Российская академия наук Суперкомпьютерный консорциум университетов России

ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ (ПаВТ'2014)

Труды международной научной конференции

г. Ростов-на-Дону, 1–3 апреля 2014 г.

Челябинск, Издательский центр ЮУрГУ 2014 УДК 004.75 П 18

Параллельные вычислительные технологии (ПаВТ'2014): труды международной научной конференции (г. Ростов-на-Дону, 1–3 апреля 2014 г.). Челябинск: Издательский центр ЮУрГУ, 2014. 389 с.

ISBN 978-5-696-04538-2

Данный сборник содержит статьи, включенные в программу Международной научной конференции «Параллельные вычислительные технологии 2014». Конференция проходила с 1 по 3 апреля 2014 года в Южном федеральном университете (г. Ростов-на-Дону). Подробную информацию о конференции можно найти в сети Интернет по адресу http://agora.guru.ru/pavt.

Отпечатано с авторских оригиналов.

Одобрено Советом факультета Вычислительной математики и информатики ЮУрГУ

Рецензенты:

В.В. Воеводин, член-корреспондент РАН,

В.И. Ухоботов, доктор физ.-мат. наук

Ответственные за выпуск:

Л.Б. Соколинский, доктор физ.-мат. наук,

К.С. Пан, кандидат физ.-мат. наук

Конференция проводится при поддержке Российского фонда фундаментальных исследований

© Издательский центр ЮУрГУ, 2014

Содержание

Полные статьи

Задачи визуализации программного обеспечения параллельных и распределенных вычислений
В.Л. Авербух, О.Г. Анненкова, М.О. Бахтерев, Д.В. Манаков
Параллельные алгоритмы решения структурной обратной задачи магнитометрии на многопроцессорных вычислительных системах <i>Е.Н. Акимова, В.Е. Мисилов, А.Ф. Миниахметова</i>
Распараллеливание на графические процессоры тестов NAS NPB3.3.1 на языке Fortran DVMH В.Ф. Алексахин, В.А. Бахтин, О.Ф. Жукова, А.С. Колганов, В.А. Крюков, Н.В. Поддерюгина, М.Н. Притула, О.А. Савицкая, А.В. Шуберт
СНЕВҮЅНЕV: концепция вычислительной интегрированной среды для сеточных аппроксимаций начально-краевых задач Д.С. Бутюгин, В.П. Ильин
Моделирование развития магниторотационной неустойчивости с использованием параллельного RKDG алгоритма для системы уравнений МГД М.П. Галанин, В.В. Лукин, К.Л. Шаповалов51
Разработка ПО для трехмерного численного моделирования многофазных многокомпонентных течений в атомной энергетике <i>С.В. Дъяченко</i>
Расчет нестационарных аэроупругих колебаний провода ЛЭП с использованием многопроцессорных вычислительных комплексов О.А. Иванова, И.К. Марчевский
Вариант распределенного метода декомпозиции областей В.П. Ильин, Д.В. Перевозкин
Стратегии и тактики «заоблачного» математического моделирования В.П. Ильин
Применение технологий автоадаптации программ для решения CFD задач на структурированных сетках с использованием GPU <i>М.А. Кривов, М.Н. Притула, П.С. Иванов</i>
Моделирование астрофизических процессов с учетом химической кинетики на гибридных суперЭВМ с ускорителями Intel Xeon Phi И.М. Куликов, И.Г. Черных, Б.М. Глинский, А.В. Тутуков
Высокопроизводительные реконфигурируемые вычислительные системы на основе ПЛИС VIRTEX-7 И.И. Левин, А.И. Дордопуло, И.А. Каляев, В.А. Гудков

Ускорение молекулярно–динамического моделирования неполярных молекул при помощи GPU
В.Л. Малышев, Д.Ф. Марьин, Е.Ф. Моисеева, Н.А. Гумеров, И.Ш. Ахатов140
Алгоритм решения задачи связности в условиях наличия неисправных каналов связи для детерминированной маршрутизации, основанной на правиле порядка направлений, в сети с топологией «многомерный тор»
И.А. Пожилов
Инструментальный комплекс метамониторинга распределенных вычислительных сред
И.А. Сидоров, Г.А. Опарин, В.В. Скоров
Математическое моделирование транспорта наносов в прибрежных водных системах на многопроцессорной вычислительной системе
А.И. Сухинов, А.Е. Чистяков, Е.А. Проценко
Реализация параллельных алгоритмов решения модельной задачи
взаимодействия фито- и зоопланктона в Азовском море
А.И. Сулинов, А.Д. Шикитини, И.С. Семенов
Стратегии и эвристики планирования распределенных вычислений на неотчуждаемых ресурсах
В.В. Топорков, А.А. Бобченков, Д.М. Емельянов, А.С. Целищев

