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Abstract. An algorithm is given for deriving the dependence of the 
deflection of a planar statically determinate beam truss on the number of 
panels, dimensions and load. Three load cases are considered: uniform load 
on the lower belt, upper belt and vertical force in the middle of the span. By 
induction, generalizing a series of solutions for trusses with a consecutively 
increasing number of panels, the desired formula is obtained for the 
deflection and horizontal displacement of the mobile support of the truss. 
All transformations are performed in the system of symbolic mathematics 
Maple. For a sequence of coefficients of the desired formula, using the 
special Maple operators, homogeneous recurrent equations are constructed 
and solved. The coefficients found are in the form of polynomials in the 
number of panels. The asymptotic property of the solution is found. On the 
graphs of the dependence of the deflection on the number of panels and on 
the height, extreme points are found. The solution can be used to test the 
calculations obtained numerically.  

1 Introduction  
In design practice, all calculations for the strength, stability and endurance of rod 

structures are performed numerically [1-5]. Optimization problems are also solved 
numerically [6-9]. Analytical calculations of building structures are quite rare, and the 
formulas on which they are based generally have a narrow field of application. The 
calculation of a particular truss with dimensions and loads, designated as variable parameters, 
is quite simple. For this purpose, known methods of determining the forces in rods and the 
displacement of nodes are applied in any program of symbolic mathematics (Maple, 
Mathematica, Derive, Reduce, etc.). Without special difficulties it is possible to obtain a 
formula for determining the desired quantity and changing the parameters included in the 
formula to choose the most profitable project. It is much more difficult to obtain the 
dependence of forces or displacements on the number of panels or rods of a truss if a  
calculated  design has a periodic structure with a certain type of periodicity cell. As a 
periodicity cell, you can consider as one truss panel or several. For such a truss that in the 
present paper the task is to obtain a formula for the dependence of the deflection of a truss 
on the number of panels. A method is used to induct generalizations of a number of solutions 
for trusses with a consecutively increasing number of panels. Previously, this method was 
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used in [10-13] to solve similar problems for planar and spatial  [14-16] trusses. In [17] by 
induction method, a solution was obtained for the deformation of the pile foundation. The 
inductive method in the problem of the deflection of a truss taking account of the creep of 
the material was solved in [18]. 

2 Truss and Methods  

A planar truss (Fig. 1) with a height of 4h and a span length of (6 2)L a n   in which n 
periodicity cells are separated has two supports and m = 24n + 12 rods, including three 
support rods (one in the left support, two in the right). The lattice of the truss consists of 18n 

+ 3 racks, of which six lateral are shortened, and 6n braces are 2 29 16d a h   in length. 

Two angular lateral braces are  long of 2 2c a h  . 
 

 

Fig. 1. Truss, load on the lower belt n=3 

Calculation of the forces in elements required to calculate the deflection in a symbolic 
form is performed by cutting out the nodes in the computer mathematics system Maple. The 
matrix of the system of equilibrium equations of nodes is filled in a cycle according to the 
number of rods. Elements of the matrix are the direction cosines of unknown forces in the 
rods. They are determined from the coordinates of the ends of the rods. Hinges and rods are 
numbered (Figure 2). The origin is in the left reference node of the truss. 

 

 

Fig. 2. Numbering of hinges and rods in the Maple system, n = 1 

The fragment of the program for entering coordinates of the nodes of the lower belt in the 
language of symbolic mathematics Maple has the form 

 
> for i to 6*n+3 do  
>    x[i]:=a*(i-1);   y[i]:=0; 
> end: 
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The fragment of the program for entering coordinates of the nodes of the lower belt in the 
language of symbolic mathematics Maple has the form 

 
> for i to 6*n+3 do  
>    x[i]:=a*(i-1);   y[i]:=0; 
> end: 
 

To enter the connection structure into the program, vectors N[i] are used that coincide 
with the rods of the truss with some conditional direction. The coordinates of these vectors 
are the numbers of the ends of the rod. For example, you enter, for example, a truss belt 
 
> for i to 6*n+2 do 
>  N[i]:=[i,i+1];                            
>  N[i+6*n+2]:=[i+6*n+3,i+6*n+4];            
> od: 
 

After this, the matrix G of the system of equations of node equilibrium is formed. In the 
odd-numbered lines, cosines with the horizontal x-axis are introduced, in even-numbered 
cases — with a vertical y: 
 
> for i to m do 
>       Lxy[1]:=x[N[i][2]]-x[N[i][1]]: 
>       Lxy[2]:=y[N[i][2]]-y[N[i][1]]: 
>      L[i]:=sqrt(Lxy[1]^2+Lxy[2]^2);     
>    for j to 2 do  
>     if 2*N[i][2]-2+j <=m then G[k,i]:=-Lxy[j]/L[i]: end; 
>     if 2*N[i][1]-2+j <=m then G[k,i]:= Lxy[j]/L[i]: end;  
>     end; 
>  end:  
 

Here is denoted: Lxy — projections of conditional vectors - rods on the coordinate axis. 

