Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: Implications for spatial compositional variability of subarc mantle and its oxidation state

Nikolai Nekrylov a,b,* , Maxim V. Portnyagin c,d , Vadim S. Kamenetsky a,e , Nikita L. Mironov d , Tatiana G. Churikova f,g , Pavel Yu. Plechov b , Adam Abersteiner e , Natalia V. Gorbach f , Boris N. Gordeychik a,g , Stepan P. Krasheninnikov d , Daria P. Tobelko d , Maria Yu. Shur h , Sofia A. Tetroeva h , Anna O. Volynets f , Kaj Hoernle c,d , Gerhard Wörner g

a Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Russia
b Fersman Mineralogical Museum RAS, 119071, Moscow, Russia
c GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148, Germany
d Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, 119991 Moscow, Russia
e Earth Sciences and CODES, University of Tasmania, TAS 7001, Hobart, Australia
f Institute of Volcanology and Seismology FEB RAS, 683006, Petropavlovsk-Kamchatsky, Russia
g GZG, Abt. Geochemie, Göttingen Universität, 37077 Göttingen, Germany
h Lomonosov Moscow State University, Moscow, Russia
i Christian-Albrechts Universität zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany

A R T I C L E I N F O

Article history:
Received 20 July 2018
Accepted 12 October 2018
Available online 17 October 2018

Keywords:
Cr-spinel
Olivine
Kamchatka
Redox conditions
Mantle wedge

A B S T R A C T

The Kamchatka volcanic arc (Russia) is one of best-studied, but most complex tectonic margins on Earth, with an extensive geologic history extending back to the Late Cretaceous. Unlike many other subduction zones, primitive basalts with Mg# > 65 are abundant in Kamchatka, thereby allowing characterization of the mantle source through compositional analyses of near-liquidus minerals in the rocks. In this paper, we present a comprehensive dataset on the composition of Cr-spinel inclusions in olivine for all main Late Quaternary volcanic zones in Kamchatka, comprising 1604 analyses of spinel inclusions and their host-olivine in 104 samples from 30 volcanic complexes (single volcanoes and volcanic fields).

The studied rocks are basalts, basaltic andesites and high-Mg andesites, which cover the whole compositional range of the primitive Late Quaternary volcanic rocks in Kamchatka. The spinel composition shows large variability. Spinel inclusions with the lowest Cr# and Fe 3+/Fe 2+ ratios were found in basalts from Sredinny Range and Northern Kamchatka, whereas the most Cr-rich and oxidized spinel inclusions occur in basalts and high-Mg andesites from the Central Kamchatka Depression. Intermediate Cr-spinel compositions characterize the Eastern Volcanic Belt of Kamchatka. The spinel compositions from the Central Kamchatka Depression have the highest Cr# and could crystallize from magmas generated from the most depleted sources. In contrast to the Eastern Volcanic Belt, spinel Cr# and the inferred degrees of melting in the Central Kamchatka Depression do not correlate with spinel TiO 2 content. The apparent decoupling between the proxies of mantle depletion in the CKD spinel is interpreted to reflect refertilization of the CKD mantle by oxidized Ti-rich slab- or mantle lithosphere-derived melts near the northern edge of the subducting Pacific Plate. This study demonstrates that the composition

* Corresponding author at: Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Russia.
E-mail address: nekrilov.n@gmail.com (N. Nekrylov).

https://doi.org/10.1016/j.lithos.2018.10.011
0024-4937/© 2018 Published by Elsevier B.V.
1. Introduction

Subduction-related magmatism occurs due to interaction of slab-derived hydrous fluids and melts with the mantle wedge (e.g., Tatsumi and Egging, 1995). Variations of mantle temperature, depth of melting, composition and flux of slab-derived components cause large compositional heterogeneity in the mantle wedge, which affects the composition of arc magmas and the rheological properties of the mantle (e.g., Ewart et al., 1998; Hirth and Kohlstedt, 2003; Peate et al., 1997; Su et al., 2015). Although studies addressing regional spatial and/or temporal variations of the mantle wedge composition and its oxidation state are rare (e.g., Brounce et al., 2014; Deering et al., 2010), they provide unique insights into the dynamics and evolution of arc systems.

Cr-spinel is a common accessory mineral which occurs in most types of primitive high-Mg volcanic rocks. Due to multicomponent composition, Cr-spinel is considered to be an important petrological indicator of parental magma composition, source fertility and magma oxidation state (e.g., Barnes and Roeder, 2001; Irvine, 1965; Kamenetsky et al., 2001; Leuthold et al., 2015). Magmatic spinel is very sensitive to the composition of equilibrium melt and crystallization conditions, and therefore it can be a powerful tool for discrimination of magmatic rocks from different geodynamic settings (Arai, 1992; Barnes and Roeder, 2001; Kamenetsky et al., 2001). In combination with the compositions of other minerals (e.g., olivine), spinel can be used to quantitatively characterize mantle source depletion (e.g., Arai, 1994) and conditions of crystallization, such as temperature (e.g., Ballhaus et al., 1991; Irvine, 1965; O'Neil and Wall, 1987; Wan et al., 2008) and oxygen fugacity (e.g., Ballhaus et al., 1991; Mattioli and Wood, 1988; O'Neil and Wall, 1987).

