider the optical pendular effect in Sec. 8. Finally, we give our summary in Sec. 9.

2. Diffraction-Induced Pulse Splitting: the Theory

We consider a one-dimensional photonic crystal as an array of alternating layers of two types with

refractive indices of n1 and n2, and thicknesses of d1 and d2, respectively [10]. The sketch of the geometry

is shown in Fig. 1 a. The number of layers in the x direction is considered infinite. The length of the

crystal is z0. The electric field of the incident optical pulse can be represented as a wave packet

Ein(r, t) = einEin(r, t) exp(ikinr− iω0t), (1)

where Ein is a slowly varying complex amplitude, kin is the wave vector, ω0 = 2πc/λ0 is the central

frequency of the pulse, λ0 is its central wavelength, and ein is a unit vector. The pulse enters the

PhC at the Laue geometry under the angle of incidence θ that matches the Bragg diffraction condition

λ0 = 2d sin θ, where d = d1 + d2 is a spatial period of the structure. All the electromagnetic waves inside

the PhC obey the wave equation

∇×∇×E(r, t) +
ε(x)

c2
∂2E(r, t)

∂t2
= 0, (2)

where ε(x) = n2(x) is a periodically modulated permittivity of the PhC. The initial pulse can be Fourier-

transformed to a set of plane waves; then we solve Eq. (2) for each plane wave with the wave vector

k, taking into account the boundary conditions kx = qx,0 and kx − h = qx,h for the transmitted and

diffracted waves, respectively. Here, h is the amplitude of the PhC reciprocal-lattice vector.

Generally, there are two solutions q
(1,2)
0 for the transmitted wave and the two solutions q

(1,2)
h for

the diffracted wave. The solution [10, 14] of the wave equation with smaller wave vector is called the

Borrmann mode, while the one with the larger wave vector is called the anti-Borrmann mode. For each

wave vector, there are two solutions that match the Bragg condition and the finite spectral width of the

incident pulse

Δω <
ω0|εh|

2 sin2 θB
, (3)

so this solution exits for pulses with limited spectral width. The value of εh is the spatial Fourier

amplitude of the permittivity, and ε(x) is proportional to the refractive index contrast Δn.

The scheme of the DIPS effect is shown in Fig. 1 a. The incident beam enters the PhC at the Bragg

angle. Within the PhC, each part of the pulse is split into two components corresponding to the Borrmann

and anti-Borrmann modes. Since the Borrmann mode has larger group velocity and propagates faster
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Fig. 1. Scheme of the dynamical diffraction in the Laue geometry and of the effect of diffraction-induced pulse
splitting, where red wave vectors and pulses correspond to the Borrmann mode, blue ones correspond to the anti-
Borrmann mode, and black ones correspond to the initial pulse (a). Results of the analytical calculations of the
complex envelope of the pulse propagating through the PhC for the following parameters: n1 = 1.48, n2 = 1.32,
d1 = d2 = 400 nm, θ = 30◦, λ0 = 800 nm, and τ = 100 fs (b). The phase is shown by the color and the amplitude
by the color saturation.

than the anti-Borrmann one, the incident pulse can be split into two consequent pulses when passing

through a PhC. This is illustrated by the calculations based on previously described theory [14,15] and is

shown in Fig. 1 b. The incident pulse is split into two pulses; the splitting time t12 increases linearly with

the propagation distance z and the refractive index contrast Δn ∼ εh as t12 = (zεh/c
√
ε0)(1−sin2 θB/2ε0),

where ε0 is the average permittivity. Therefore, in order to observe the DIPS effect, both high refractive-

index contrast and a large thickness of the PhC are required.

