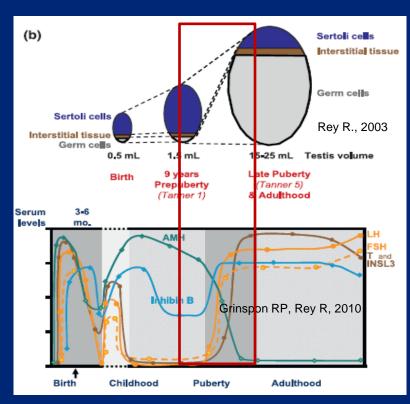


PERIPUBERTAL SERUM DIOXINS AND SUBSEQUENT ADULT SEMEN QUALITY AND SPERM METHYLOME IN THE PROSPECTIVE RUSSIAN CHILDREN'S STUDY

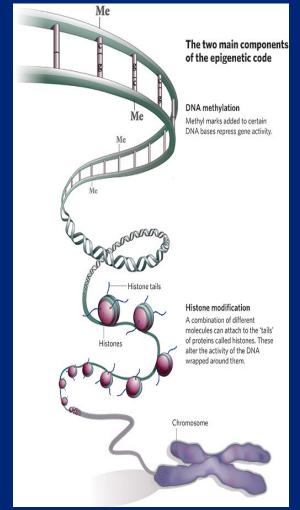
Oleg Sergeyev, MD, PhD A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Russia Chapaevsk Medical Association, Russia


29 June 2018

I have nothing to disclosure

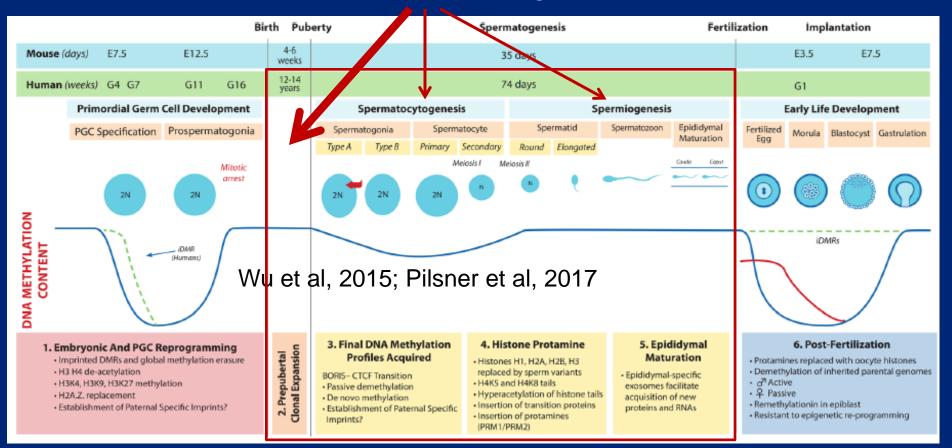
Peripuberty – vulnerable period

- Peripubertal period:
 - 1-2 years prior pubertal onset
 - Activation of HPG axis
 - Proliferation of Sertoli cells and spermatogonia
- Spermatogenesis:
 - Hormone dependent
 - Spermarche occurs 1-2 yrs after pubertal onset (13-15 years)
 - Duration appox 60-74 days
- Puberty period of dramatic changes
- Vulnerable to endocrine disrupting chemicals (EDCs)



Epigenetics

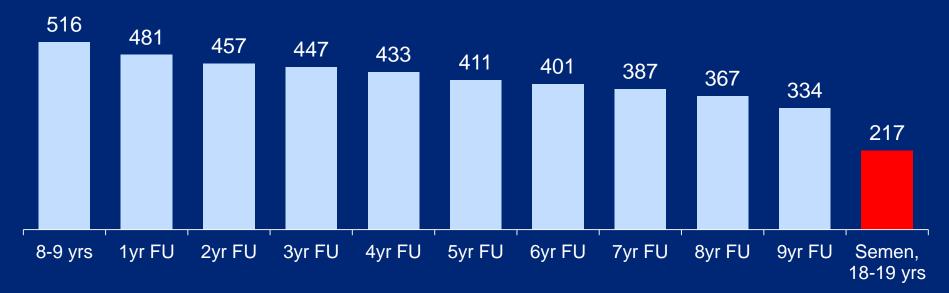
- Definition
 - Changes in gene expression without change in DNA sequence
- Epigenetic marks
 - DNA methylation
 - Addition of methyl groups to the cytosine in CpG dinucleotides
 - Histone modifications
 - non-coding RNAs
- Impact chromatin packaging and thus accessibility of transcription factors to promoters and enhancers
- Cell specificity
- A mediator of the genome to bring upon phenotype