Короткие статьи

Моделирование реакционной способности химических реакций на основе
И.В. Ахметов, И.М. Губайдуллин, Р.Р. Сафин
Параллельный алгоритм для трехмерного моделирования
ультрарелятивистских пучков в ускорителях Е.А. Берендеев, М.А. Боронина, В.Д. Корнеев
Моделирование волновых процессов в задачах сейсморазведки на суперкомпьютере «Ломоносов» с использованием GPU <i>А.П. Бурцев, Н.Н. Попова, Е.А. Курин</i>
Исследование газодинамического потока и конструкции в модельной экспериментальной установке Л.Н. Бутымова, В.Я. Модорский
Квантово-химическое моделирование наноструктурированных компонентов низкотемпературных электрохимических топливных элементов <i>В.М. Волохов, Д.А. Варламов, Т.С. Зюбина, А.С. Зюбин, А.В. Волохов,</i> <i>Г.А. Покатович</i>
Метод для согласованного выполнения семейства распределенных асинхронно
взаимосвязанных транзакций И.Г. Данилов

Моделирование экстремального наводнения в дельте Дона на многопроцессорных вычислительных системах В.Н. Дацюк, Л.А. Крукиер, А.Л. Чикин, Л.Г. Чикина
Автоматическое отображение программ на процессор с ПЛИС-ускорителем Д.В. Дубров, С.А. Рошаль, Р.Б. Штейнберг, Б.Я. Штейнберг
Высокопроизводительное моделирование распространения электромагнитного поля на графических процессорах с гибким использованием ресурсов Д.А. Жердев, В.А. Фурсов
Использование распределенных колоночных индексов для выполнения запросов к сверхбольшим базам данных <i>Е.В. Иванова, Л.Б. Соколинский</i>
Применение гибридной вычислительной системы к решению прикладных задач аэрогазодинамики Е.Ю. Карцева, А.О. Лацис, А.В. Панасенко, Ю.П. Смольянов, В.В. Чернов
Высокопроизводительные алгоритмы обращения матриц на GPU <i>H.C. Недожогин, А.С. Сармакеева, С.П. Копысов</i>
Формирование конечно-элементных систем в GPGPU А.К. Новиков, И.М. Кузъмин, Н.С. Недожогин, С.П. Копысов
Моделирование реакционной способности алкенов в реакции гидроалюминирования олефинов триизобутилалюминием А.В. Новичкова, Ю.О. Бобренёва, К.Ф. Коледина, И.М. Губайдуллин
Моделирование карьеров рудных месторождений на высокопроизводительных гибридных вычислительных системах Д.В. Петров, В.М. Михелев
Разработка симулятора облачного ресурсного центра П.Н. Полежаев, А.Л. Коннов, А.Е. Шухман
Численное моделирование смесеобразования и горения в камере кислородно-водородного ракетного двигателя тягой 100Н в процессе проектирования <i>В.Л. Салич</i>
Эффективная детекция лиц на многоядерном процессоре Epiphany A.A. Сухинов, Г.Б. Остроброд
Параллельная CUDA-реализация алгоритма сопоставления стереоизображений В.А. Фурсов, Е.В. Гошин, А.П. Котов
Моделирование на высокопроизводительных вычислительных системах процессов распространения многокомпонентных примесей в водоеме <i>И.Н. Шабас</i>

Формальная модель задания в распределенных вычислительных средах	
А.В. Шамакина, Л.Б. Соколинский	343
Автоматизация блочного размещения данных в оперативной памяти	
компилятором языка Си	
М.В. Юрушкин	355

Плакаты

Развитие программных средств научной визуализации В.Л. Авербух, П.А. Васёв, М.О. Бахтерев, Я.Д. Кузнецов
Априорная оценка характеристик параллельных приложений при планировании задач на кластерной системе <i>P.A. Ахметшин, А.В. Юлдашев</i>
Разработка высокопроизводительного линейного решателя для задачи гидродинамического моделирования нефтегазовых месторождений И.И. Газизов, А.В. Юлдашев
Моделирования взаимодействия концевого вихря с ударными волнами с использованием гибридных вычислительных систем <i>А.А. Давыдов</i>
Проблемы при объединении вычислительных ресурсов с использованием грид-технологий О.В. Дацюк, В.Н. Дацюк
Использование параллельных технологий в задаче анализа изображений коррозионной поверхности М.Р. Еникеев, И.М. Губайдуллин, М.А. Малеева
Компьютерное предсказание спектра биологической активности N,S-содержащих насыщенных гетероциклов с использованием технологии параллельных технологий Л.В. Еникеева, Н.Ф. Мурзашева, И.М. Губайдуллин
Параллельная реализация моделирования геомеханических параметров бурения О.Ю. Забейворота, О.И. Валиева, И.М. Губайдуллин, Р.А. Мулюков
Опыт проведения суперкомпьютерных Школ с международным участием В.Е. Карпов, К.А. Конъков, А.И. Лобанов
СуперЭВМ в составе программно-технического комплекса «Виртуальный энергоблок АЭС с ВВЭР» <i>Т.Н. Корохов, О.Б. Кректунов</i>
Фрактальный поиск в базе данных с применением модели распределенных вычислений
Т.Ю. Лымарь, Т.С. Мантрова 369