Table 1. Estimation of the Splitting Depth zDIPS of the Ti : Sapphire Optical Pulse (τ0 = 100 fs,

λ = 800 nm) in PhCs Produced by Currently Available Techniques.a

Periodic structure Reference Δn zDIPS zmax

Kerr nonlinear optical lattice [16, 17] 6 · 10−4 50 cm 10 cm

Acousto-optic lattice [18] 10−3 40 cm 2.5 cm

Laser micropatterning of SiO2 [19] 2 · 10−3 20 cm 1.1 cm

Photo-polymerization [20,21] 0.12 1 mm 0.2 mm

Artificial opal [22] 0.2 1200 μm 500 μm

Colloid crystals [23, 24] 0.1 500 μm 1 cm*

Porous silicon [25] 0.5 100 μm 1 cm

Sputter coating [26] 1 50 μm > 1 cm*

Plasma etching [27] 1 50 μm > 1 cm*

aHere, Δn is the refractive index contrast and zmax is the sample length technology limited. Techniques marked with the
star are discussed in the text.

We have performed a comparative study of currently available technologies of photonic crystal pro-

duction; the results are summarized in Table 1. The DIPS effect can be observed if the incident pulse of

duration τ0 is split with splitting time t12 = 2τ0. The corresponding passing length in a PhC is called

the splitting depth zDIPS.

For typical values of the refractive index contrast Δn and a standard Ti : Sapphire laser system,
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the value of zDIPS was theoretically calculated and compared with the PhC length zmax available for a

particular technology. It stems from Table 1 that the most surveyed technologies cannot provide sample

lengths large enough for the observation of the DIPS effect. The most popular way to produce 1D

photonic crystals is the sputtering of multilayer dielectric coatings and fulfills the requirements for zmax,

while cannot guarantee a sufficient size in the x direction (see Fig. 1), as the number of layers is limited

to several tens. The plasma etching of a substrate using a lithographic mask allows one to produce PhC

samples with a large number of periods and zmax but is limited in the y direction. Artificial opals can

provide sufficient geometrical sizes, while they are polycrystalline and contain usually some defects. So

one may conclude that the porous silicon-based PhC fabrication technique is suitable for the observation

of diffraction-induced pulse splitting. We describe it in the next section.

3. Porous Silicon and Porous Fused Silica Photonic Crystals

The experimental studies of the dynamical diffraction in PhCs need to produce samples of hundreds

of periods while keeping a high structural quality of a PhC. In our work, we made the PhCs using a

modified technique of electrochemical etching of crystalline silicon [28]. It is known that anodization of

a Si wafer in HF solution leads to the formation of a porous layer [29]. The direction of pores depends

on the crystallographic index of the Si surface and is normal to the surface in the case of Si (001) [25].

The depths of the pores are almost equal [30]. The average diameter of pores depends on the anodic

current density [31] and since that can be easily controlled. Therefore, periodic (in time) modulation of

the anodic current leads to a periodic space modulation of porosity. The application of the alternating

currents of two values causes the formation of two periodically alternating layers of various porosity and,

thus, of different refractive indices, thus forming a 1D PhC [32].

The sample was made by electrochemical etching technique from a boron-doped p-Si (001) wafer

with a resistivity of 0.005 Ω · cm by application of alternating current densities of j1 = 40 mA/cm2 and

j2 = 200 mA/cm2 and using the HF :H2O :C2H5OH solution (21 : 21 : 58 w/w) as an electrolyte. The

thickness of each layer was 400±10 nm. The SEM image of the PhC structure is shown in Fig. 2 a. A

multilayer structure with layer thicknesses approximately 400 nm can be clearly seen, the pore width

being about 50 nm, as is clear from the inset in Fig. 2 a. The estimated porosity of the (volume fraction

of voids) is about 50%. The number of the alternating layers in the PhC sample was 750. After the

final layer of the PhC was made, the structure was split from the substrate (remaining bulk silicon) by

a high-current pulse (about 600 mA/cm2).

The refractive indices of the porous silicon layers were determined independently — two single-layer

samples of the same porosity as those in the PhC sample with a thickness of 10 μm were made. Their

refractive indices were estimated from the interference patterns and the values obtained are n1 = 2.26

and n2 = 1.64 at 800 nm. Corresponding values of porosity are p1 = 49% and p2 = 64%.

