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Abstract. Hereby the diagram of a flat statically determinate regular lattice truss with the parallel
chords is proposed. The task is to obtain an analytical dependence of the truss deflection and forces in the
most tension and compressed bars on the number of panels. In order to solve the problem, the Maple
computing mathematical system is used. We have considered the case when the lower truss chord is
subject to a uniform load. The forces are determined by the Method of Joint. The Maxwell-Mohr formula is
used to determine the deflection. The solution obtained for a set of cases with different successively
increasing numbers of panels is generalized to a random number of panels by method of induction. The
special operators of the Maple system are used to prepare homogeneous linear recurrence relations that
are satisfied with the sequences of coefficients in the required formula. It is shown that for the number of
panels in the half-span that are divisible to three, the determinant of the equilibrium equation system is
becoming zero. The truss is becoming kinematically changeable that is confirmed by the corresponding
diagram of possible joint velocity. The algorithm for the truss installation diagram is described, where the
cross bars are in different planes and are connected in the nodes so that the truss elements are not
subjected to buckling. The solution of this problem is related to the correct edge coloring of graphs and
hypergraphs.

AHHoTaumuA. lNpeanaraetcsa cxema MNMOCKOM CTaTUYECKU OMNpPeaAerniMMONn perynsipHon GanoyHom
depmbl ¢ NapannensHbiMy nosicamy. CTaBuTcs 3agada nonyydeHust aHanmTuy4eckom 3aBMcMMocTu npornba
depmMbl 1 ycunui B Hambonee pacTaHYTbIX U CKaTbIX CTEPXKHAX OT Yucrna naHenen. [inga pewweHns 3agaydm
npuBnekaeTcs cuctema KoOMnblTEepHOW MaTtemaTukm Maple. PaccmoTpeH criyyarh paBHOMEPHOro
3arpyXeHus y3roB HWXKHEro nosica gpepmbl. Ycunusi onpegensiTcs MeTogoM Bbipe3aHus yanos. [Ans
HaxoxaeHus npornba ucnonb3yetca opmyna Makcesenna - Mopa. PelweHune, nonyyeHHoe ans cepum
3agay c pasHbIM MocriefoBaTenibHO BO3pacTaloLLmMM YUCioM naHernen, o6obuiaeTca MeTOA0M MHOYKLNUK
Ha Mpou3BOfibHOE 4MCno naHenen. Vcnonb3ywTca cneumanbHble onepaTopbl cuctembl Maple ans
COCTaBIEHUS  OAHOPOAHbLIX JIMHEWHbIX PEKYPPEHTHbIX YpPaBHEHUW, KOTOPbIM  YAOBMETBOPSAIOT
nocnegoBaTenbHOCTU KO3(PULUMEHTOB B UCKOMOW ¢popmyne. lMokasaHo, 4TO And yucen naHenewm B
MONOBMHE NPOSETa, KpaTHbIX TPEM, ONpeAenUTeNb CUCTEMbI YPaBHEHUI paBHOBECUS obpallaeTcs B HOMb.
depma CTaHOBUTCH KMHEMAaTUYECKU M3MEHSIEMOW, YTO NOATBEPXOAeTCA COOTBETCTBYIOLLEN CXeMOu
BO3MOXHbIX CKOPOCTEN y3roB. OnucaH anroputM COCTaBMNEHNS] MOHTaXXHOW CcxeMbl hepMbl, NpU KOTOPOW
nepecekalroLmnecs CTEepXHU nexaTr B pasHbIX MIOCKOCTSAX M COeQUHAITCA B y3nax Tak, YTO SMneMeHThl
depmMbl He nopBeprawoTca M3rMby. PelueHne 3ToM 3agayn CBA3LIBAETCHA C MpaBUNbHOW pebepHon
packpackou rpacoB u runeprpacdos.