Моделирование взаимодействующих нейронов в системе Ходжкина – Хаксли <i>А.В. Милованов</i>
Математическое моделирование скоростной неравномерности потока газа за пористой преградой <i>К.И. Михайленко, В.С. Кулешов</i>
Разработка параллельного алгоритма поиска похожих подпоследовательностей временного ряда для сопроцессора Intel Xeon Phi <i>А.В. Мовчан, М.Л. Цымблер</i>
Анализ эффективности параллельности расчетов взаимодействия «ротор-статор» В.Я. Модорский, А.В. Козлова, П.В. Писарев, А.М. Сипатов
Исследование кинетики химической реакции на основе метода анализа чувствительности Л.Ф. Нурисламова, И.М. Губайдуллин, Н.М. Байназарова
Численное моделирование и оценка влияния конструктивных параметров на колебательные процессы в двухступенчатых центробежных насосах на кластере ПНИПУ П.В. Писарев, В.Я. Модорский
Технология совместного использования свободной СУБД PostgreSQL и сопроцессоров Intel Xeon Phi для решения задач интеллектуального анализа данных <i>Т.В. Речкалов</i>
Параллелизация решения систем уравнений как инструмент в схеме разделения секрета <i>Р.Т. Файзуллин, Д.А. Волков</i>
Параллельная реализация алгоритма нахождения объёма полиэдрических молекул А.Ф. Хузин, И.М. Губайдуллин, Д.Ш. Сабиров, А.Д. Закирова
Математическое моделирование и оптимизация транспортных потоков миллионного города Уфа с использованием технологии параллельного программирования <i>А.Ф. Шайхнурова, Г.Р. Карамутдинова, И.И. Бакиров, И.М. Губайдуллин</i>
Web-ориентированный автоматический распараллеливатель программ Б.Я. Штейнберг, А.Н. Аллазов, Е.В. Алымова, А.П. Баглий, С.А. Гуда, Д.В. Дубров, Е.Н. Кравченко, Р.И. Морылев, А.С. Рошаль, М.В. Юрушкин, Р.Б. Штейнберг
Алгоритм репрезентативного сэмплинга для параллельных систем баз данных Д.Д. Янцен, М.Л. Цымблер

Квантово-химическое моделирование наноструктурированных компонентов низкотемпературных электрохимических топливных элементов

В.М. Волохов¹, Д.А. Варламов^{1,2}, Т.С. Зюбина¹, А.С. Зюбин¹, А.В. Волохов¹, Г.А. Покатович¹

Институт проблем химической физики РАН 1, Институт экспериментальной минералогии РАН 2

На суперкомпьютерах СКЦ МГУ «Ломоносов» и «Чебышёв» проведено компьютерное моделирование основных компонентов низкотемпературных электрохимических топливных элементов нового поколения: композитных наноструктурированных электрокатализаторов на основе нанокластеров благородных металлов, проводящих подложек в виде полупроводниковых оксидов олова и титана, и протонопроводящих мембран на основе органических сульфокислот.

1. Введение

Электрохимические топливные элементы (ЭТЭ) предназначены для «прямого» превращения химической энергии окислительных реакций топлива в электричество без использования малоэффективных и требующих высоких температур процессов горения. Коэффициент преобразования химической энергии в электрическую в них может достигать 75-80% и более. Кроме того, использование топливных элементов в перспективе позволит во многом решить две основные проблемы цивилизации в отношении энергетики: (а) поиски новых источников энергии различного масштаба с областью применения от автономных электростанций и экологически чистого авиа- и автотранспорта до компактных переносимых долговременных источников тока для устройств типа ноутбуков и мобильных телефонов; (б) ухудшение экологической ситуации, связанное с развитием классических видов электроэнергетики (устранение разных типов загрязнения: выбросы двигателей внутреннего сгорания, продукты сжигания топлива на теплоэлектростанциях, радиоактивные отходы ядерных реакторов, отходы классических гальванических источников тока, затопление местности при работе гидроэлектростанций). В связи с этим исследования по созданию и усовершенствованию низкотемпературных электрохимических топливных элементов и схожих по функциональности устройств приобрели большую актуальность за последнее десятилетие.