The reflectance spectra of the front PhC side (layers made at the very beginning of the etching

process) and of the back side (the last made layers) are shown in Fig. 2 b. The spectra consist of nearly

zero plateau and reflectance maxima corresponding to the 7th, 6th, 5th, and 4th photonic band gaps. The

maxima attained for the front and back sides reveal very close spectral positions, even for the high-order

band gaps, which indicates the good quality of the multilayer structure.

Since silicon is not transparent for the visible light, we performed thermal oxidation of the porous

silicon to form the porous fused silica (SiO2). The annealing was performed in air at a temperature of

900◦C for 2 h. The thermal oxidation of silicon under these conditions can be controlled by choosing the
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temperature and duration of annealing, because this process is limited by the diffusion of oxygen through

the oxide layer [33]. Under our conditions, the thickness of the oxide layer calculated by the Deal–Grove

oxidation model [33] is about 25 nm. This value is equal to the half-distance between two pores, so the

oxidation process occurs in the whole volume of the sample starting from the surface of pores and until

the overlapping of the oxide layers of neighbor pores.

The reflectance spectra of the sample after the thermal annealing are shown in Fig. 2 c. Similarly

to that described above, the spectrum of the front side has the same maxima as the spectrum of the

back side; therefore, the PhC remains after the annealing. The maxima corresponding to the 5th, the

4th, and the 3th band gaps can be seen. It can be also seen that the annealing leads to a spectral shift

of the band-gap structure, because the refractive indices of porous SiO2 layers are lower than of the

corresponding porous Si layers. Measured by the interference patterns on uniform single-layer samples,

the values are n1 = 1.48 and n2 = 1.32. The physical thickness of the sample and all layers remains

almost the same — the relative change is less than 5%.

Thus, we showed that the electrochemical etching technique followed by thermal annealing allows

us to produce the transparent multilayer structures of porous SiO2 with high refractive index contrast

(Δn > 0.1) and high number of periods (up to 2500) simultaneously.

4. Experimental Studies of the Diffraction-Induced Pulse Splitting

The experimental set-up used for the studies of the dynamical Bragg diffraction of femtosecond laser

pulses is shown schematically in Fig. 3 a. As a light source, a Ti : Sapphire laser (Avesta inc, mean

power 300 mW, central wavelength 800 nm, pulse duration 40 fs, repetition rate 80 MHz) was used. The

fundamental beam was split into two “arms” – the reference arm and the sample arm in a proportion of

20 : 80. Both arms contained the delay lines and four-prism pulse compressors. The compressor in the

reference arm was adjusted for the minimum pulse width of approximately 25 fs, and the compressor in

the signal arm could be tuned to provide a pulse of 35–140 fs, positive or negative chirp. The polarization

in the sample arm could be controlled by two half-wave plates placed in the plane front sections of the

beam track before and after the focusing elements. The radiation in the sample arm was focused on

the PhC facet into a spot of 20 μm in diameter. The beam passed through the sample was collected

by a parabolic mirror and superposed with the reference beam in a nonlinear crystal (BBO). The non-

Fig. 2. Experimental sample – 1D porous silicon-based photonic crystal and SEM side view of the PhC (a) and
the reflection spectra of the front side (solid curve) and the back side (dashed curve) of the PhC before (b) and
after the annealing (c).
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collinear second harmonic generated in the BBO was filtered by a pinhole and measured by an avalanche

photodiode.

a) b)

Fig. 3. Schematic view of the experimental set-up (a) and the cross-correlation functions measured for the p-
polarized (solid curve) and s-polarized (dashed curve) incident pulses (b).

For the measurements of the diffraction-induced temporal splitting of short laser pulses, we used

cross-correlation (CC) function measurements. The cross-correlation-function signal is given by ICC(t
′) ∝∫ ∞

−∞
IS(t)IR(t + t′) dt, where IS(t) and IR(t) are the pulse intensities in the signal and reference arms,

and t′ is the delay time between them.

The parameters of the PhC sample were described in Sec. 2. The length of the sample in the direction

of the light propagation was z0 = 2.4 mm.