1. Introduction

The lattice trusses are widely used in civil engineering and mechanical engineering. Well-developed
numerical algorithms, mainly based on the finite element method, make it possible to easily and accurately
calculate a sufficiently wide range of such structures. Development of the modern computing mathematical
systems offers new opportunities for solving the problems of the frame structures that is obtaining of
accurate solutions. The value of such solutions is determined by the degree of versatility of the design
formulas. In particular, it is quite easy to find an analytical expression for the deflection or force in any truss
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bar, depending on the truss dimensions and the load, if a specific number of panels is provided. For this
purpose, it is sufficient to solve the system of equilibrium equations and all the design equations in symbolic
form. It is much more difficult to obtain the dependence of the solution on the number of panels or bars that
make up the structure. In [1-3], the induction method is applied in the similar case that substantially extend
the scope of application of the final formulas. The resulting symbolic estimates of deflection, support
reactions and forces in the bars are free from errors naturally accumulated by the numerical methods,
especially when a large number of panels is taken into account. The inductive method can be used for the
trusses that have the regularity property [4, 5]. The same method is used in the present paper for the
statically determinate truss (Figure 1). During the research process, a case of kinematic degeneration of
the truss has been found and an algorithm for designing the installation diagram has been proposed. The
formulas for calculating the deflection of building structures are of practical importance for the design
engineers when developing the new diagrams and improving the standard diagrams of frame structures.
Earlier deflection values in analytical form using the induction method in the Maple system were found in
flat trusses [2,3, 6-9] and in spatial ones [1,10-14].

2. Methods

2.1. The truss diagram and the equations to find the forces

The truss diagram shows pin-connected bars. The bars are assumed to be elastic with the same
elasticity modulus, the cross-sections of the rods are assumed to be the same. The truss containing n
number of panels in the half-span has 4n + 6 pin connections and m = 8n + 12 bars, including three support
bars. The truss is statically determinate.
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Figure 1. Truss.n =5

The uniform load is applied to the nodes of the lower chord. The Method of Joint is used for
determination of forces in the bars with the support of a program compiled in the Maple system [1]. The
truss bars and nodes are numbered (Figure 2), the coordinates of the joints and the graph for connection
of the bars (edges) and nodes (apex) are provided.
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Figure 2. Truss. Numbering of nodes and bars,n =2

The graph of the lattice is represented by conditional vectors Ni, i =1,...,m containing the numbers

of pin connections at their ends. For example, both chords and side structures are coded with the following
vectors:

N, =[i,i+1],i=1..2n,
N.,,, =[i+2n+Li+2n+2],i=1..,2n+4,
N,o.s =[L2n+2],N,,.c =[2n+1,4n+6].

The matrix of nodes equilibrium equations system G with the dimensions mxm consists of the
directional cosines of the bars, when projected onto the coordinate axis. The odd matrix rows are projected
onto the x-axis, even rows onto the y-axis.
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The directional cosines are calculated using the bars lengths and their vector projections onto the

coordinate axes:
_ 2 2 _ _ P
=l +1p;7, b= XNy, =N l,; = YN, TN, i=1..,m.

In the number Ni,j , the first index i is the bar number, the second one is the number of the vector

component N_i , that takes the value 1 (the beginning of the bar vector) or 2 (the end of the bar). The matrix
of the directional cosines G has the following elements:

Gk,i :_Ij,illi' k:2Ni,2_2+j’ kgm, j:1,2, i:l’._.,m’
G =lji/li, k=2N;;-2+j, k<m, j=12 i=1..m.

The forces in the truss bars are determined based on the solution of the system of linear equations
G S =B, where S is the vector of unknown forces in the bars, B is the vector of external loads.

During calculation of the forces it has been found that the diagram under examination has a hidden
and sufficiently dangerous defect. It turns out that for the trusses with a number of panels divisible by three,
the determinant of the equation system matrix is becoming equal to zero. With such n values the truss it
turned into the instantly changeable mechanism. To confirm this fact, we have obtained the scheme of
possible joint velocities for N = 3 (Figure3). It is obvious that the bars 2-8 and 6-18 are rotating around the
supports, the rods 12-13, 13-14, 2-3 and 5-6 are rotating around the rigid pin connections. The bars 8-12
and 14-18 make a plane movement. Having considered the rotational motion of the bars 2-8 and 6-18, we

obtain that the joint velocities are related to each other: @=Vv/(2a)=u/(2h). The same relation is
resulted from the analysis of the plane motion of the bars 8-12 and 14-18 around the instantaneous velocity
centers My and M, .