В ЭТЭ химическая энергия, образующаяся в результате электрохимической реакции топлива с окислителем, напрямую преобразуется в воду, электричество и тепло. Топливом являются обычно водород и жидкие топлива на основе низкомолекулярных спиртов (метанол, этанол и т.п.). Последние особенно привлекательны, поскольку относятся к легко возобновляемым источникам энергии, а также в связи с их низкой стоимостью, химической активностью и высокой удельной энергией на единицу массы и объема. Жидкие топлива существенно более удобны для хранения и транспортировки, чем водород, однако, менее энергоэффективны. Носителем же заряда в обоих случаях является ион водорода (протон).

Экспериментальные исследования влияния различных факторов на отдельные свойства композитных систем – основных компонентов ЭТЭ весьма сложны, дороги и в большинстве случаев не дают однозначного ответа на причины изменений изучаемых характеристик. Существенную помощь в определении влияния отдельных факторов на различные свойства изучаемой системы способно дать квантово-химическое моделирование на современном уровне, которое позволяет получить новые теоретические данные о строении и свойствах наноструктурированных катализаторов и ионопроводящих материалов и впоследствии разрабатывать новые

^{*} Работа выполнена при поддержке Министерства образования и науки Российской Федерации (соглашение № 8026 от 10.07.2012).

высокоэффективные материалы для различных электрохимических устройств. Ранее подобное моделирование ограничивалось катастрофической недостаточностью вычислительных ресурсов, поскольку даже в упрощенном виде время расчета поведения небольших кластеров атомов определялось месяцами, и только в последнее время подобное моделирование стало целесообразным с использованием как суперкомпьютерных установок (многотерафлопсной и даже петафлопсной мощности), так и грид-полигонов, объединяющих большое количество высокопроизводительных ресурсов.

2. Моделирование компонентов ЭТЭ и процессов в них

Очень схематично схема ЭТЭ может быть описана следующим образом: водородно-(спиртово)-кислородный топливный элемент содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод, где каждый электрод обычно представляет собой пластину (матрицу) с нанесенным нанокатализатором на основе платины или сплава платиноидов. Процессы, происходящие в топливном элементе, можно условно разбить на 3 области: анод, катод и мембрана. Основные механизмы подобных процессов и были смоделированы на СК «Ломоносов» и «Чебышёв».

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Протоны транспортируются через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекула кислорода диссоциирует и соединяется с пришедшими протонами и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости) плюс также отдает электроны (рис.1). Однако, реальные электрохимические процессы, конечно, существенно сложнее и с трудом поддаются стандартным средствам моделирования. Поиски путей создания новых каталитических и ионопроводящих материалов, а также усовершенствование существующих является весьма актуальной задачей.

Рис.1. Схема низкотемпературного электрохимического топливного элемента с наноструктурированными каталитическими электродами и твердой полимерной мембраной.

Для компьютерного моделирования процессов в ЭТЭ использованы квантово-химические методы расчета. Вычисления проводились в рамках метода функционала плотности с учетом градиентной коррекции (DFT/PBE) и периодических граничных условий. Для выполнения модельных расчетов на поверхности кристалла и в мембране в качестве основного инструмента применяется программный комплекс VASP (https://www.vasp.at [1]) с использованием базиса проектированных плоских волн РАШ с соответствующим псевдопотенциалом. Пакет обеспечивает хорошую точность описания структурных и энергетических характеристик систем, включающих до нескольких сотен атомов. Для моделирования строения и свойств металлических частиц наиболее удачными являются функционалы, настроенные на передачу поведения обменно-корреляционного потенциала электронного газа. Одним из таких функционалов является РВЕ, который для диэлектриков и полупроводников работает примерно с той же точностью, что и B3LYP, а для металлов дает существенно меньшие погрешности. Он и был использован в данной работе. При моделировании был использован базис «hard» проектированных присоединенных волн (projector-augmented wave, PAW), в котором используются псевдопотенциалы с включением проекционных операторов на остовные состояния, что имитирует ортогональность валентных состояний к остовным. Этот подход эквивалентен по точности расчетам с использованием линеаризованных присоединенных плоских волн с полноэлектронным потенциалом (full-potential linearized augmented-planewave (FLAPW) method). Причины, по которым был выбран функционал РВЕ, следующие: сравнительные расчеты с использованием наиболее точных функционалов B3LYP и PBE, показывают, что по сравнению с экспериментом погрешности в расчете энергии атомизации полупроводников и диэлектриков для них совпадают, однако для металлов с использованием РВЕ отклонения от эксперимента не превышают 5-15%, а для B3LYP они в некоторых случаях могут достигать 45%, поэтому для металлов PBE предпочтительнее