The cross-correlation functions obtained for the p and s polarizations of pulsed radiation are shown in

Fig. 3 b. Time t = 0 corresponds to the calculated arrival time of a femtosecond pulse passed through a

homogeneous effective medium (without spatial periodicity) of the same length z0 and with the refractive

index neff = (n1 + n2)/2. The measured functions correspond to the two pulses outgoing the PhC,

the temporal delay between them being t
(p)
12 = 746 ± 2 fs for the p-polarized incident radiation and

t
(s)
12 = 518 ± 2 fs for the s-polarized one, while the amplitudes of split pulses are almost equal to each

other. Therefore, the effect of diffraction-induced pulse splitting in photonic crystals at the Laue geometry

is experimentally observed [12].

Noteworthy is that the splitting time t12 depends strongly on the polarization of the incident pulse

— the splitting time increases nearly 1.5 times when the polarization is changed from s to p. The

mechanisms underlying these effects are discussed in the next section.

5. Polarization Properties of the DIPS Effect

The polarization dependence of the dynamical Bragg diffraction effects originates from the structural

anisotropy of 1D PhC. Equation (2) contains a part ∇×∇×E(r, t) = −ΔE(r, t) +∇(∇E(r, t)
)
, where

Δ = (∂2/∂x2) + (∂2/∂z2) is the Laplace operator and ∇E = −(∇ε)ε−1E. The permittivity gradient

∇ε(x) can be large enough in a PhC with high refractive-index contrast Δn = n1 − n2; therefore, the

field divergence ∇E �= 0, and the plane electromagnetic wave is not transverse. It is more convenient

to consider the magnetic field H(r, t) instead of the electric field as it is transverse in a nonmagnetic
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medium. Finally, we can write the wave equation as follows:

ΔH+
∇ε(x)

ε
×∇×H− ε(x)

c2
∂2H

∂t2
= 0. (4)

The second term determines the structural anisotropy of a periodic lattice. The solution of this equation

is considered in detail elsewhere [15] and consists of a set of plane waves obeying the dispersion relation.

Dispersion curves, isofrequency values of the z component of the wave vector depending on the detuning

off the Bragg condition, are shown in Fig. 4 a. The corresponding calculated splitting times for s and p

polarizations of the propagating pulses are given by

t
(s)
12 =

zεh
c
√
ε0

(
1− sin2 θB

2ε0

)
, t

(p)
12 =

zεh
c
√
ε0

(
1 + 3

sin2 θB
2ε0

)
. (5)

This expression indicates that the splitting time for the p polarization in 1D photonic crystals is always

larger as compared to the s polarization.

The measurements of the temporal pulse profiles were performed as the polarization of the incident

radiation was changed continuously from p to s. This was made by a synchronous rotation of two half-

wave plates shown in Fig. 3 a. The corresponding results are shown in Fig. 4 b. It can be seen that the

pulse profile is switched continuously from the p polarization to the s polarization. For the intermediate

polarization (tilted to 45◦ from the p polarization), the four pulses are observed at the exit of the crystal.

Note that the Borrmann and anti-Borrmann pulses are not symmetric with respect to the time t = 0.

This asymmetry of the peak times is caused by the material anisotropy of the porous fused-silica layers. It

is known [34] that porous silicon and porous SiO2 exhibit birefringence, i.e., they are uniaxial media with

the optical axis parallel to the pores. The birefringence |ne −no| depends on the pore size of the sample:

the greater the pore diameter and porosity, the greater the refractive index contrast. Figure 4 d shows

the results of the analytic calculation of the pulse shapes for the two polarizations when the birefringence

is taken into account. For the layers of low porosity, the refractive indices of n1,o = 1.46 and n1,e = 1.45

are considered. For the layers of high porosity, n2,o = 1.35 and n2,e = 1.32, respectively.