From the solution of the matrix equation GS B , where S — is the vector of all forces in 

the rods, B — the load vector, the forces are obtained  in the symbolic form. The load vector, 
as well as the matrix, consists of horizontal forces in odd elements and vertical forces in even 
ones. The displacement of the middle node of the lower belt is determined by the Maxwell-
Mohr's formula 
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It is indicated: ( )P
iS — the forces in the rods from the given load, il  — the length of the 

rods, (1)
iS  — the forces from the unit force applied to the knot of the lower belt in the middle 

of the span, EF — the rigidity of the rods.  
Consider first the case of loading the lower belt (Figure 1). The vector of the right-hand 

side is organized as follows 
 

> for i from 2 to 6*n+2 do B[2*i]:=1: end: 

3 Results 
 
The solution for trusses with an arbitrary number of panels has the form  

3 3 3 3 2
1 2 3 4( ) / (16 ).P C a C h C c C d h EF                                   (1) 
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The calculation of a series of trusses reveals sequences of coefficients for 3a , 3 3,h c   and 
3d . Operators of the Maple system rgf_findrecur and rsolve from the solution of recurrence 

equations give the following patterns  

4 3 2
1

2

3

4

(135 180 81 50 14) / 4,

32(2 2 ( 1) ),

32(2 1),

( 1) / 2.

n

C n n n n

C n

C n

C n

    

   
 

 

                           (2) 

For the coefficient 1C , a recurrence equation of the fifth order  

1, 1, 1 1, 2 1, 3 1, 4 1, 55 10 10 5n n n n n nC   C C C C C         was obtained and solved, and for the 

coefficient 2C  the equation 2, 2, 1 2, 2 2, 3n n n nC C C C     . 

Expression (1) with coefficients (2) gives the solution of the problem posed for the load 
along the lower belt of the truss. 

Similarly, for the load on the upper belt of the truss (Figure 3), we obtain the deflection 
in the form (1) and the same coefficients (2), except for the coefficient at 3h , which takes the 
form 2 65( 1)C n  . The vector of the right side in this case is given as follows 

> for i from 6*n+4 to 12*n+6 do Bp[2*i]:=1: end: 
 

 

Fig. 3. Truss, load on the upper belt n=4 

The simpler coefficients in (1) will be in calculating the deflection from one force in the 
middle of the lower belt (Figure 4): 
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Fig. 4. Truss, load on the center, n=3 
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Fig. 4. Truss, load on the center, n=3 

4 Discussion 
The main advantage of the solution (1) is the dependence of the deflection on the number of 
panels. This allows, first, to apply formula (1) for a wide class of problems, and secondly, to 
find some qualitative effects of such a solution, which is somewhat difficult in the framework 
of numerical calculations. We give some examples. We introduce the dimensionless 
deflection 0' / ( )EF P L   . Figure 5 shows the curves of the obtained dependence at 

0100 , (6 3)L m P P n   . Horizontal asymptotes are obvious 

3 3

max 2

5 5120
lim '

3072n

L h

h L


    . 

One of these straight lines is indicated in Fig. 5 for h = 2.00 m. The curves also have an 
extremum point. The number of panels at which the minimum is reached is almost 
independent of the height. 

 

 
 

Fig 5. Dependence of the dimensionless deflection on the number of panels during loading on the 
upper belt.  1 — max  ; 2— h=2.00m,  3 —  h=2.01 m, 4 —  h=2.02 m 

 
There is one more feature in the solution. If you plot the curves of the deflection versus 

the height of the truss, you can also notice extreme points (Figure 6). Calculations are 
performed for the span L = 30 m. With an increase in the number of panels for this size of 
the span, the deflection decreases. For large spans L> 80 m, similar curves no longer have 
minimum points. The deflection decreases monotonically with increasing altitude and begins 
to grow starting from unrealistically large heights of the structure. 
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Fig 6. Dependence of the dimensionless deflection on the height of the truss under load on the upper 
belt 

In addition to the size of the vertical deflection, the deformability of the truss can be 
estimated from the horizontal displacement of the mobile support from the action of the loads. 
The horizontal displacement of the support is determined by the Maxwell-Mora formula 

3
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where (2)
iS  — the forces from the unit horizontal force applied to the left support. Omitting 

the intermediate calculations, we give the formula for the displacement of the support from 
the action of loads along the lower belt (Figure 1) 

2 3 23 (6 6 4 1) / (4 ).A Pa n n n hEF      

When the upper belt is loaded, the displacement is the same, and when the concentrated 
load acts in the middle of the span, the displacement has the form 

2 23 (6 3( 1) 4 1) / (16 )n
A Pa n n hEF      . 

5 Conclusions 
The new sheme of considered truss has a rather complex structure, while remaining statically 
determinate. Despite this, an accurate analytical dependence on the number of panels has 
been obtained for the bending of the truss. Calculations of individual examples showed the 
presence of extreme points in the dependence found, which makes possible some 
optimization of the rigidity design. There are known works on optimization of trusses for 
rigidity, economy, strength and stability [6-9]. The obtained analytical formulas with 
sufficiently simple polynomial coefficients can supplement these results or evaluate their 
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The new sheme of considered truss has a rather complex structure, while remaining statically 
determinate. Despite this, an accurate analytical dependence on the number of panels has 
been obtained for the bending of the truss. Calculations of individual examples showed the 
presence of extreme points in the dependence found, which makes possible some 
optimization of the rigidity design. There are known works on optimization of trusses for 
rigidity, economy, strength and stability [6-9]. The obtained analytical formulas with 
sufficiently simple polynomial coefficients can supplement these results or evaluate their 

accuracy and reliability. It is quite obvious that the solutions found in this paper can be 
extended to statically indeterminate constructions. In this case, the above formulas are the 
solution of the basic problem of the method of forces.  A survey of papers on the application 
of the induction method in problems on planar trusses was made in [19]. 
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