Предел по энергии (E_c), определяющий полноту базисного набора, выбирается равным 400 эВ. Волновая функция представлялась в виде смеси компонент разной мультиплетности, вклады которых определялись по минимуму полной энергии. Для размножения в пространстве использовались для носителя 4–8-слойная повторяющаяся ячейка из 100–300 атомов (SnO₂)₄₈– (SnO₂)₉₆ и для мембраны – повторяющаяся ячейка из 257 атомов ({[H₂C₆(SO₃H)(CH₃)₃](H₂O)₂}₈). Такой подход обеспечивает точность расчета равновесных расстояний – 0.01-0.02 Å, относительные энергии – 0.05-0.10 эВ, сдвиги спектров РФС – 0.1-0.3 эВ. В таком приближении для рассматриваемых систем параметры кристаллов и равновесные расстояния могут быть получены с точностью 1–3% по отношению к экспериментальным значениям. Исключение составляют водородные связи, которые и в расчете, и в эксперименте имеют достаточно большой разброс значений, из-за чего относительная ошибка в описании возрастает до 4-12%. Значения равновесных расстояний и параметры решетки диоксида олова и платины совпадали с экспериментальными значениями в пределах 0.6-1.4%. Теплота сублимации описывается с точностью 6.6%, энергия адсорбции водорода и кислорода – с точностью 0-13%.

В кристалле SnO₂ рассчитанное расстояние между слоями составило 1.62 Å, что в пределах 0.03 Å близко к экспериментальному значению (1.59 Å). Рассчитанное и экспериментальное значения параметра «а» элементарной ячейки также очень близки и равны 4.77 и 4.74 Å соответственно.

Ниже рассмотрим отдельные элементы ЭТЭ, смоделированные с использованием мощностей ВЦ ИПХФ РАН, затем – суперкомпьютерных установок НИВЦ МГУ «Ломоносов» и «Чебышёв»

2.1 Диссоциация водорода на катализаторах анода

Наиболее активными в окислении водорода и небольших органических молекул общепризнанно являются катализаторы на основе платины, находящейся в высокодисперсном состоянии (наночастицы). Для стабилизации катализаторов в нанокристаллическом состоянии используют носители с высокой площадью поверхности. Наиболее часто применяют углеродные материалы, обладающие развитой поверхностью и высокой электронной проводимостью. Однако они недостаточно стабильны в окислительных условиях, а присутствие платины ещё более ускоряет коррозионные процессы. Ранее было установлено, что композитные системы на основе нанокластеров платины и полупроводниковых оксидов, таких как диоксиды олова и титана, являются весьма перспективными катализаторами для низкотемпературных топливных элементов. К их преимуществам относится то, что они не окисляются в процессе работы и более устойчивы к отравлению монооксидом углерода по сравнению с катализаторами на углеродных носителях, что является принципиальным преимуществом для создания топливных элементов на водороде и спиртах.

В работах [2-4] было детально описано квантово-химическое моделирование взаимодействия молекулярных водорода и кислорода с поверхностями кристаллов и кластеров платины разного размера как изолированных, так и нанесенных на поверхность диоксида олова SnO₂. Было показано, что молекула водорода присоединяется к поверхностям кристалла и изолированным частицам платины, строение которых аналогично структуре фрагментов кристалла, без барьера с выделением энергии ~1.0-1.7 эВ, при этом происходит диссоциация молекулы H₂. Вслед за диссоциацией начинается миграция образованного протона по поверхности платины по направлению к носителю с барьерами 0.1-0.2 эВ. Сползание атомарного водорода с кластера платины («спилловер»-эффект) освобождает место для следующих актов адсорбции молекулярного водорода и его диссоциации. Таким образом, становится возможным многоактное использование кластеров платины для формирования обособленных атомов водорода.

При использовании малых кластеров Pt, отличающихся по строению от фрагментов кристаллической решетки металлической платины, подобное взаимодействие не всегда приводит к диссоциации H₂. Для моделирования процессов с участием больших кристаллоподобных наноструктур платины был взят кластер Pt₂₉, структура которого очень близка к кристаллической. Следует отметить, что строение комплексов платины с водородом меняется при изменении размера. Для малых кластеров (типа Pt₆) наиболее выгодно присоединение атомов H к вершинам, для средних кластеров (типа Pt₁₉) – к ребрам, с формированием одинарных связей Pt-H), для крупных кластеров (типа Pt₅₅ и Pt₇₉) – к граням с формированием мостиков Pt-H-Pt, что характерно для поверхностей кристалла платины. Атомы водорода могут мигрировать по поверхности изолированного кластера платины с барьерами ~0.2–0.4 эВ. Поскольку кинетическая энергия захваченных атомов заметно выше величин барьеров на пути их миграции, следует ожидать, что атомы H не останутся вблизи соответствующего центра, а будут распределяться по поверхности наночастицы.