Thus, we observed the polarization dependence of the splitting time in the DIPS effect. It is asso-

ciated with the structural anisotropy of the PhC lattice, which is proportional to the gradient of the

dielectric function and rises with the refractive index contrast. In porous fused silica-based 1D PhCs, the

polarization dependence is larger because of the second involved phenomenon – the variation of material

birefringence between two types of the PhC layers.

6. Spatial Pulse Distribution inside the Photonic Crystals

The propagation direction of the laser pulse inside a PhC can be predicted by analyzing the dispersion

curves. The normal vectors shown in Fig. 4 a denote the direction of pulse propagation, which depends

on the angle of incidence. In the case of matching the Bragg condition (θB = 31◦), both Borrmann and

anti-Borrmann pulses propagate along the z axis. When the angle of incidence is detuned from the Bragg

condition, for instance, it is smaller (θ =30◦), the Borrmann pulse should propagate in the direction

with the negative projection on the x axis, while the anti-Borrmann pulse propagation direction will

correspond to the positive one, as is shown in Fig. 5 d. At larger angles of incidence, the directions of

propagation of the pulses change conversely (see Fig. 5 e).
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Fig. 4. Dispersion curves for Borrmann (red) and anti-Borrmann (blue) modes for different polarizations of incident
pulses, where the arrows show the normal direction and the black curve corresponds to the pulse propagating in a
uniform medium with neff = (n1 + n2)/2 (a). Experimentally measured temporal pulse profiles after passing the
PhC for variable linear polarizations (b). Results of the analytical calculations of the temporal pulse profiles for
isotropic PhC with n1 = 1.47 and n2 = 1.32 (c) and for anisotropic PhC with n1,o = 1.46, n1,e = 1.45, n2,o = 1.35,
and n2,e = 1.32 (d).

Fig. 5. Spatial shift of pulses in the DIPS effect. Scheme of the experiment (a), experimental dependences of the
magnitude of the Borrmann and anti-Borrmann pulses on the blade position for the angles of incidence detuning
δ = −1◦ (b) and δ = 0.9◦ (c), respectively, and calculated amplitudes of Borrmann and anti-Borrmann pulses
propagating through a PhC for angles δ = −1◦ (d) and δ = 1◦ (e), respectively.
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Therefore, the pulse positions in a PhC can be controlled by variation of the angle of incidence. We

performed the experimental verification of this prediction as follows. A metal blade was situated close to

the exit surface of the sample, the distance between them being approximately 10 μm. The blade could

be moved parallel to the sample surface, as is shown schematically in Fig. 5,a. The sample was placed

on a rotation mount to control the incident angle. Other parts of the set-up shown in Fig. 3 a remained

unchanged. The Borrmann and anti-Borrmann pulses were resolved on the cross-correlation function of

the beam passed through the sample. The aperture of the cross-correlation detector was large enough to

get a signal at a spot of 150 μm of the exit surface.

Measured magnitudes of the Borrmann and anti-Borrmann pulses in the case of smaller angle of

incidence (30◦, Bragg detuning δ = θ − θB = −1◦) are shown in Fig. 5 b. While the blade moves along

the rear surface of the sample in the positive direction of the x axis, it opens first the Borrmann pulse

and second the anti-Borrmann pulse. This means that the Borrmann pulse propagates in a PhC at

smaller x values as compared to the anti-Borrmann pulse, which correlates with the analytic predictions

(Fig. 5 d). The distance between the pulses is 37± 5 μm. In the case of larger incident angle (32◦, Bragg
detuning δ = 1◦), conversely, the blade opens first the anti-Borrmann pulse and second the Borrmann

pulse. The corresponding analytical distribution of the pulse field is shown in Fig. 5 e. The measured

distance between the pulses is 35 ± 5 μm. The distance between the pulses calculated analytically is

40 μm in both cases.

Therefore, we show that the Borrmann and anit-Borrman pulses split spatially inside the PhC and

can propagate in the opposite x directions depending on the detuning of the incident pulse off the Bragg

condition.