In this contribution, we examine the Kamchatka volcanic arc (Russia) located in the northeastern corner of the Pacific Ring of Fire. We present an extensive compositional dataset of spinel inclusions hosted in high-Mg olivine from mafic volcanic rocks in order to characterize the compositional variability and oxidation state of the mantle beneath Kamchatka. Our results demonstrate that subduction-related processes have a strong influence on the oxidation state of subarc mantle. Furthermore, we suggest that there were large variations in the degree of partial mantle melting, which could have been previously underestimated, based solely on fluid-immobile incompatible element systematics in magmas.

2. Geological setting and samples

The Kamchatka volcanic arc is located in the northeastern corner of the Pacific Ring of Fire. It is connected with the Kurile volcanic arc along its southern margin and connects at a nearly right angle with the Aleutian Arc in the north. Quaternary volcanism in Kamchatka takes place in response to subduction of the Pacific oceanic plate under the Eurasian continental margin (e.g., Gorbatov et al., 1997). The Pacific plate is currently subducting under the southern and central parts of Kamchatka at a rate of ~8 cm/yr (Demets et al., 1990). At the Kamchatka-Aleutian arc junction, the subduction trench terminates at approximately 55°N, however, no geophysical constraints on the subducted plate have been produced for north Kamchatka (Levin et al., 2002).

The geological history of Kamchatka extends into the Late Cretaceous and includes numerous episodes of terrane accretion, stretching and in-situ, subduction-related volcanism (Avdeiko et al., 2007; Lander and Shapiro, 2007). According to Lander and Shapiro (2007), Kamchatka is comprised of two major volcanic belts: i) the Eastern Kamchatka Volcanic Belt, and ii) Central Kamchatka Volcanic Belt (Fig. 1). The Wadati-Benioff zone is located at 90–200 km depth beneath the Eastern Kamchatka Volcanic Belt and at ~300 km depth under the southern part of Central Kamchatka Volcanic Belt (Gorbatov et al., 1997; Zhao et al., 2010). The Eastern Kamchatka Volcanic Belt hosts some of the most active volcanoes in the world, as well as numerous volcanic fields of monogenetic cinder cones and associated lavas. The belt includes three major segments, which are distinct in age of volcanism, spatial distribution of volcanoes and rock composition: i) southern segment or South Kamchatka (SK; –51.1–52.9° N), ii) central segment or Eastern Volcanic Front (EVF; –52.9°–55.3° N), and iii) northern segment, which includes volcanoes of the Central Kamchatka Depression (CKD; ~55.3–57.4° N). The SK segment is the continuation of the Northern Kurile Arc and has been volcanically active since the Late Eocene. The central (EVF) and northern (CKD) segments have been established more recently, beginning from the Late Miocene (EVF) to Quaternary (CKD) (Lander and Shapiro, 2007). The central and northern segments formed in response to an eolian accretion of Shipinsky, Kronotsky and Kamchatsky (collectively called ‘Eastern’) Peninsulas in Kamchatka (Fig. 1). The accretion propagated from south to north, resulting in the eastward migration of volcanism in respect to the Central Kamchatka Volcanic Belt (e.g., Avdeiko et al., 2007; Lander and Shapiro, 2007; Park et al., 2002). The Central Kamchatka Volcanic Belt, consisting of the Srediny Mountain Range (SR), is formed by numerous historically inactive polygenetic volcanoes, monogenetic cones and related lava fields (Churikova et al., 2001; Ponomareva et al., 2007; Volnyets et al., 2010). Quaternary volcanism in North Kamchatka is represented by a chain of extinct volcanoes and fields of monogenetic cones extending from Nachikinsky volcano on Ozerney Peninsula in the northermost CKD towards the Srediny Range. This volcanism is not related to modern subduction, but formed due to decompression mantle melting, possibly following slab break-off under this region (Levin et al., 2002; Porynyatig et al., 2005a, 2007a). In this work we refer to this particular region as North Kamchatka (NK), not to be confused with the northern segment (CKD) of the Eastern Kamchatka Volcanic Belt.