Qui, J; Nature 441; 2006

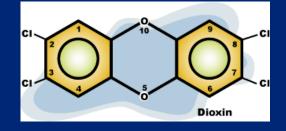
Sperm epigenome

Specific windows of sperm development and epigenome


- Early development (in utero)
- Peripubertal period (7-16 years) \rightarrow spermatogenesis
- Sensitive to endocrine disrupting chemicals (800+ chem)

Longitudinal Male Cohort Study in Chapaevsk, Russia

Samara region

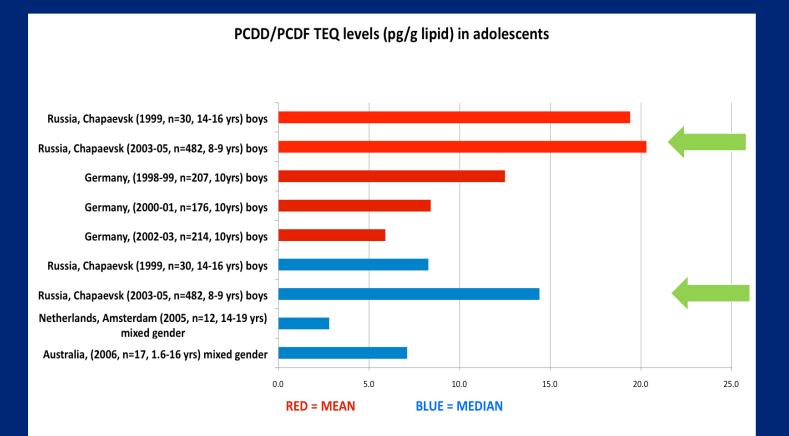

- Longitudinal male cohort study with annual assessment of growth, puberty and semen quality
- Conducted in Chapaevsk, small industrial city, Samara region, central Russia, population 72,000
- Russian Children's Study started at 2003
- 8-9 yrs Chapaevsk boys born in 1994, 96, 97 90% of all eligible
- 516 subjects; 4700+ exams; 20000+ sample aliquots, semen 42%

Why focus on dioxins?

Dioxins - Persistent Organic Pollutant (POPs)

- Still distributed widely in the environment with long-range transport
 - Everyone has background exposure level
- Toxic and lipophilic, TCDD is a most toxic congener
- Unwanted by-products of chemical industry, combustion (incineration)
- Environmentally and biologically persistent
 - Half-life in children is 7-10 years
- Bioaccumulation/biomagnification

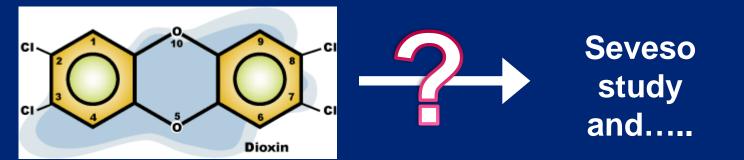
Dioxins - Endocrine Disrupting Chemicals

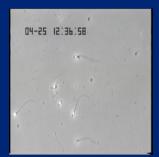

- Interfere in:
 - Secretion, direct action on hormone receptor and function
- Low-dose effect, pg/g doses comparable with estradiol and free testosterone level in male (pg/ml)
- Can act through aryl hydrocarbon receptor (AhR) –"dioxin" receptor

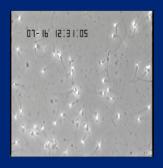
Peripubertal Dioxins Level, RCS

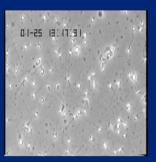
- Boy's serum at 8-9 yrs analyzed for
 - TCDD -6/10 Dioxins/Furans