7. Dynamical Diffraction of Phase-Modulated Pulses. Selective Pulse

Focusing and Compression

As was mentioned above, the propagation direction of the Borrmann and anti-Borrmann pulses can

be controlled by a proper choice of the angle of incidence on a PhC. The entire pulse propagates in the

direction corresponding to the normal to the dispersion curve (see Fig. 4 a) and depending on the detuning

angle out of the Bragg condition δ = θ− θB. If a short pulse is spatially or temporally broadened by the

phase modulation (chirp), different “parts” of the pulse can be controlled independently in the same way.

For example, a spatially phase-modulated (focused) pulse will undergo the following transformation. Its

central part matches the Bragg condition and thus propagates directly. One side part of the pulse has

a positive detuning δ and consequently the propagation direction of a part of the Borrmann pulse has

the positive projection on the x axis and the negative one for the anti-Borrmann pulse. The other side

part of the initial pulse has negative detuning and thus propagates in the negative direction with respect

to the x axis for the Borrmann pulse. Consequently, the side parts of the Borrmann pulse move toward

each other in the transverse direction and this pulse will squeeze (focusing). Similarly, the anti-Borrmann

pulse stretches in the transverse direction (defocusing). Therefore, one expects that the Borrmann and

anti-Borrmann pulses can be selectively focused or defocused depending on the spatial phase modulation.

In a similar way, the temporal phase modulation (chirp) of the incident pulse should cause squeezing

and broadening of pulses in the time domain; in this case, one may expect pulse compression and

decompression. These effects were theoretically predicted [14] and experimentally observed [35].
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Now we consider a phase-modulated pulse

Ain(x, t) = A0exp

[
−
(
x cos θ

r0

)2

(1− iσ)−
(
t− x sin θ

c

)2 1− iβ

τ20

]
, (6)

where r0 and τ0 are the radius and duration of a nonmodulated pulse, θ is the angle of incidence, c is the

speed of light, and σ and β are the spatial and temporal phase modulation parameters. The calculation

of the field distribution during the pulse propagation within a PhC is shown in Fig. 6.

Figure 6 shows transformations of the Borrmann and of the anti-Borrmann pulses during their prop-

agation in a PhC for different spatial and temporal phase-modulation parameters. It can be seen that

a spatially phase-modulated initial pulse (σ = ±15) splits into two pulses, one of which is focused and

the other defocused, as shown in Fig. 6 a and b. In the case of negative modulation (σ = −15, initial

beam is focused), the Borrmann pulse is focused, while the anti-Borrmann is defocused. The pulses are

“rotated” in the spatial domain due to the focusing mechanism described above — the initial pulse inside

a PhC is stretched or squeezed along the x direction. The spatial phase modulation of split pulses can be

seen in Fig. 6 c, where one sees that the central part of the pulse is stretched or squeezed. The temporal

phase modulation of the incident pulse leads to temporal compression and decompression of split pulses,

as shown in Fig. 6 d and e.

8. Optical Switching at a Pendular Effect

As was discussed earlier, when the light propagates in a PhC at the Laue geometry close to the

Bragg angle, two modes of the electromagnetic field, Borrmann and anti-Borrmann ones, are excited.

Noteworthy is that the field of each of these modes is a superposition of two plane waves, transmitted

and diffracted ones (7). For the case of s polarization, the electric field of a mode is given by

E
(s)
j (x, z, t) = ey exp

(− iωt+ iq
(s)
zj z

)(
E

(s)
hj exp (i(kx − h)x) + E

(s)
0j exp (ikxx)

)
, j = 1, 2. (7)

where the superscript s stands for the s polarization, and indices 1 and 2 denote the mode number. An

analogous expression is valid for the H field in the case of p polarization.

Close to the Bragg angle, the field of the Borrmann mode is localized predominantly in the PhC layers

with low refractive index, and vice versa for the anti-Borrmann mode. This is due to the relations for the

amplitudes E
(s)
01 ≈ iE

(s)
h1 and E

(s)
02 ≈ −iE

(s)
h2 . So different spatial localization leads to different dispersion

relations for these modes, as is illustrated by analytic calculations; see Fig. 4 a. The anti-Borrman mode

has a larger z component of the wave vector as compared to that of the Borrmann mode. The mode

energy propagates toward the group velocity vector, which is perpendicular to the dispersion curve. As

the dispersion curve is convex for the Borrmann mode and concave for the anti-Borrmann one, the group

velocity vectors of these modes are not parallel in the general case.