Figure 3. Diagram of possible joint velocities of variable truss at n = 3

In order to reveal the regularity of the coefficient formation in the desired formulas for deflection and
forces in the typical rods, it is necessary to exclude from the solution sequence the trusses with the number

of panels, such as N = 3i, i =1,2,3, .... To meet these requirements, a sequence with common term is taken
n=(6k—3—(-1)%)/4, k=12,3,... (1)
The elements of this sequence take all natural values except for those divisible by three.

2.2. Deflection

In order to determine the deflection of the central joint of the lower chord (the vertical hinge
displacement with the number n + 1) we use the Maxwell-Mohr formula
-3
A= mz ﬂ
~ EF '

where §;, S; — the forces in the | truss bar from the applied distributed load and from the single vertical

force in the central node of the lower chord with the number N + 1, respectively. Summation is carried out
over all deformable rods of the truss. Three support rods are assumed to be rigid and are not included into
this sum.
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The successive solution of truss deflection equation when K, indicating the number of panels in the
half-span, is variable gives every time the same equation regardless of K value

A=P(Aa®+C,c+H,h®)/(EFh?),

where ¢ =+a?+h? . The coefficient values depend on the value of k that determines the number of panels
n in the half-span by formula (1). In order to find the common term A< of the coefficient sequence at as,

the recurrence equation of the eleventh order, (K > 2), was found using the rgf_findrecur operator of the
genfunc package of rational generating functions of the Maple system.

A=A +3A,3A 3 -2A +2A g —2A +2A 1 +3A 5 —3A Ao+ AL-
Solution of this equation using the rsolve operator provides the general term of the sequence
A, = (30k*—20(cos 2¢+3)k* +6(5c0s 29— 29)k? + 4(51—67 cos 2¢)k —
—144cosp+129cos2¢p—144sinp+79)/64,
where @ =7k /2 is given. Similarly, on the basis of the solution of homogeneous equations of the seventh
order
C=C+C,-C+C,-Cs-Cs+C s,
He=Ho-Ho+H+H, -H s +H s -H
we can obtain other coefficients of the deflection formula:
C, =(-30k? +6(5—-9c0s2¢)k + 27 cos 2¢p—12cos p—12sin ¢+ 33) /16,
H, =(2(5-3sinp—3cosp)k —12cosp+18sinp—-39cos2¢p—5)/ 4.
2.3. Forces in the critical bars

Simultaneously with derivation of the formula for deflection, it is possible to obtain the form of forces
in the most compressed and tension bars, depending on the number of panels. These formulas are required
to evaluate the structure stiffness and the stability of its bars. The sequences of analyzed solutions, which
operator rgf_findrecur uses to determine regularity, turns out to be shorter, and the recurrence relations
are simpler. Having assumed that the most compressed bar under such a load is located in the middle part

of the upper chord (the rod with the number 3n + 2, Figure 2), we obtain the following expression:
San0 =—P(a/ h)(6k? +2(6c0sp—2sin ¢ —c0os 20— 3)k + €052 —4sin p+8cosp+7) /16 .

Similarly, the most tension bar appears to have the value of n in the middle of the lower chord. The
force is also determined by the induction method

S,, = P(a/h)(6k? + 2(2sin ¢ —6c0s ¢ —cos 2 —3)k +C0s 2+ 4sin p —8cos p—17) /16.

For comparison, we also obtain formulas for the forces in the bars adjacent to the assumed critical
bars:

S, 1 = P(a/h)(6k? —2(2sin p+2cosp+cos2p+3)k +cos 2¢p+12sin p—8cosp—17) /16,

Sgnq =—P(al h)(6k? + 2(2cos -+ 2sin ¢ —c0s 2¢ —3)k +0s2¢—12sin ¢ +8cosp+7) /16,
and force in the vertical stand in the middle of the span:

Sgn.9 = P(3sinp—2cosgp—k(cosp+sing))/2.

2.4. Installation diagram

When assembling a structure, it is necessary to ensure that elements are connected is such a way
that the bars are placed in parallel to avoid buckling due to the arrangement of the ends in different planes
[15-16]. In discrete mathematics (theory of graph coloring) there is the problem of the graph edge coloring
when the graph edges correspond to the natural numbers (colors) so that edges of different colors are
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incident to one graph vertex (truss joint) [17-19]. In the case of the truss assembly, colors imply the
conditional plane level in which the rod is mounted.