- 41 PCB congeners

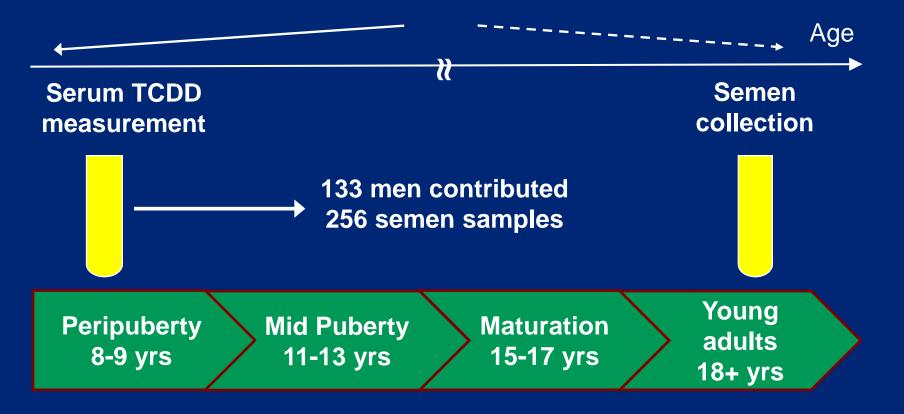

• Wide range of dioxins level in cohort




Dioxins and pubertal outcomes in RCS

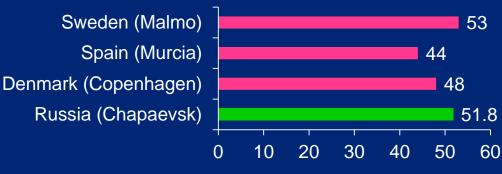

- Later pubertal onset (Korrick et al. 2011, Burns et al, 2016)
- Later sexual maturity (Burns et al. 2016)
- Later growth and development (Burns et al. 2011)

Dioxins and semen quality



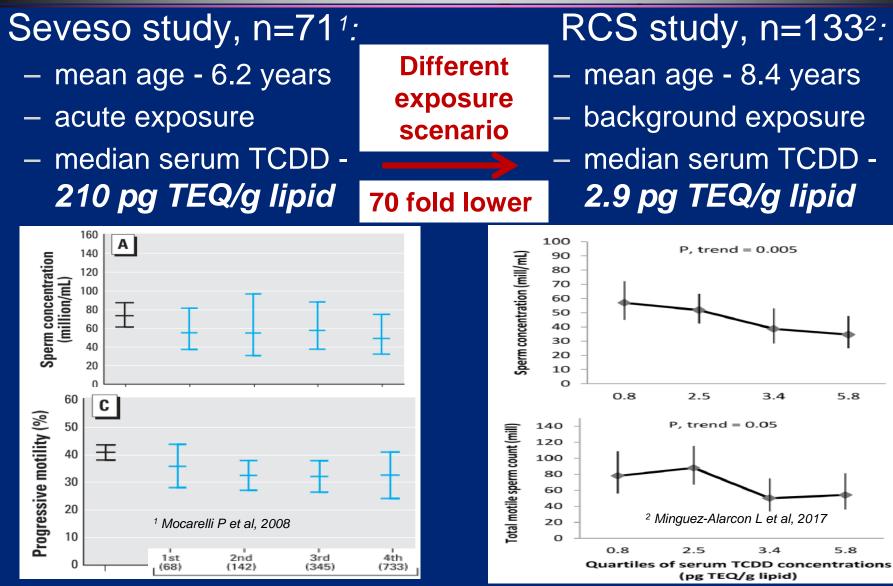
Objective

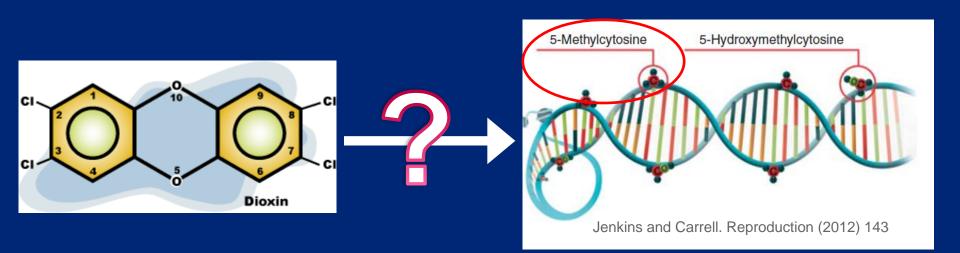
 To investigate the relationship between peripubertal serum dioxin (TCDD, most toxic) levels and semen quality