We studied the composition of Cr-spinel inclusions in olivine crystals from 104 samples. The samples were collected from 30 volcanoes and volcanic fields, including all the main late Quaternary volcanic zones of Kamchatka (Fig. 1): SK (Bol’shaya Ipel’ka, Savan River, Asacha, Opala, Tolmachev Dol, volcanic field, Tolmachev, Mutnovsky, Coreyly, Barkhatnaya Sopka), EVF (Avachinsky, Zhupanovsky, Bakening, Karymsky, Schmidt, Gamchen, Komarovo), CKD (Tolbachik, Kamen, Klyuchevskaya Sopka, Ploskie Sopki volcanic massif, Kharkhinsky, Zarechny, Shiveluch, Shishikeshy Complex), SR (Ichinsky, Akhtang, Kekulinaisky volcanic field, Sedanka volcanic field, Tobetskin) and NK (Nachikinsky). Bulk-rock compositions for most samples were previously reported (Bindeman et al., 2005; Churikova et al., 2001, 2013; Dirksen and Melekestsev, 1999; Dorendorf et al., 2000a; Duggen et al., 2007; Gorbach et al., 2013; Gorbach and Porynyatig, 2011; Grib and Perepelov, 2008; Plechova et al., 2011; Porynyatig et al., 2005a, 2005b, 2007b, 2015; O. Volnyets, 1994; O. Volnyets et al., 2000; A. Volnyets et al., 2010). The host rocks have MgO ~ 4 wt%, Mg# > 0.46 and represent the entire range of primitive to moderately fractionated rock compositions from Kamchatka (Fig. 2). The majority of the rocks are basalts,
basaltic andesites and high-Mg andesites of the medium-K subalkaline series. Low-K basalts (3 samples) are from Avachinsky and Mutnovsky volcanoes, and high-K basalts (7 samples) are from Bolshaya Ipel’ka, Tolbachik and Shiveluch volcanoes. High-K basaltic trachyandesites are from Nachikinsky volcano in NK. The bulk-rock compositions are presented in Supplementary Table 1.

3. Dataset and analytical methods

The dataset comprising of ~2000 analyses of olivine-hosted spinel inclusions and their host olivine grains was collected in several laboratories over the last 20 years. The majority of the data was obtained at GEOMAR (Kiel) using a Cameca SX50 (until 2007) and JEOL JXA8200 (2007–present) and in GZG (Geochemisches Institut, Göttingen) using a JEOL JXA 8900RL. Standardization and quality control in the GEOMAR lab was carried out using common reference materials: chromite NMNH17075, ilmenite NMNH6189 and olivine NMNH111312–44 (Jarosewich et al., 1980). The analyses were performed at 15 kV accelerating voltage, 20 nA for spinels and 20, 100 or 300 nA for olivine. Typical on-peak counting time was 20s for all elements. Some recent analyses of olivine were performed at 300 nA and 100–300 s counting time for trace elements (Al, Mn, Ni, Ca, Cr). For standardization of major and trace elements in spinel and olivine, a program in GZG lab used a set of synthetic and natural standards. Peak counting times for major elements were 15–30 s. To ensure accuracy and high precision of olivine analyses and to correct for instrumental drift, we used two San Carlos olivine crystals: USNM 111312/444 (Jarosewich et al., 1980) and commercial San Carlos olivine as “in house” standard crystal SC-Goe (for details see Churikova et al., 2007; Gordeychik et al., 2018). The analyses were performed at 15–20 kV accelerating voltage, 20 nA for spinels, and 300 nA for olivine using 60–300 s counting time for trace elements (Mn, Co, Cr, Ni, Zn, Al, Ca, P) except for two olivine crystals measured at 15 kV and 15 nA using 30 s counting time for Ni.

The remaining analyses were obtained at the Vernadsky Institute, Moscow (Camebax microbeam and Cameca SX-100 operated...
at 15 kV, 50 nA) and at the Lomonosov State University, Moscow (EDS CamScan 4DV operated at 15 kV, 1 nA and WDS JEOL JSM-6480 operated at 15 kV, 15 nA). The laboratories are indicated in Supplementary Table 2. Additional information about the analytical techniques can be found in papers devoted to study particular volcanoes in Kamchatka: Avachinsky (Portnyagin et al., 2005b), Zhupanovsky (Plechova et al., 2011), Mutnovsky (Shishkina et al., 2018), Gorely (Nazarova et al., 2017), Karymsky (Tobelko et al., 2019), Klyuchevskoy (Mironov et al., 2015), Shiveluch (Gorbach and Portnyagin, 2011; Gordeychik et al., 2018) and Kekuknaisky (Nekrylov et al., 2018).

The entire dataset was processed to exclude poor quality data and magnetite grains. Analyses containing >1 wt% of SiO₂ were excluded due to contamination by the host olivine. Spinel inclusions, which contain >50 wt% FeO, were also excluded because they represent the late stage magmatic crystallization, which is beyond the scope of this study. The final dataset consists of 1604 olivine-hosted spinel inclusions (Supplementary Table 2): 230 inclusions from 13 samples, coming from 9 volcanoes and volcanic fields of SK; 261 inclusions from 17 samples, taken from 7 volcanoes and volcanic fields of EVF; 904 inclusions from 58 samples, collected from 8 volcanoes and volcanic fields of CKD; 159 inclusions from 13 samples, taken from 5 volcanoes and volcanic fields of SR; 50 inclusions from 3 samples, coming from 1 volcano of NK. A summary of the data is provided in Table 1. Fe²⁺ and Fe³⁺ in spinel were calculated on the basis of ideal spinel stoichiometry as a mixture of ulvöspinel and spinel-type components.

New bulk-rock analyses reported here were performed at the GEOMAR Helmholtz Centre for Ocean Research Kiel, following the method described by Portnyagin et al. (2015). Analyses of AVA-17-06, AVA-17-08 and SHIV-10-24 samples were performed at GZG Göttingen Universitât following method described by Churikova et al. (2001).

