Making Earth's continental crust from serpentinite and basalt

A.Y. BORISOVA^{1,2*}, N.R. ZAGRTDENOV¹,
M.J. TOPLIS³, W.A BOHRSON⁴, A. NEDELEC¹,
O.G. SAFONOV^{2,5}, G.S. POKROVSKI¹,
G. CEULENEER¹, O.E. MELNIK², A.Y. BYCHKOV²,
A.A. GURENKO⁶, S. SHCHEKA⁷, A. TEREHIN⁵,
V. M. POLUKEEV⁵, D.A. VARLAMOV⁵, S. GOUY¹
AND P. DE PARSEVAL¹

¹ GET, Univ. de Toulouse, Toulouse, France (*correspondence: anastassia.borisova@get.omp.eu, nail.zagrtdenov@get.omp.eu)

² Geological Department, MSU, Moscow, Russia

³ IRAP, Univ. de Toulouse, Toulouse, France

⁴ CWU, Ellensburg, WA, USA

⁵ IEM, Chernogolovka, Moscow region, Russia

⁶ CRPG, Vandœuvre-lès-Nancy, France

⁷ BGI, Univ. of Bayreuth, Bayreuth, Germany

How the Earth's continental crust was formed in the Hadean eon is a subject of considerable debates [1-4]. For example, shallow hydrous peridotites [2,5], in particular the Hadean Earth's serpentinites [6], are potentially important ingredients in the creation of the continental ptoto-crust, but the mechanisms of this formation remain elusive.

In this work, experiments to explore serpentinite-basalt interaction under conditions of the Hadean Earth were conducted. Kinetic runs lasting 0.5 to 48 hours at 0.2 to 1.0 GPa and 1250 to 1300°C reveal dehydration of serpentinite and release of a Si-Al-Na-K-rich aqueous fluid. For the first time, generation of heterogeneous hydrous silicic melts (56 to 67 wt% SiO₂) in response to the fluid-assisted fertilisation and the subsequent partial melting of the dehydrated serpentinite has been discovered. The melts produced at 0.2 GPa have compositions similar to those of the bulk continental crust [2,3]. These new findings imply that the Earth's sialic proto-crust may be generated via fluid-assisted melting of serpentinized peridotite at shallow depths (≤7 km) that do not require plate subduction during the Hadean eon. Shallow serpentinite dehydration and melting may be the principal physico-chemical processes affecting the earliest lithosphere.

[1] Harrison (2009) Annu. Rev. Earth Planet. Sci. 37, 479-505.
[2] Rudnick (1995) Nature, 378, 571-578.
[3] McDonough & Sun (1995) Chem. Geol., 120, 223-253.
[4] Hawkesworth & Kemp (2006) Nature 443, 811-817.
[5] Hirschmann et al. (1998) GCA 62, 883 – 902.
[6] Albarede & Blichert-Toft (2007) C.R. Geoscience 339, 917 – 927.