In order to solve the installation case, it is possible to apply the special operator
EdgeChromaticNumber from the GraphTheory package of the Maple system. However, such a solution
is suitable only in the cases where the graph of the truss lattice is flat, that is, it does not contain
intersectional braces, as in the truss under examination. In order to avoid buckling, cross bars must be in
different planes. The following algorithm for the installation diagram is proposed. Information about the rods
(graph edges) is provided to the algorithm input in the form of a list of edges with the end numbers. For the
truss with

N = 3 ( Figure2), if is the following list R ={R;,Ry,Rs3, {1,2}, {2,3}, {3.,4}, {4,5}, {1.6}, {6, 7}, {7.8}, {8,9},
{9,10}, {10,112}, {11,12},{12,13}, {13,14}, {14,5 }}. Three separate sets of intersectional rods are determined:
ascending edges (upward-directed edges) R; ={6,10}, {111}, {2,12}, {3,13}, {4,14}, descending edges
(downward-directed edges) R, ={2,6}, {3,7}, {4,8}, {59}, {10,14} and a separate vertical middle rod
RS ={3,10} crossing the bars of both first sets. All these edges are placed at the beginning of the general

list R. The task of the algorithm is to place the edges in the individual sets (levels) U;, i=1.., Ny so that

there are no two edges having the same end numbers in every set. Initially, the sets are empty except for
the three sets, in which the sets with the pre-reserved places are included U; =R;, i=123.. The

remaining elements of the list are placed in the sets U;, based on the condition that the numbers of the
edge ends are not repeated on one level. This is done in the cycles by the list elements R;, i=4,..., Nk and

levels Uj, i =1,...,nU . The result of the algorithm operation in relation to the truss N = 3 ( Figure2) is as
follows:

U, ={{L 11}, {2, 12}, {3, 13}, {4, 14}, {6, 10}, {7, 8}},
U, ={{2 6}, {3 7}, {4, 8}, {5 9}, {10, 14}, {11, 12}}
Us ={{1 2}, {3 10}, {4, 5}, {6, 7}, {8, 9}, {12, 13}},
U, ={{L 6}, {2, 3}, {9, 10}, {13, 14}},
Us ={{3 4}, {5 14}, {10, 11}}.
Indeed, there are no two identical joints numbers on each level Uj, i=1...,5. The index of the

obtained partition is equal to five (Figure4). It can be noted that this number is similar to the graph chromatic
index, where the edge intersection is not restricted, and only the incidence of one vertex of edges with the
same color is not allowed (the rods of the same level in this paper).

Figure 4. Installation diagram, five levels

Therefore, it is found that in some joints between the bars of different levels there are the gaps in
height, requiring additional washers with a thickness equal to the thickness of the bar. It is obvious that the
effectiveness of the proposed automatic way to design the installation diagram increases simultaneously
with the number of panels, where it is almost impossible to assign the order of the joint assembly manually.

The proposed installation diagram is not the only one. In practice, the short bar elements are not
always used in the trusses. For example, the lower chord at n = 2 can consist of one bar. In this case, the
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truss is relevant to the hypergraph that differs from the usual one by the several available vertices near one
edge [20, 21]. The algorithm remains the same with the slight difference that the list of vertices of some
edges includes more than two numbers:

R={R,,R,,R;,{1,2,3,4,5},{1,6,7}, {7,8,9 }, {9,10,11}, {11,12,13}, {13,14,5}} .
Four sets of bars of the same level are formed at the program output (Figure 5):
Ul = {{1, 11}, {2, 12}, {3, 13}, {4, 14}, {6, 10}, {7, 8, 9}},

U, = {2, 6}, {3, 7}, {4, 8}, {5, 9}, {10, 14}, {11, 12, 13}},
Uz = {3, 10}, {1, 6, 7}, {5, 13, 14}},
Uy ={{9, 10, 11}, {1, 2, 3, 4, 5}}.

