

Journal of Alloys and Compounds 360 (2003) L1-L2

www.elsevier.com/locate/jallcom

Journal of ALLOYS AND COMPOUNDS

Letter

New Zr_6CoAs_2 -type R_6MnSb_2 and R_6MnBi_2 compounds (R=Y, Lu, Dy, Ho)

A.V. Morozkin

Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992, Russia

Received 11 February 2003; accepted 18 February 2003

Abstract

A powder X-ray diffraction investigation of the new ternary compounds Zr_6CoAs_2 -type R_6MnSb_2 and R_6MnBi_2 (R=Y, Lu, Dy, Ho) is reported. The compounds Ho_6MnSb_2 (a=0.8070(2) nm, c=0.4230(1) nm), Lu_6MnSb_2 (a=0.7930(1) nm, c=0.4173(1) nm), Y_6MnBi_2 (a=0.8242(1) nm, c=0.4292(1) nm), Dy_6MnBi_2 (a=0.8211(1) nm, c=0.4286(1) nm), Ho_6MnBi_2 (a=0.8164(1) nm, c=0.4250(1) nm) and Lu_6MnBi_2 (a=0.8019(2) nm, c=0.4185(1) nm) crystallize in the hexagonal Zr_6CoAs_2 -type structure (space group *P6b2m* No. 189). The Zr_6CoAs_2 -type structure is a superstructure of the Fe_2P-type structure.

Keywords: Rare earth compounds; Crystal structure; X-ray diffraction

During the course of a systematic investigation of ternary rare-earth compounds we have detected new Zr_6CoAs_2 -type R_6MnSb_2 and R_6MnBi_2 compounds. The Zr_6CoAs_2 -type is a superstructure of the Fe₂P-type structure (space group *P6b2m* No. 189) [1]. In the Zr_6CoAs_2 -type structure the rare earth atoms occupy the 3(g) site (X_{R1} , 0, 1/2) and the 3(f) site (X_{R2} , 0, 0). The manganese atoms occupy the special position 1(b) (0, 0, 1/2) and the antimony (bismuth) atoms occupy the special position 2(c) (1/3, 2/3, 0) [2].

In the present investigation the compounds were prepared in an electric arc furnace under an argon atmosphere using a non-consumable tungsten electrode and a watercooled copper tray. Antimony, bismuth, rare earths and manganese (purity of all components 99.99%) were used as the starting components. Zirconium was used as a getter during melting. Subsequently, the compounds were annealed at 1170 K for 170 h in an argon atmosphere and quenched in ice-cold water.

X-ray powder diffraction patterns were obtained on a DRON-3.0 diffractometer (Cu K α radiation, $2\theta = 20-70^{\circ}$, step 0.05°, for 5 s/step). The obtained diffractograms were identified and intensity calculations were made in the isotropic approximation using the Rietan programs [3,4].

Table 1

Lattice parameters a and c (nm), c/a, unit cell volume V (nm³) and atomic position parameters of R₆MnX₂ (R=Y, Lu, Dy, Ho; X=Sb, Bi) of the Zr₆CoAs₂-type structure (space group *P6b2m* No. 189)^a

Compound	a	С	c/a	V	X _{R1}	X _{R2}	R _F
Ho ₆ MnSb ₂	0.8070(2)	0.4230(1)	0.52416	0.23857	0.599(2)	0.235(2)	3.2
Lu ₆ MnSb ₂	0.7930(1)	0.4173(1)	0.52623	0.22726	0.602(1)	0.239(2)	6.4
Y ₆ MnBi ₂	0.8242(1)	0.4292(1)	0.52075	0.25250	0.601(2)	0.238(2)	5.5
Dy ₆ MnBi,	0.8211(1)	0.4286(1)	0.52198	0.25025	0.605(2)	0.238(2)	5.6
Ho ₆ MnBi ₂	0.8164(1)	0.4250(1)	0.52058	0.24532	0.604(1)	0.238(1)	5.0
Lu ₆ MnBi ₂	0.8019(2)	0.4185(1)	0.52189	0.23306	0.607(2)	0.234(3)	6.8

^a The *R* factors are given in percent ($R_{\rm F} = 100 \cdot (\Sigma_k |(I_k^{\rm obs})^{1/2} - (I_k^{\rm cal})^{1/2}|/\Sigma_k |(I_k^{\rm obs})^{1/2}|)\%$, $I_k^{\rm obs}$ is the integrated intensity evaluated from summation of contribution of the *k*th peaks to net observed intensity, $I_k^{\rm cal}$ is the integrated intensity calculated from refined structural parameters).

