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t. (uasipotentional approachil’Z/xg used intensively + for
deicrlptlun of two connected particles system such as qq , e e ,
u py etc. As the exact analytic solutions are known only for some
cimplest potential, wide application of this approach needs to
develop the numerical methods of solving the guasipotentional
equations with different potentials.

In general case, for two scalar particles connected system the
quasipotentional equation in momentum space may be presented in
the form

6 L (p.E)w(p)= 1/(27)° [ Vip,kiEDw(K)dk/E, , (1.1

where G(p,E) is a Breen function, w(p) is a wave function of relative

motion of connected 5y5tem’3,,E is an energy of connected system.
Let us consider the equation (i.1l}with the potential that
describes a quark-antiguark interaction:

V(p,k;E)=V1(p,k;E)+02(p,k;E), (1.2)

where the potential

vl'(p,u;51=m/(p-k)2 (1.3}

is an analog of Coulomb potential and describes interaction at a small
distance, and the potential

Y, (pskiEY=A/ (p=k) * (1.4)

is locking and ensures limitless growth of eigenvalues of Eq. (1.1) and
is more similar in concept to the phenomenological type.

When choosing the potential in such a manmer,in the framework
of the nonrelativistic case Eq.(1.1) has the fnrm.

(E-p” /2-Vg )y (p)==17(2m) > {(~o/ (p—k) “+37 (p—k) 1y (k) ax, (1.5)

where a shift of spectrum VO is introduced.If integrating Eq.{1.3)

in angles, in central-symmetrical case we obtain the following
equation:

z « -k - = -2 -2
(p*/2+V ~E)p(p)=a/n[in S+k plkygk—p/nf((p=k) “+(p+k) “rptk)dk. (1.6)
o

o]
Here p(p)=pyp(p), w(p)=wi|pl). If we amplify the Eq.(1.4) by the
condition (0)=0 and the norm condition

‘oo 2
_[p(p) dp=1 , (1.7)
o .

we arrive at the eigenvalue problem.

2. The main requirement for computing mass spectrum and other

characteristics of vector mesons by Eq.{(1.8) is great computation

accuracy of eigenvalue (EV) and eigenfunction (EFY.Thus, for

the rnumerical computations to be performed, we must solve the problem

of computing the invariant subspace of great order matrix (with

order NXN, where N“100¢), which is not solvable in practice, if we

do not take into account the special structure of the matrix.
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In order to solve the arising algebraic problem a numerical
algorithm has been devised utilizing the Multi-Grid subspace
iteration method and efficient procedures for the processing
of the Hankel and Toeptlitz matrices that emerge in the
Galerkin discretization of an integral operater as well as
the special algorithms for improving the accuracy of
approximate solutions by the Richardson extrapolation.The
computations have been performed on the CDC-6500 computer,ln so
doing the main memory capacity in use is F={2p+O{1) INFO(p" ),
where p is the number of computated EV.

Let us illustrate the basic characteristics of the algorithm by
solving Shrddinger equation with the Coulomb potential, which we
obtain from Eq.(1.6) by (=0

2 « p—k
(p /2—A)w(p)=—u/ﬂfln rn wikidk .

o]

(2.1)

This equation has an exact solution. If a=1, there exists the formula
2
kn=_1/(2n Y, n=132;3:-.. {2.2)

The results of numerical cemputations for the first four EV
depending on N discretisation order are tabulated in Table 1.

Table 1

N® Al A2 A3 a

2’7 |-0.50000375 |-0.12478302 |-0.050508256 |—-0.0089176

22 |_0.a9999798 |-0.12496973 |-0.054147826 |-0.005090&

27 |-0.4999963 -0.12498776 |-0,0540654526 |-0.00817317

219 0.49999568 |-0.12499518 |-0.054963435 |-0.01124648%5

Now consider the relativistic equation with locking
potential
2 e -2 -2
(p —HE)w(p)=ﬁ/nI((p—k) +(p+rk) TIw(k)dk, {2.3)

o]
which we get from Eq.(1.&) when o=0 and the caorresponding change
of the left-hand side has been made. Here HE=(2E—2m)m/4, where m is

a mass of particles forming the connected system, and M=2m is a
mass of the connected system. There is an analytic solution of
Eq.(2-3)

Mn=2m(1+AEn) ’ (2.4)

here En—function Airi zeros, and A=2(B/m3)(2,3).
Let us apply £q.(2.3) to a description of mass spectrum of J/¥
and Y-particles.Values of parameters 3 and m are determinated by

magses of two low leve1,5/.Using the 7 and m values obtained
EqQ.{2.3) allows to numerically compute the masses of the rest of
exeited states (see Table 2). The numerical results of calculating
the mass spectrum of J/¥% and Y-particles by formula (2.4) with
the help of values of 3 and m pbtained are listed in Table 2.



Table 2.