The interference of the Borrmann and anti-Borrmann modes leads to optical beating, which is due to

different z components of the modes. The total s-polarized field inside a PhC is given by

E(s)(x, z, t) = E
(s)
0 (x, z, t) + E

(s)
h (x, z, t), (8)

where E
(s)
g (x, z, t) = ey exp

(− iωt+ i(kx − g)x
)(
E

(s)
g1 exp (iq

(s)
z1 z)+E

(s)
g2 exp (iq

(s)
z2 z)

)
, with E

(s)
gj being the

waves amplitudes, and g = 0, h. The spatial period of beating is given by the extinction length Λ = 2Λext
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determined as [10]

Λext(Δn, λ, Cs,p) =
π∣∣∣q(1)0z − q

(2)
0z

∣∣∣ = λ0
(n2

e − sin2 θ)1/2

2Cs,p|χh| .

The extinction length depends on the wavelength and polarization of the light and increases with the

refractive index contrast. On account of the amplitude relations E
(s)
01 ≈ E

(s)
02 and E

(s)
h1 ≈ −E

(s)
h2 , the

beatings of the transmitted and diffracted waves are shifted on the extinction length Λext, so the maximum

of the transmitted wave corresponds to the minimum of the diffracted one, and vice versa. This can be

considered as an energy exchange between the transmitted and diffracted waves inside a PhC, known as

the pendular effect [11].

Such beatings inside PhCs occur also at detuning from the Bragg angle until the beams of the

Borrmann and anti-Borrmann modes do not spatially diverge. The pendular effect exists not only for

a monochromatic beam but for a wave package, as well. In this case, relation (8) should be considered

for one spectral field component only; the total field is given by a frequency integration of (8). As was

discussed above [14], for a sufficiently short laser pulse or a sufficiently long PhC, the pulse splitting effect

appears. Each of pulses is formed by only Borrmann or anti-Borrmann mode. Therefore, the pendular

effect may occur at the first stage of pulse splitting, when the two pulses are overlapped.

Inside a PhC, two transmitted waves with wave vectors q01 nd q02 propagate in slightly different

directions, but, after refraction at the PhC exit edge, they become co-directional and only one plane wave

in transmitted direction is formed. Analogously, one diffracted wave arises in free space from diffracted

waves with qh1 and qh2. Transmitted and diffracted waves in free space have the wave vectors k and

k − h. The amplitudes of these waves in a free space can be considered as a result of the interference

of two co-directional refracted waves. Therefore, the intensities of the output transmitted and diffracted

beams are not equal and depend on the phase incursion of the waves inside the PhC. If the PhC length

L is equal to the even number of the extinction length L = 2nΛext, the diffracted wave near the PhC exit

edge has a minimum, while the transmitted waves interfere constructively; see (8). In this case, the light

energy is concentrated in the transmitted beam only. If L = (2n+1)Λext, the total energy propagates in

the diffracted beam.

The pendular effect is a way to control the light flow by changing the extinction length, which can

be realized by changing the polarization, wavelength, and the refractive index contrast. We carried out

a calculation of the light propagation through a PhC slab under Bragg diffraction in the Laue geometry

by means of the dynamical diffraction theory. In our model, we considered the PhC with parameters

described in Sec. 2 and length L = 18.36 μm.

In Fig. 7 a, we show the light propagation through such a PhC for the s and p polarizations. The light

with 800 nm wavelength falls on a PhC at Bragg angle of 30◦ from the left bottom corner and partially

reflects. Inside the PhC, beating of field occurs. The PhC parameters are chosen as L = 4Λ(s) = 3Λ(p).