Fig. 2. Bulk-rock composition of studied samples from different volcanic zones of Kamchatka. Data sources are listed in Supplementary Table 1. Volcanic rocks of Kamchatka are shown for comparison (GEOROC database).
4. Results

4.1. Composition of host olivine

Composition of olivine grains (Fo = Mg/(Mg + Fe), mol.%) hosting Cr-spinel inclusions in Kamchatka rocks varies from Fo71.7 to Fo92.5 (Supplementary Table 2; Fig. 3). The most Fo-rich olivine from the different volcanic zones is Fo96.4 for SK, Fo91.4 for EVF, Fo92.5 for CKD, Fo97.1 for SR and Fo98.5 for NK. Modes of Fo-number, which can be regarded as the characteristic of average degree of magma fractionation, also vary between the zones and correlate with maximum Fo-number determined for each volcanic zone (Fig. 3); Fo84–85 for SK, Fo86–87 for EVF, Fo88–89 for CKD, Fo90–91 for SR and Fo94–85 for NK. The least magnesium olivine from all volcanic zones has approximately the same composition (Fo72) and corresponds to the average composition of Ti-magnetite, which contains >50 wt% total FeO (Fig. 4a).

4.2. Composition of Cr-spinel inclusions in olivine

The Cr# (Cr/(Cr + Al) × 100, mol.%) of studied spinel inclusions varies from 1.1 to 85.1 (Figs. 4a, c). The majority of spinel inclusions from CKD samples have Cr# = 60–80, whereas only a few samples from other volcanic zones contain spinel with Cr# > 60. Spinel inclusions from SK, SR and NK have Cr# in the range of 20–60. Only spinel inclusions from EVF cover the whole range of Cr# observed in Kamchatka samples. Spinel with high Cr# = 70–80 in EVF were found in samples from the Karymsky volcano and in avachites – exotic picobasalts from the Avachinsky volcano (Portnyagin et al., 2005b). Mg# of spinel inclusions varies from 25.0 to 76.5 mol%, even within the narrow range of olivine Fo (Fig. 4b). This is because spinel inclusions trapped in olivine grains of narrow compositional range (e.g., Fo84–85) exhibit negative correlations between Mg# and Cr# (Supplementary Table 3, Fig. 4d), as expected from strong dependence of the Mg–Fe olivine-spinel partitioning on spinel Cr# (e.g., Kamensky et al., 2001). The Mg# of spinel inclusions at given Cr# correlates positively with the Fo-number of host olivine (Fig. 4b). Cation fraction of Fe3+ in Kamchatka spinel increases and Fe2+/Fe3+ ratio decreases with decreasing primary or slightly fractionated magmas, are referred to hereafter as ‘primitive spinel’. Significant parts of this dataset comprise spinel trapped in olivine with Fo88–89, which could crystallize from near primary mantle-derived magmas. However, high-Fo olivine was not found in all volcanic zones, thereby hampering comparisons with regards to spinel composition. The compositions of the primitive spinel trapped by the most Mg-rich olivine from every sample were averaged and together with their host rock composition are presented in Supplementary Table 4.
Cr# in primitive spinel from Kamchatka varies from 21.0 to 79.7 (Fig. 5a), which can be caused either by fractionation of Cr-rich phases, such as high-Ca pyroxene and Cr-spinel (Smith and Leeman, 2005) or by compositional variations in parental magmas and their sources, due to variations of Cr/Al ratio (Arai, 1994; Dick and Bullen, 1984). As illustrated in Fig. 4c, Cr# in spinel from for example the CKD volcanoes, where olivine phenocrysts have full range of compositions from Fo92.5 to Fo72, does not correlate systematically with the Fo-number of the host olivine. Based on this observation, we conclude that Cr# in Kamchatka spinel is not significantly affected by fractionation of pyroxene and spinel, which typically accompany olivine during the early stages of crystallization of primitive Kamchatka magmas (e.g., Bergal-Kuvikas et al., 2017; Portnyagin et al., 2015). Thus, the variations in primitive spinel Cr# between different samples and volcanic zones in Kamchatka are likely related to variability of the primary melt compositions and their mantle sources.

Direct comparison of the composition of primitive spinel inclusions and the composition of their host rocks provides additional evidence of a close relationship between them. Kamenetsky et al. (2001) showed that Al2O3 content in primitive spinel correlates strongly with Al2O3 contents in equilibrium melt. In our case, we compared Al2O3 content of spinels with the bulk host rock Al2O3 content (Fig. 5d). Despite some scatter, a correlation is evident between Al2O3 content in spinel and in host rocks. The trend is comparable to that proposed by Kamenetsky et al. (2001), but shows elevated Al2O3 in the bulk host rocks. A possible reason for the discrepancy with published data may be that the studied rocks are typically more evolved than melts in equilibrium with Fo84 and therefore likely have higher Al2O3 than the melts, from which primitive assemblages of olivine and spinel were crystallized. In contrast, Kamenetsky et al. (2001) used compositions of melt inclusions in spinel to constrain this correlation, which better represent equilibrium melt compositions. Additional evidence of compositional links between the host rocks and spinel is shown by correlating their TiO2 contents (Fig. 5e). The apparent Ti partitioning is similar to that reported for other suites of magmatic spinel (Kamenetsky et al., 2001). The correlation of Al2O3 and TiO2 in spinel and their host rocks shows that spinel crystallized from melts, which were compositionally similar to the bulk-rock composition. Therefore, the major and trace element compositions of the host rocks can be used to further evaluate major controls on spinel compositions (see sections 5.2, 5.3 and 5.4).