Yearly physical examinations and sample collection

Semen parameters among young adults

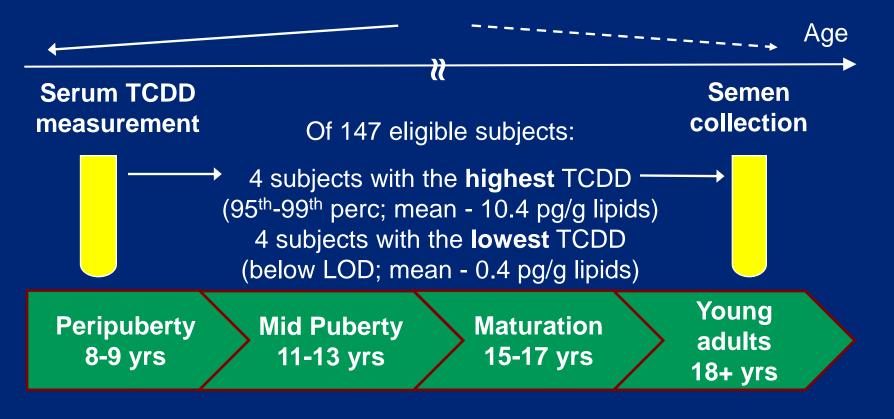
Parameter	Russia (Chapaevsk)	Denmark (Copenhagen) ¹	Spain (Murcia) ²	Sweden (Malmo) ³
Period of sampling	2012-2015	2006-2010	2011-2012	2008-2010
Number of subject	133	4867	215	112
Age (years)	18.3	19	20.4	18.3
Semen volume (ml)	2.4	3.3	3	2.6
Sperm concentration (million/ml)	51.8	48	44	53
Total sperm count (million)	127	151	121	140
Motility (%)	64	68	57.2	-


Median sperm concentration (million/ml)


In general, young Russian men have slightly better semen parameters than young Spanish men² and comparable with Danish¹ and Swedish³ men

¹ Jorgensen et al, 2012
 ² Mendiola et al, 2013
 ³ Axelsson et al, 2015

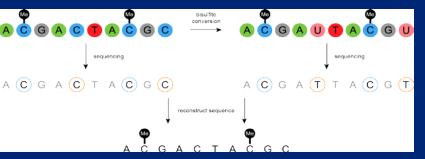
Peripubertal Dioxins and Semen Quality

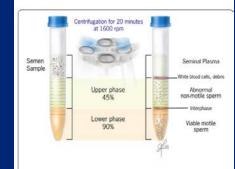

Dioxins and sperm methylome

Objective for epigenetics part

 To examine the relationship between peripubertal dioxin (TCDD, most toxic) levels and genome-wide profiles of DNA methylation in sperm collected in young adulthood

Yearly physical examinations and sample collection




Methods

- Thawed 2nd sperm samples without cryoprotectant
- Sperm gradient separation
 - "Isolate" (Irvine Scientific) 90 and 50% density
- DNA isolation from sperms (Wu et al. 2015) with modifications
- Whole Genome Bisulfite Sequencing

- Library preparations (100-150 ng) TruSeq DNA Methyl Kit, Illumina
- HiSeq 2500 (Illumina)
 - 216 mill reads per sample
- All CpGs average coverage ~ 3x
 - Only CpGs with ≥10 coverage included (ENCODE, 2011)