Компьютерное моделирование процессов адсорбции, диссоциации и миграции водорода в системе водород — платина — диоксид олова показало, что не происходит принципиальных изменений в характере взаимодействия водород – платина при переходе от свободной наночастицы платины к нанесенной на поверхность SnO₂. Однако миграция атомов водорода по поверхности наночастицы платины приводит к понижению барьеров и энергии системы по мере приближения H к поверхности носителя SnO₂, что существенно повышает эффективность каталитического процесса.

На аноде безбарьерная адсорбция (и диссоциация) молекулярного водорода на поверхность кластера платины, нанесенного на поверхность SnO_2 , приводит к переходу атомарного водорода на поверхность носителя – диоксида олова. Энергия адсорбции H₂ на ребро верхней поверхности кластера Pt₁₉ равна 1.6 эВ. С малыми барьерами – 0.1-0.2 эВ, атомы водорода мигрируют к носителю по ребру боковой поверхности кластера платины, освобождая место для следующего акта диссоциации. Энергия, которая выделяется при перемещении атомов водорода с верхней поверхности кластера Pt₁₉ на поверхность SnO₂, равна 1.4 эВ.

Комплекс VASP позволяет проведение расчетов кристаллических структур с учетом трансляционной симметрии, поэтому для моделирования процессов на поверхности использовались толстые «пласты» носителя. Расстояния между пластами выбраны так, чтобы взаимодействие между находящимися в соседних пластах частицами являлось слабым и не оказывало заметного влияния на результат. В расчетах производилась полная оптимизация координат всех атомов. Поверхность кристалла SnO₂ (110) моделировалась «пластами», состоящими из 4 слоев, каждый слой строился из размноженных в плоскости 16 структурных единиц SnO₂, пласты расположены с шагом 24 Å. Такой расчет обеспечивает расстояние между верхним слоем кластера платины и нижним слоем носителя ~10 Å, что приводит к отсутствию заметного взаимодействия между слоями и позволяет расположить на поверхности кластер платины. Таким образом, для исследуемой поверхности в качестве элемента, периодически

размножаемого в двух направлениях, был взят 192-атомный кластер (SnO₂)₆₄ (4 слоя по 48 атомов в слое, рис.2).

Рис.2. Расчетная модель кластера платины Pt_{19} , нанесенного на поверхность диоксида олова $(SnO_2)_{64}$, периодически пространственно размноженного в двух направлениях.

Было установлено, что атомам водорода энергетически выгоднее (на 1.6 эВ) находиться вблизи кластера Pt на носителе, чем на самом кристалле платины. В результате движения атома водорода по боковой поверхности кластера платины образуется изомер, в котором атомы водорода находятся на поверхности носителя SnO₂. Таким образом, водород «уходит» с поверхности нанокластера и освобождает ее для следующего акта диссоциации молекулярного водорода. Также, при анализе результатов моделирования было установлено, что для наиболее стабильных типов поверхности диоксида олова переход от стехиометрической формы к восстановленной приводит к значительному (до 50%) увеличению энергии взаимодействия кластера металла с поверхностью. Можно ожидать, что осаждение наночастиц платины на восстановленные поверхности диоксида олова с последующим их окислением до стехиометрического состава способно увеличить стабильность и эффективность композитной каталитической системы Pt-SnO₂.

2.2 Перемещение протона через полимерную мембрану

С анода протон посредством протонопроводящей мембраны переносится в область, близкую к кластеру платины на катоде, где образует с адсорбированной на кластер молекулой кислорода молекулу воды. Расчеты показали, что для образования OH^- фрагмента энергетически наиболее выгодный способ – это «эстафетный» механизм движения протона по протонопроводящим каналам на поверхности мембраны [5]. При наличии канала проводимости протон с поверхности SnO₂ переходит к ближайшей молекуле воды, которая отдает свой протон соседней молекуле воды и, по цепочке, последняя молекула воды, приобретая протон у предпоследней молекулы воды, отдает свой протон кислороду на кластере платины для образования OH^- фрагмента. Рассчитанная реакция «эстафетной» миграции протона с образованием молекулы воды экзотермична на 0.3 эВ на первом шаге (образование OH^-), эндотермична на 0.3 эВ на втором шаге (образование H₂O). Этот процесс проходит с барьерами ≤ 0.5 эВ (при расстояниях O-O=2.5-2.9Å), зависящими от расстояний между атомами кислорода молекул воды, образующих протонопроводящие каналы.