Kamenetsky et al. (2001) proposed using a TiO2 vs. Al2O3 diagram for primitive spinel compositions in olivine Fo84 to discriminate between geodynamic setting. In this diagram, compositions of spinel from Kamchatka fall into the fields of arc basalts (CKD and EVF) and MORBs (SK, EVF, SR and NK) (Fig. 5f). In some samples, the MORB-like compositions of spinel can be explained by their back-arc origin (Kamenetsky et al., 2001). Spinel from SK and EVF are from volcanic front volcanoes in Kamchatka. Based on this data, the compositional field of island-arc spinel proposed by Kamenetsky et al. (2001) should be extended to include part of the field of spinel from MORBs. The occurrence of low Cr# spinel in typical arc rocks, like those from the Kamchatka arc front volcanoes (SK, EVF), was also noted by Smith and Leeman (2005). A more robust criterion to distinguish spinel from arc and mid-ocean ridge settings is by comparing their different oxidation states. Low Cr# spinel from SK and EVF are significantly more oxidized in comparison with spinel from MORB, as we show in the following section.

5.2. Oxidation state of primitive Kamchatka magmas and its relation to the host-rock compositions

The occurrence of Fe2+ and Fe3+ in Cr-spinel renders it one of the best indicators of redox conditions for the upper mantle spinel lherzolites and basaltic magmas (Irvine, 1965), and has been applied in several models of spinel and olivine equilibria (Ballhaus et al., 1991; Mattioli and Wood, 1988; O’Neill and Wall, 1987). To estimate magma oxidation state from the composition of olivine and spinel in this study, we used a model proposed by Ballhaus et al. (1991). This model is sensitive to the presence of orthopyroxene in the liquidus assemblage. Recent studies, however, have shown that this model and

![Histograms of host-olivine Fo-number for different volcanic zones of Kamchatka. N is the number of analyses.](image-url)
oxybarometer based on olivine-melt V partitioning (Nekrylov et al., 2018; Shishkina et al., 2018) yield similar estimates for ΔQFM within 0.5 units (ΔQFM is the deviation of fO_2 from that of quartz-fayalite-magnetite equilibria at given temperature expressed in log. units). Therefore, the model most likely can be applied to primitive and moderately fractionated spinel compositions without correction for magma undersaturation in orthopyroxene. Temperature was calculated using Fe-Mg spinel-olivine equilibrium (Ballhaus et al., 1991). Pressure was assumed to be 0.1 GPa, which corresponds to the upper crustal conditions under Kamchatka. ΔQFM values estimated for different volcanic zones in Kamchatka are 1.7–2.1 (on average 1.9 ± 0.32, 2σ) for SK (except for basaltic cones at Opala caldera with ΔQFM ~ 1.3), 1.1–2.4 (on average 1.61 ± 0.76, 2σ) for EVF, 1.0–3.7 (on average 1.72 ± 0.84, 2σ) for CKD, 1.2–1.7 (on average 1.45 ± 0.44, 2σ) for SR and 0.7–1.1 (on average 0.9 ± 0.44, 2σ) for NK.

Our data shows that primitive Kamchatka magmas are significantly more oxidized compared to MORBs, which typically crystallize at $\Delta QFM = +0.1 \pm 0.2$ (Cottrell and Kelley, 2011). Oxidizing conditions,
which were estimated for Kamchatka, are typical for arc magmas (ΔQFM from +1 to +2, according to Richards (2015)) and are usually attributed to the transfer of large amounts of ferric iron and other oxidized redox-sensitive elements into the mantle wedge from subducted hydrothermally altered oceanic crust (Evans, 2012; Kelley and Cottrell, 2009). The lowest ΔQFM in Kamchatka was estimated for

![Diagram showing average compositions of Cr-spinel inclusions in olivine Fo-N (Supplementary Table 4) from studied samples.](image-url)

- (a) Spinel Cr# vs. host-olivine Fo (Grey field indicates Olivine-Spinel Mantle Array (OSMA) after (Arai, 1994)). Dashed lines delineate compositions of coexisting olivine and spinel from mantle xenoliths in Kamchatka volcanic rocks (Bryant et al., 2007; Ionov, 2010; Shcherbakov and Plechov, 2010); (b) Spinel Mg# vs. host-olivine Fo; (c) Spinel Fe$^{2+}$/Fe$^{3+}$ vs. host-olivine Fo; (d) spinel Al$_2$O$_3$ vs. whole-rock Al$_2$O$_3$ content (Grey dashed curve shows equilibrium compositions after Kamenetsky et al. (2001)); (e) Spinel TiO$_2$ vs. bulk-rock TiO$_2$ (The dashed and solid grey lines indicate best fit for spinels with Al$_2$O$_3$ $<$ 15 wt% and $>$ 19 wt%, respectively (Kamenetsky et al., 2001)); (f) Spinel TiO$_2$ vs. spinel Al$_2$O$_3$ diagram (Fields of typical spinel composition for arcs, MORBs, LIPs and OIBs are after Kamenetsky et al. (2001)). Small grey symbols on figures (a) and (b) show compositions of the most evolved spinel for CKD samples and for 2 samples containing Cr-rich spinel from EVF.
SR and NK, where magmas originate from mantle sources with the smallest contribution of subduction-related components (Churikova et al., 2001; Volynets et al., 2010), or by pure pressure-release melting (Portnyagin et al., 2005a).