HJ,W(HEV) HY(HEV)

Mexp. M(Z.3) M(Z.4) | Mexp. M(2.3) M{2.4)
3096.920.1 | 3096.9 | 3096.93 9460.+0.2 F4460 9462
3686.020.1 | 3686 36B6.11 10023.440.3| 10023.4 | 10027
4159 *+ 20 4148 4168.48 10355.50.5| 104B2.B {104B9.95
4415 * & 4589.5 | 4594.8 1057747 10885 10898.9

A=0.1457B:5.16810:3 A=0.03709?x6.5t10:g
m=1.,1548+1.3%810 m=4_353418.2810

Table 2 shows that the numerical results of calculations of
the masses spectrum by {(1.6) and the computations by the formula
{2.4) coincide in three first figures.

3.The use of the potential which consists of both the Coulomb
potential and the locking part, allows to describe simultaneously
both mass spectrum and lepton decay widths of vector mesons .To
determine the vector mesons lepton decay widths we use the Van Royen—

Weisskopt fDrmula’éi, that can be written in momentum space
taking in account quark colour, in a following manner:

w0

_ 22 2 2

Ty,ete=t6Ta eqnvgljb(p)dpl R (3.1)
Q

where a=1/137,nv.is a meson mass,eq is a quark charge.,and wave
L]
function p(p) is normalised by condition (1.7). Computations of

meson masses were performed by using the formula:z

Hv=(4.+E)m* ’ (3.2}
where E-solution of Eq.(l1.4),and m‘=mq/2—reduced guark mass.

3 .
Table 3 results the computations of mass spectrum and lepton decay
widths of J/¥-particle. Parameter values m‘=0.7155211.34110H5,

a=0.19225+1.2%10 },4=0.41482+3.9%10 “and v0=o.54511:a.a:10'5 have

been fitted in masses of the first three states and lepton widths

of the basic state’>.

Table 3
Halw(Hev) FJ/Q (Kev)}

Mexp. Mtheor. lNexp. I'theor.
3096.940.1 3096.9 4.810.6 4,77
3686.0+0.1 3686.0 2.1*0.3 2.97
4159 *+ 20 4153 0.75+0.1 2.24

4415 % & 4563.5 0.44+0.14 S 1.8




As shown in Table 3, Eg.(l1.6} describes the mass spectrum quite
right, but gives too high values of lepton decay widths for
excited states of the cc system.

4.Let us turn our attention to the discussion of the relativistic

guasipotential Equatiun/Z,z

w0 _ o _ _
1+p2(j1+p2~E)p(p)=a/nI1n g+: e(k)dk—Asn [ (p—k) "+ (p+k) 2y et )dk.
o o (4.1)

2

For the meson mass to be calculated, we us= the formula

M, =2Em, (4.2)
where m is a quark mass, and in order to calculate the width rV*e+e_
we utilize expression (3.1}, where the wave function p(p} is the
solution of £€qQ.(4.1).Now we fix free parameters m=1.6%2810.00003,
o=0.36103+0.000006,3=0.016005+0.00007 in the ¥-particles set the
first two states masses and in the J/PF-particle basic state lepton
width.

Table 4 shows the results of calculations of the J/¥ mass
spectrum with Eg. (4.1).

Table 4
MJIW(MEV) ‘ rJ/w (Kev)

Mexp. Mtheor. Fexp. rtheor.
3096.920.1 I0P4.9 4.8+0.4 4.5
268B6.0*0.1 3686.0 2.1*0.3 1.28
4028 * 10 3972.9 0. 75015 0.81

4139 + 20 4169.9 0.77x0.23 0.78
As seen from Table 4, the description of the width Fv‘e+e— is

better than in the framewerk of the nonrelativistic approach.
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Kupxor E.II. u zgp. E11-88-494
UpcenedHoe pelledHde HHTerpalbHBX YpDaBHeHHH,
ONHUCHBAWIIHX CHeKTp Mace BeXTOPHHRX ME30HOB

OmHcaH YMCIIeHHBRE AJTOpHTM OJIA peleHHA KBAasHIIOTeHUHAb—
HBIX HHTerpallbHbHX YpasHeHWH B UMOYIBCHOM npocTpaHcTse. [lpu-—
BeeHbl pPe3yIbTAaTH YHCJIEHHHX PACYETOB CHEKTpa Macc H mMHPHH
JICIITOHHHX PacHagoB BEKTOPHLHX ME30HOB B CPaBHEHHH C LAHHLME
$U3HYeCKOI'0 SKClepuMeHTa.

PaGoTa BHIIonHeHa B JlaGopaTopHH BHMHCIHTENIbHOH TeXHHKH
11 aBToMaTtuaaumu CHAIH.

MMpenpunT OB61eOMHEHHOTO HHCTATYTA AIepHLIX Kecnenosauuii. lly6ra 1988

Zhidkov E.P., et al. E11-88-494
Numerical Solution of Integral Equations,
Describing Mass Spectrum of Vector Mesons

The description of the numerical algorithm for solving
quazipotential integral equation in impulse space is pre—
sented. The results of numerical computations of the wvec-
tor meson mass spectrum and the lepton decay width are gi-
ven in comparison with the experimental data.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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