Таким образом, можно сказать, что на аноде адсорбция водорода на поверхность кластера платины, нанесенной на поверхность SnO_2 , приводит к переходу атомарного водорода на поверхность носителя, откуда он посредством мембраны по эстафетному механизму через протонопроводящие мостики из молекул воды переводится на катод на поверхность кластера платины и образует с адсорбированной на нем молекулой кислорода молекулу воды. Описанный процесс экзотермичен на 4.64 эВ и проходит с барьерами, определяемыми возможностями

мембраны образовывать протон проводящие каналы. В случае, если мембрана обеспечивает расстояния между протонопроводящими атомами кислорода, близкие к 2.5-2.9 Å, барьеры проводимости по эстафетному механизму составляют 0.1-0.5 эВ (рис.2,3). Пример расчета мембран на основе гидрата каликс[4]арен-*пара*-сульфокислоты•8H₂O приведен на рис.3.

Рис.3. Изменение относительной энергии (в эВ) и схема миграции протона по поверхности мембраны. Темно-серыми кружками отмечены атомы кислорода, входящие в состав сверхстехиометрической поверхностной воды, серыми – возможные положения атома водорода при миграции. Цифрами и толстой черной линей отмечены траектория движения и минимально-энергетический путь иона H₃O⁺ в процессе миграции по поверхности.

2.3 Окисление водорода на катализаторах катода

На катоде молекула кислорода безбарьерно адсорбируется на ребро боковой поверхности кластера Pt_{19} , образуя различные изомеры перекисного типа с энергией 1.2-1.7 эВ. Диссоциация молекулы кислорода на поверхности комплексного катализатора Pt_{19}/SnO_2 – энергетически выгодный (на 0.10 эВ) процесс, проходящий с барьером 0.49 эВ. Эта диссоциация отвечает переходу от пероксидного (*p*) изомера к изомеру (*m*) с однокоординированными атомами кислорода. Барьер диссоциации молекулы кислорода на ребре кластера Pt_{19}/SnO_2 снижается при приближении к поверхности носителя SnO_2 (001): барьер равен 0.5 эВ на уровне 2 и 3 слоев атомов платины от поверхности носителя и 0.3 эВ на уровне 1 и 2 слоя атомов платины. Барьер перехода от изомера с однокоординированным (m) атомом кислорода к изомеру с двухкоординированным (b) атомом кислорода находится в интервале 0.1-0.5 эВ и тем меньше его величина, чем ближе атом кислорода к поверхности SnO_2 [6].

Образование OH- фрагмента на поверхности диоксида олова из молекулы O_2 с участием кластера $Pt_{19}/SnO_2/H_2$ – энергетически выгодный процесс с выделением энергии 3.29 эВ. Однако атому кислорода энергетически выгодно оставаться связанным с атомом платины вплоть до образования воды или OH- фрагмента.

Отметим, что образование в результате эстафетного механизма связи Pt-H намного (1.4 эВ) менее выгодно, чем образование связи OH⁻, поэтому все приходящие протоны будут взаимодействовать на поверхности кластера с кислородом, а не с платиной.

Аналогичный процесс эстафетного переноса (но с большим барьером активации) можно наблюдать и для пероксидного изомера. Основное отличие наблюдается в области, где в при-

сутствии H_3O^+ (с дополнительным барьером 0.24 эВ) происходит разрыв перекисной структуры О-О и образование ОН⁻ фрагмента и однокоординированного атома кислорода.

Ввиду эндотермичности на последнем шаге реакции, образовавшуюся молекулу воды следует отводить от кластера. В противном случае, возможно зацикливание процесса на катодном кластере платины: распад воды на два ОН⁻ фрагмента при взаимодействии с атомарным кислородом и обратный процесс образования молекулы воды из двух рядом стоящих ОН⁻ фрагментов с малыми энергетическими затратами (0.2-0.3 эВ). В целом, процесс присоединения молекулы кислорода к кластеру $Pt_{19}/SnO_2/H_2$ и отрыв образовавшейся в результате взаимодействия одной молекулы воды ($Pt_{19}/SnO_2/H_2 + O_2 \rightarrow Pt_{19}/SnO_2/O + H_2O$) энергетически выгоден на 1.6 эВ.