The dependence of ΔQFM in Kamchatka magmas on the extent of subduction-related metasomatism of their sources is supported by a statistically significant correlation between ΔQFM and indices of slab-derived components, such as La/Nb and Ba/La (e.g., Hanyu et al., 2006; Kelley and Cottrell, 2009), in bulk-rock composition. A particularly strong correlation is observed for samples from SR and NK. The correlation, however, is not significant for EVF, CKD and SK. Nevertheless, the general regional trend of increasing ΔQFM with increasing subduction-related signature in Kamchatka magmas is still evident. This correlation suggests that the oxidation state of Kamchatka magmas and their sources is largely controlled by the amount of slab-derived components that interacted with the mantle wedge and caused coupled mantle oxidation and enrichment in fluid-mobile elements. Similar correlations between Ba/La and melt oxidation state were reported for the Mariana arc (Brounce et al., 2014) and for arc melts in general (Kelley and Cottrell, 2009).

Our data demonstrate that there is no significant difference in the estimated ΔQFM between different zones of the Eastern Kamchatka Volcanic Belt (Supplementary Table 4; Fig. 7a). The ΔQFM estimates, however, are highly variable for CKD volcanoes, especially for those from the northern CKD. These variations are also manifested in the composition of spinel inclusions in olivine with Fo > 88 (Supplementary Table 4), and therefore they cannot be explained by variable magma fractionation and oxidation. Since the minimum value of the estimated ΔQFM for CKD samples is nearly the same as for EVF and SK, these large variations can be caused by an additional oxidizing agent involved in the magma generation beneath the CKD, possibly slab-derived melts (Portnyagin et al., 2007a; Yogodzinski et al., 2001), as discussed in section 5.4.

Some authors have proposed that the contribution of slab-derived components to arc mantle sources decreases from the arc front to the rear arc (e.g., Ishikawa and Nakamura, 1994). We, however, observed no significant correlations between ΔQFM and the depth to the Wadati-Benioff zone beneath a volcano (Fig. 6c). This suggests that the amount of oxidizing slab-derived components may be relatively constant across the Kamchatka Arc, at least in some parts of the arc, where the Wadati-Benioff zone is well defined. This does not contradict the interpretation that the composition of this component changes from relatively trace-element-poor fluid in the volcanic front to trace-element-rich hydrous silicate melt in the rear arc (e.g., Duggen et al., 2007; Portnyagin et al., 2007b).

It is noteworthy that primitive Kamchatka magmas with the highest Ba/La and La/Nb are not oxidized more than ΔQFM = 2 (Supplementary Table 4, Fig. 6). This indicates that their oxidation state may be buffered by some mineral equilibria in the sub-arc mantle under Kamchatka. A possible candidate for such a buffering reaction is the equilibrium between sulfide and sulfate phases, which can coexist at ΔQFM = 0–2 at low pressures and at ΔQFM up to 3.5 at mantle wedge conditions for a wide range of melt compositions (Jugo et al., 2010; Matjuschkin et al., 2016). This reaction can buffer the mantle wedge oxidation state either through oxidation of mantle sulfides by slab-derived fluids (e.g., Brounce et al., 2014), or through reduction of the trisulfur ion (S₃⁻) (Pokrovsky and Dubrovinsky, 2011) and/or sulfate ion SO₄²⁻ (Bénard et al., 2018) from slab-derived fluids by sulfide precipitation (Rielli et al., 2017).

5.3. Constraints on mantle wedge depletion under Kamchatka from spinel composition

Spinel Cr# is commonly considered a useful indicator of the degree of mantle source depletion in basaltic systems (Arai, 1994; Dick and Bullen, 1984). The Cr/Al ratio in mantle residues and primary melts, as well as in their equilibrium spinel, increases with increasing degree of partial melting of spinel peridotite (e.g., Hellebrand et al., 2001; Jaques and Green, 1980). A direct application of the proposed equations linking Cr# in spinel and degree of mantle melting to volcanic rocks is complicated by significant dependence of the Al partitioning between spinel and melt on pressure (Barnes and Roeder, 2001; Sobolev and Danyushevsky, 1994). The liquidus spinel Cr# does not exactly correspond to spinel Cr# in the residual mantle, when significant differences exist between the pressures of melting and crystallization (Sobolev and Danyushevsky, 1994). This uncertainty decreases with decreasing...
differences between pressure of crystallization and pressure of the last melt equilibrium with mantle peridotite. In conclusion, Cr# of spinel from volcanic rocks is generally informative about maximum degree of melting of the source.