E-mail address: morozkin@general.chem.msu.ru (A.V. Morozkin).

Six new compounds have been detected: Ho_6MnSb_2 , Lu₆MnSb₂, Y₆MnBi₂, Dy₆MnBi₂, Ho₆MnBi₂ and Lu₆MnBi₂. Analysis of the powder X-ray diffractograms shows unambiguously that the rare-earth compounds crystallize in the hexagonal Zr_6CoAs_2 -type structure (space group *P6b2m* No. 189). The lattice parameters of the compounds, refined at room temperature, the reliability factor R_F and the atomic position parameters resulting from the refinements are given in Table 1. Interatomic distances for the Dy₆MnBi₂ compound are given in Table 2.

The Zr₆CoAs₂-type R₆MnSb₂ and R₆MnBi₂ compounds can be regarded as having a structure based on Mg-type rare earth solid solutions. We can describe the Mg-type rare earth structure in terms of the Zr₆CoAs₂-type structure as follows: the rare earth atoms occupy the special positions 3(f) (1/3, 0, 0) and 3(g) (2/3, 0, 1/2), and the occupation factors for the manganese and bismuth atoms are zero. The cell parameters can be represented by a= $a_{Mg} \cdot (3)^{1/2}$ and $c = c_{Mg}$, space group P6b2m No. 189. Insertion of the manganese and antimony (bismuth) atoms into the Mg-type rare earth structure leads to a strong distortion of the unit cell and to changes of the interatomic distances. For the Dy and Dy6MnBi2 compound one has $(a_{\text{Dy}_6\text{MnB}_2} - a_{\text{Dy}})/a_{\text{Dy}} = 0.31867,$ $(c_{\mathrm{Dy}_{6}\mathrm{MnBi}_{2}}-c_{\mathrm{Dy}})/c_{\mathrm{Dy}}=$ -0.24502 and $(V_{Dy_6MnBi_2} - V_{Dy})/V_{Dy} = 0.31282$. The lattice parameters *a*, *c* and the cell volume *V* for the

The lattice parameters a, c and the cell volume V for the d-elements (Y, Lu) and f-elements (Dy, Ho) are proportional to the atomic radius of the R metals [5]. The c/a parameter decreases with increasing atomic radius of the R metals, as a rule (Fig. 1).

It is obvious that the strong distortion of the initial Mg-type rare earth unit cell and the insertion of manganese and p-elements in the rare earth unit cell will lead to strong changes in the magnetic properties.

Table 2

Interatomic distances $D \pm 2 \times 10^{-3}$ nm and coordination number N for atoms in Dy₆MnBi₂ compound

Atoms	D	Ν
Dy1–1Mn	0.324	17
-4Bi	0.331	
-4Dy2	0.355	
-2Dy2	0.370	
-2Dy1	0.4286	
-4Dy1	0.437	
Dy2–2Mn	0.290	14
-2Bi	0.320	
-2Dy2	0.339	
-4Dy1	0.355	
-2Dy1	0.370	
-2Dy2	0.4286	9
Mn-6Dy2	0.290	
-3Dy1	0.324	
Bi-3Dy2	0.320	11
-6Dy1	0.331	
-2Bi	0.4286	

Fig. 1. Cell parameters of R_6MnSb_2 and R_6MnBi_2 compounds versus rare earths atomic radius.

References

- O.I. Bodak, E.I. Gladyshevsky, in: Kristallohimia intermetallicheskih soedinenii redkozemel'nyh metallov, Vischa Shkola, Lviv, 1982, p. 148, (In Russian).
- [2] H. Klienke, J. Alloys Comp. 252 (1997) L29-L31.
- [3] F. Izumi, Rigaku J. 6 (1) (1989) 10-19.
- [4] F. Izumi, in: R.A. Young (Ed.), The Rietveld Method, Oxford University Press, Oxford, 1993, Chapter 13.
- [5] J. Emsley, in: The Elements, 2nd Edition, Clarendon Press, Oxford, 1991.