2.4 Эффективность использования ППП VASP в параллельных средах

Коротко охарактеризуем эффективность использования вычислительных ресурсов в процессе квантово-химического моделирования изученных структур. На установках «Ломоносов» и «Чебышёв» при проведении расчетов были использованы различные пулы процессоров, от 8 до 64 СРU (с различным количеством ядер), с обязательным наличием локальных дисков, при этом достаточное эффективное ускорение пакета VASP наблюдалось до 32 СРИ. Дальнейший рост эффективности распараллеливания задачи лимитируется (и даже снижается) скоростью обмена данными между узлами, что особенно заметно для СК «Ломоносов» ввиду значительного роста объема пересылаемых данных. При увеличении количества затребуемых СРИ свыше 48 общее время расчетов к тому же существенно увеличивается, поскольку определяется в большей мере скоростью постановки задачи в очереди. Таким образом, увеличение количества СРU сверх 48 лишено смысла (по крайней мере, для данного типа задач). При обычном приоритете задачи выгоднее дробить ее на стадии, позволяющие использовать максимум до 64 процессоров, с последующим продолжением расчетов путем запуска задач с использованием результатов предыдущих расчетов. Среднее эффективное время расчета 10-шагового перемещения протона на кластере Pt₂₉ для 32 ядер составляло около 5,5 часов при потребности увеличения числа шагов до 100-150. Детальные временные характеристики расчетов с использованием ППП VASP на различном числе процессоров (от 8 до 64) для одной из типизированных задач приведены в Таблице 1, а графическое представление эффекта ускорения задачи — на рис.4. Отметим, что задачи на установках «Чебышёв» и «Ломоносов» хотя и были во многом схожи по содержанию, но значительно различаются по вычислительной сложности. Задачи, решаемые на суперкомпьютере «Ломоносов» не могут быть перенесены в полном масштабе на СК "Чебышёв» из-за весьма значительного прироста времени расчетов и необходимости в больших объемах требуемой RAM на узел. Кроме того, задачи на СК «Ломоносов» просчитаны с использованием версии ППП VASP, оптимизированной для работы с GPU ускорителями Nvidia Tesla.

«Чебышёв»		«Ломоносов»	
Число СРИ	Total CPU time (sec)	Число СРИ	Total CPU time (sec)
16	30124.279	16	1642.455
24	25189.660	24	1482.387
32	19488.160	32	1160.043
40	17468.000	40	429.589
48	17255.580	48	413.821
64	17092.039	64	406.180

Таблица 1. Оценка производительности выполнения задачи с использованием ППП VASP в зависимости от числа СРU на различных СК установках НИВЦ МГУ [7]

Рис.4. Графическое представление роста эффективности расчетов на различном количестве СРU на СК «Чебышёв» и «Ломоносов».

В заключение можно сказать, что детальное компьютерное моделирование элементарных процессов на микроуровне молекулярного механизма электрокатализа и транспортных процессов в полимерных электрохимических топливных элементах ведет к улучшению контроля над химическими реакциями внутри топливных элементов. Подобное моделирование делает возможным конструирование наиболее оптимальных катализаторов и мембран как с точки зрения эффективности процессов, так и со стороны ценообразования и экологичности.

Литература

- 1. Vienna Ab initio Simulation Package –URL: https://www.vasp.at
- В.М. Волохов, Т.С. Зюбина, Д.А. Варламов, Г.А. Покатович, А.В. Волохов, А.В. Пивушков Моделирование каталитических процессов в источниках тока на протонной проводимости на суперкомпьютерах «Ломоносов» и «Чебышёв» // «Научный сервис в сети Интернет: все грани параллелизма», Труды Международной суперкомпьютерной конференции (23-28 сентября 2013 г., г. Новороссийск). – М.: Изд-во МГУ, 2013, с.185-187
- 3. А.С. Зюбин, Т.С. Зюбина, Ю.А. Добровольский, В.М. Волохов Поведение молекулярного водорода на поверхности кристаллической платины: квантово-химическое моделирование // Журн. неорг. химии, 2012, 57, № 11, с. 1552–1561
- 4. Т.С. Зюбина, А.С. Зюбин, Ю.А. Добровольский, В.М. Волохов, З.Г. Бажанова Квантовохимическое моделирование «спилловер»-эффекта водорода в системе H/Pt/SnO₂// Журн. неорг. химии, 2011, 56, № 11, с.1848-1857
- 5. A.Z. Weber, J. Newman Modeling Transport in Polymer-Electrolyte Fuel Cells // Chem. Rev., 2004, 104, 4679-4726
- 6. А.С. Зюбин, Т.С. Зюбина, Ю.А. Добровольский, В.М. Волохов Взаимодействие кислорода с поверхностью платины: квантово-химическое моделирование // Журн. неорг. химии, 2012, 57, № 8, с. 1165–1175
- 7. Вл.В. Воеводин, С.А. Жуматий, С.И. Соболев, А.С. Антонов, П.А. Брызгалов, Д.А. Никитенко, К.С. Стефанов, Вад.В. Воеводин Практика суперкомпьютера "Ломоносов" // Открытые системы, 2012, № 7, с.36-39