The Cr# of primitive spinel from SK, EVF and CKD closely corresponds to the Cr# of spinel from mantle xenoliths in some Kamchatka volcanic rocks and extends to lower values (Cr# < 40) (Fig. 5a). The mantle xenoliths were described in detail for the Avachinsky (Ionov, 2010), Bezymbanny (Schcherbakov and Plechov, 2010) and Shiveluch (Bryant et al., 2007) volcanoes. The majority of them are represented by harzburgites with spinel Cr# = 40–80, which corresponds to more than or equal to 15%, or even in excess of 20%, of near fractional melting to form the residual mantle (Hellebrand et al., 2001; Jaques and Green, 1980). In comparison with spinel in mantle xenoliths, primitive spinel in Kamchatka volcanic rocks has a wider range of Cr# = 20–80, which corresponds to a range of degrees of melting from ~8 to ~20%. The lowest degrees of melting (F < 15%) and lherzolite residues (spinel Cr# < 0.4) are predicted for samples from SR, NK and some samples from EVF and SK. Harzburgite residues and F > 15% are typical in most parts of the Eastern Kamchatka Volcanic Belt (SK, EVF, CKD), and the most depleted residues result from the extraction of CKD magmas (Fig. 5a, 7b).

Available data suggest that the parental magmas of Kamchatka volcanoes begin to crystallize in the lower crust at pressures of ~1 GPa (e.g., Gavrilenko et al., 2016; Kersting and Arculus, 1994; Portnyagin et al., 2005). Assuming that parental melts last equilibrated with mantle peridotite at 2 GPa pressure, the difference in spinel Cr# between mantle residue and magmatic spinel should not exceed 10 mol% (Sobolev and Danyushevsky, 1994). The degrees of melting for Kamchatka mantle source(s), calculated from the model of Hellebrand et al. (2001), can thus be overestimated by 2–3%. This uncertainty is considered to be small and does not significantly exceed the uncertainty related to the spread of spinel Cr# for single rock samples.

Our observations showing significantly higher degrees of partial melting under the Eastern Volcanic Belt, compared to SR and NK, are in general agreement with published data on the composition of mantle xenoliths in Kamchatka rocks and with independent geochemical modeling of bulk-rock and melt inclusion compositions (Churikova et al., 2001; Portnyagin et al., 2007b, 2015). The estimated degrees of mantle melting correlate with decreasing flux of hydrous fluids and melts into the mantle wedge, as the subducting slab under Kamchatka sinks into the mantle and dehydrates. Therefore, the fluid/melt-flux from the subducting slab appears to be the dominant process controlling melting under Kamchatka (Portnyagin et al., 2007b), with possible exceptions in the most northern volcanoes in SR and NK (Portnyagin et al., 2005).

5.4. Evidence for mantle re-fertilization by Ti-rich melts under CKD

Ti is moderately incompatible element during partial melting (Jaques and Green, 1980), and its concentration in primary magmas should provide information on the extent of this process (e.g., Stolper and Newman, 1994). Ti in primitive spinel correlates with melt composition (e.g., Kamenetsky et al., 2001), and therefore it can also be considered as a potential indicator of the mantle depletion and degree of partial melting.

In order to quantitatively estimate the degree of partial mantle melting from Ti content in liquidus spinel, the TiO2 content in melt derived from Depleted MORB-source Mantle (DMM) and TiO2 content in spinel in equilibrium with such a melt needs to be calculated. TiO2 in model partial melts was calculated using the TiO2 content of enriched DMM (0.132 wt%), bulk partition coefficient (0.058) (Workman and Hart, 2005) and the equation of batch melting (Shaw, 1970):

\[\text{TiO}_2^{\text{Melt}} = \frac{0.132}{0.058 + F} + 0.942 \]

where \(F \) is a melt weight fraction.

Using data from Kamenetsky et al. (2001), the dependence of TiO2 content in spinel on TiO2 content in melt for island arc basalts can be
expressed as follows:
\[\Delta QFM = 8.8 \times \left(\frac{TiO_2}{MgO} \right)^{1.2} \]

(2)

By substituting the right side of equation (1) for partial mantle melting for TiO2 in equation (2) and re-arranging the resulting equation, it is possible to calculate degree of DMM melting from the equilibrium concentration of TiO2 in spinel. The resulting equation is:

\[F = -0.06158 + 0.11635 \times (TiO_2)_{eq}^{-0.833} \]

(3)

This equation can be used only for spinel in equilibrium with high-Fo olivine (Fo > 88), because of the strong influence of magma fractionation on TiO2 content in spinel. Spinel in equilibrium with high-Fo olivine in this study only occurs in the EVF and CKD. For the EVF spinel, we found a strong correlation between spinel Cr# and degrees of mantle melting of 16–22% calculated from TiO2 in spinel using equation (3) (Fig. 8). In contrast, the data for CKD samples are very scattered and did not display any correlation between Cr# and TiO2 in spinel. A strong correlation for the EVF supports the view that spinel composition can provide information about the degrees of mantle melting, however, data for the CKD do not seem to support this interpretation. The minor discrepancy between the trends of TiO2–Cr#-based melting degrees for EVF and 1:1 line for these estimations can be explained by the pressure difference between mantle residue and magmatic spinel crystallization, which affects Cr#-based estimations (see Section 5.3).