Figure 5. Installation diagram 2, four levels. Hypergraph of truss

3. Results and Discussion

Let us consider some concrete examples, from which the nature of the solution obtained and its
features will be clearer.

The curves of the obtained dependence for the non-dimensional deflection A'=AEF /(P;L) ata
given span length L = 4na = 100m and a fixed total load P, =P(2n—1) are plotted in Figure 6. The sharp

jumps in the deflection value are typical, especially when a number of panels is small. Moreover, for k = 4

(or for N = 5, that is the same), the node under the load even rises. It means that it is impossible to evaluate
the deflection of such structure based on displacement of only one middle node. The adjacent nodes can
move in different directions. It is confirmed by the distribution of vertical displacements of the nodes in the
lower truss chord at N = 5 (Figure 7).

. - kin)

T T T T
45 6(8) 8(1D) 10014 12(17) 14200

Figure 6. Displacement as a function of number of panels

The formulas for deflections Aj of joints j = 1,2,... 11 with due regard to the symmetry have the
following form:
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179



NH:keHepHO-CTPOUTENbHBIN KypHa, Ne 5, 2018

A, =A,, = P(57¢® +83a’ + 22h%) / (EFh?),
A, =A, =—2P(12¢° +3a° —4h%) / (EFh?),
A, = Ay = P(69¢® +129a% + 22h%) / (EFh2),
As =A, =2P(9c® +38a%) / (EFh?),

A, = P(a® —33c®~10h%) / (EFh?).

Figure 7. Displacements of the nodes in the lower truss chord. L=4na=100m, n=5,

With the increase in the truss height and the value of n, the jump rate is decreased. The greatest
differences in the values of deflections take place in the middle of the span.

The curves for the non-dimensional values S'j =S; /P in Figure 8 show that alternation of the

numbers of dangerous bars is possible, depending on the number of panels. Thus, if at K =5 and k = 6,
the bar with the value of n in the middle of the span is the most tension rod, then at K = 7 the greatest

positive force acts on the adjacent bar N — 1. Similarly, the compressed rods in the middle of the upper
chord are alternating and are calculated based on the condition of stability loss according to the Euler's
formula.

Figure 8. Non-dimensional values of forces in bars

A review of works on the application of the induction method and the computer mathematics system
to problems of derivation of exact relations in flat statically determinate trusses is given in [22—24].

4. Conclusions

The obtained formulas for calculation of the deflection and forces in the critical bars when the number
of panels are random make it possible to find the values actual for practice in a quite simple way, and what
is more important — accuracy, devoid of errors accumulated with a large or very large number of panels
and typical for numerical models. A special role here is also played by the induction method. It would seem
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that if it is necessary to obtain an exact analytical formula with geometric dimensions of the truss as the
parameters, then it is simply enough to transfer the calculation program into a symbolic form, and the result
is to be ready. However, this is not the case. The peculiarity of symbolic transformations does not allow
this to happen even with a very small number of panels (40-50). The period of time for analytical
transformations is much longer than for the numerical ones, and, most importantly, the frequently obtained
formulas turn out to be unrealistically cumbersome and unsuitable for practice. In addition, the case of
kinematic structural variability, revealed in the above example, can not be noticed in calculations (unless
the determinant is followed) due to the rounding errors. The problem, solved in this paper, is related to the
practice of using the lattice trusses. The truss installation with four panels in the span (Figures 4, 5) is given
only as an illustration of the algorithm operation. Such a diagram could be worked out only by listing the
possible options without the help of computer methods and concepts of discrete mathematics. However,
for the trusses with a large number of panels, the application of the algorithm for automatically preparation
of the installation diagram is becoming relevant. All the algorithms considered in this paper can be used in
other regular frame structures.

Outside the study of the proposed design, there remained such an important question as the stability
of the truss and its elements. The analytical expressions found for the effort make it possible to simply
study this question. Regardless of this, the stability of the truss as an element of a spatial construction
consisting of individual trusses with horizontal links should also be investigated. Moreover, additional
constraints can distort the stress state of a plane model, for which analytical dependencies are obtained.
The cases of the found kinematic variability will be valid for the truss and as part of the spatial construction,
and the found formulas for the deflection will be an approximate estimate.
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