Therefore, the s-polarized incident light propagates in the transmitted direction, and the p-polarized light

in the diffracted one. In other words, this device works as a compact polarizing beam splitter. Due to

the high refractive index, the extinction length is sufficiently small, Λ
(s)
ext ≈ 4.6 μm and Λ

(p)
ext ≈ 6.2 μm.

The pendular effect can be useful for splitting light beams with different wavelengths. We observed

experimentally the pendular effect for different wavelengths. We carried out our experiments at the same

sample as in the pulse splitting experiments. A tunable OPO system with a pulse repetition rate of

10 Hz and a pulse duration of 10 ns was used as a laser source. Prior to impinging on the PhC, the light

beam was spatially filtered. The p or s-polarized radiation focused by a 3 cm lens falls on the PhC edge
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Fig. 6. Analytically calculated spatial distribution of complex field amplitudes A0 + Ah of diffracted phase-
modulated pulses propagating through a PhC in the Laue geometry. Parameters of the modulation are: σ = −15
and β = 0 (a), σ = +15 and β = 0 (b), σ = 0 and β = −4 (d), and σ = 0 and β = +4 (e). Panels (c) and (f) show
the last pairs of the pulse shown in panels (b) and (e) in a smaller scale.

a) b)
Fig. 7. Intensity distributions of light under Bragg diffraction in a PhC in the Laue geometry (a) for the s-
polarized light (left) and the p-polarized light (right) for PhC layer thicknesses d1 = d2 = 400 nm, PhC length
L = 18.36 μm = 4Λ(s) = 3Λ(p), and refractive indices n1 = 1.32 and n2 = 1.48. Here, light falls from the
left-bottom corner, and R, T, and D are reflected, transmitted, and diffracted beams, respectively. The spectral
dependence (b) of the intensity in transmitted (◦) and diffracted (�) beams at s-polarized laser radiation (left)
and p-polarized laser radiation (right).

at Bragg angle of 30◦. Two beams propagating after coming out from the PhC in the transmitted and

diffracted directions were observed. Their intensities were measured by a silicon photodiode using gated

electronics.

The spectral dependences of the outgoing light intensity are shown in Fig. 7 b. It exhibits oscillations

for the s and p polarizations of both transmitted and diffracted beams. However, the period of oscillations

is significantly smaller for the p-polarized light than for the s-polarized light, Δλp = 3.56± 0.01 nm and
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Δλs = 6.1 ± 0.1 nm. The intensity oscillations are in antiphase for the T and D beams, which reveals

the energy exchange between them. It was estimated that, in our PhC, the energy exchange between

the transmitted and diffracted beams occurs for more than 200 times, L ≈ 200Λ
(s)
ext. This quantity is

explained by the large PhC length, L ≈ 1 mm, and the high refractive index contrast; the PhC sample

is diffraction-thick (N = L/Λext 	 1).

9. Summary

We studied the effects accompanying the dynamical Bragg diffraction of light in 1D photonic crystals.

We predicted theoretically and observed experimentally the effect of diffraction-induced pulse splitting.

We fixed a pronounced polarization dependence of the splitting time and explained it as originating from

the two effects, the structural anisotropy of the PhC lattice and the material anisotropy of the PhC

layers. Also we evaluated the relative contributions of these effects.

We demonstrated that the propagation of the temporally split pulses within a PhC were angle de-

pendent and could therefore be controlled. We calculated analytically the dependence of the intensity of

a pulse passed through a PhC on the second-order spatial phase modulation (SPM) of the incident pulse

and showed both experimentally and theoretically that the pulses, split due to the diffraction-induced

splitting effect, can be selectively focused or defocused depending on the spatial phase modulation of the

incident light pulse.

We observed the pendular effect, that is, the periodic energy switching between the transmitted and

diffracted modes in a PhC, in the case of a diffraction-thick PhC with a length of about a hundred

of switching periods. We demonstrated the spectral and polarization-induced switching of the light

beams outgoing from the porous silicon-based 1D photonic crystal for the Bragg conditions in the Laue

diffraction scheme.
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