CKD magmas are clearly anomalous in the Kamchatka arc due to large variations in the estimated δQFM, highly variable spinel TiO2 content and diverse bulk-rock geochemistry (Figs. 6, 7). A number of models have been proposed to explain this abundant and geochemically distinct volcanism in CKD: 1) unusually large flow of hydrous fluids/melts from the subducting Emperor Seamounts (e.g., Churikova et al., 2001; Dorendorf et al., 2000b); 2) slab melting at the Pacific slab edge under the northern CKD (Munkcr et al., 2004; Yogodzinski et al., 2001) or the entire group of CKD volcanoes (Portnyagin et al., 2007a); 3) interaction of the ascending melts with previously hydrothermally altered lithospheric mantle (Auer et al., 2008; Portnyagin et al., 2007a).

The presently available data does not permit us to fully reconcile the possible influence of these processes on the oxidation and enrichment of the mantle under CKD. It is, however, plausible that the contribution from Ti-rich slab-derived melts can cause re-fertilization of the mantle under CKD or that magmas may be contaminated in the lithospheric mantle during ascent, with both processes potentially causing decoupling between spinel TiO2 and Cr#. Therefore, care should be taken in estimating the degree of mantle melting of subduction-related magmas based on the widely accepted modeling of fluid-immobile elements in primitive rocks and melt inclusions (Pearce and Parkinson, 1993; Portnyagin et al., 2007b; Stolper and Newman, 1994). Potentially more accurate estimates can be obtained from spinel Cr#, which is not as easily modified in depleted mantle and is not as sensitive to fractional crystallization as TiO2.

6. Conclusions

We present a comprehensive compositional dataset of 1604 olivine-hosted Cr-spinel inclusions from 104 samples collected from 30 volcanic fields from all main late Quaternary volcanic zones in Kamchatka. This data places new constraints on regional variations of the magma oxidation state and the degrees of partial mantle melting under Kamchatka.

1) The oxidation state of parental magmas in Kamchatka varies from ΔQFM = +0.7 to +3.7. For Sredinny Range and Northern Kamchatka ΔQFM correlates with geochemical proxies of slab-derived components, such as Ba/La and La/Nb in the host rocks, and suggests mantle oxidation by slab-derived fluid or melts.

2) The oxidation state of the parental magmas of the Eastern Kamchatka Volcanic Belt varies primarily within the range of ΔQFM = +1 to +2. The lack of correlation between the estimated redox conditions and bulk-rock geochemistry for the active volcanic front in Kamchatka suggests that the mantle oxidation state may be buffered by coexisting sulfide and sulfate phases in the mantle.

3) Variations of primitive spinel Cr# suggest that the degree of mantle melting ranges from 8% to >20% beneath Kamchatka. The least depleted residues were estimated for magmas from the Sredinny Range and Northern Kamchatka, which have the smallest contribution from the subducting slab. Magmas from the Eastern Volcanic Belt and the Central Kamchatka Depression originate by larger degrees of melting, based on high spinel Cr#. However, these magmas are enriched in Ti and can originate from mantle, which was refertilized by slab-derived Ti-rich melts or assimilated such melts from enriched lithospheric mantle beneath Kamchatka.

4) The results of our study demonstrate that the composition of Cr-spinel in volcanic rocks, in combination with bulk-rock compositions, can be a useful tool to map regional variations of mantle source depletion, oxidation state, and involvement of various slab- or lithosphere-derived components in island-arc magmatism.

Acknowledgements

We are grateful to Danil V. Popov (University of Geneva) for insightful discussions, Oleg V. Dirksen and Maria M. Pevzner for providing samples. We thank Davide Lenaz and one anonymous reviewer for constructive comments on this manuscript. This study was funded by the Russian Science Foundation grant #16-17-10145 to NN and VSK, German Ministry for Education and Research (BMBF) KOMEX and KALMAR to KH and MP, DFG-RFB grants # 00-0504000, 16–55–12040 and German Science Foundation grant #Wo362/51-1 to GW and TCH.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.lithos.2018.10.011.

References

Bryant, J.A., Yogodzinski, G.M., Churikova, T.G., 2007. The oxidation state of parental magmas of the Eastern Kamchatka Volcanic Belt varies primarily within the range of ΔQFM = +1 to +2. The lack of correlation between the estimated redox conditions and bulk-rock geochemistry for the active volcanic front in Kamchatka suggests that the mantle oxidation state may be buffered by coexisting sulfide and sulfate phases in the mantle.

4) The results of our study demonstrate that the composition of Cr-spinel in volcanic rocks, in combination with bulk-rock compositions, can be a useful tool to map regional variations of mantle source depletion, oxidation state, and involvement of various slab- or lithosphere-derived components in island-arc magmatism.