Malvezzi et al. Reproductive Biology and Endocrinology 20

http://www.rbei.com/content/12/1/12

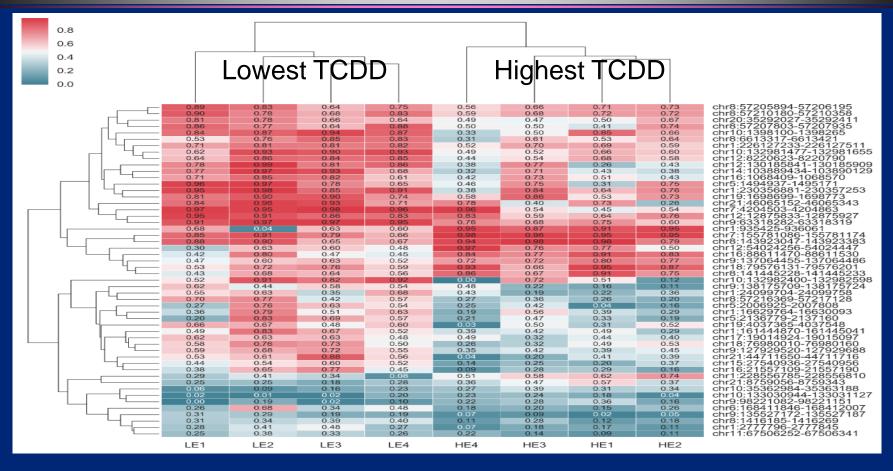
Figure 2 Schematics of sperm preparation by density gradient separation.

Pilsner et al, 2018

Lowest vs Highest TCDD groups

Characteristic [mean (range)]	Lowest TCDD, n=4	Highest TCDD, n=4			
Age (years)	18.8 (18.1-19.3)	18.7 (18.1-19.1)			
BMI (kg/m²)	22.1 (19.4-23.6)	21.0 (18.7-23.6)			
Smoking status	0 (0)	0 (0)			
Total daily dietary intake, kcal	2828 (2059–3539)	3353 (2716–4011)			
Mean testicular volume (ml)	24.4 (20-28.8)	23.1 (17.5-28.8)			
Semen volume (ml)	3.9 (0.8-9.2)	5.0 (1.5-7.9)			
Motility, a+b+c (%)	59.3 (48-66)	65.3 (64-68)			
Sperm concentration (ml/mill)	89.8 (53-115.6)	49.3 (13.9-82.3)			
Total motile sperms (mill)	170.1 (34.2-251.8)	105.0 (68.5-144.3)			
Specific parameters of WGBS					
Bisulfite conversion efficiency (%)	98.8	98.8			
Total unique reads	116 750 000	98 750 000			
Alignment, %	60.5	67.5			

Lowest (LE) vs Highest (HE) TCDD groups

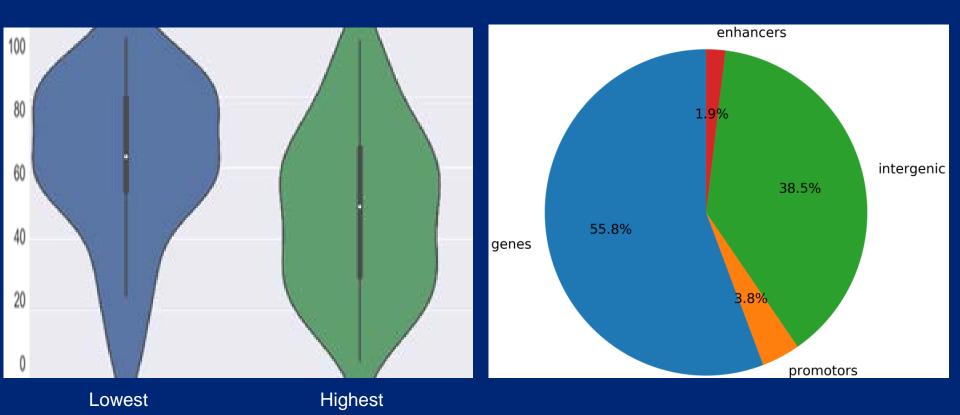

- The mean methylation across all CpG sites lower in the HE group compared to LE (49 ± 5% and 62 ± 5%; p = 0.01)
- Criteria for Differentially Methylated CpGs:
 - ≥ 10x coverage depth; ≥ 10% methylation change; q value < 0.05</p>

- 666 individual CpGs differentially methylated
- Restriction to regions with \geq 3 CpGs per cluster:

52 differentially methylated regions (DMRs)

Pilsner et al, 2018

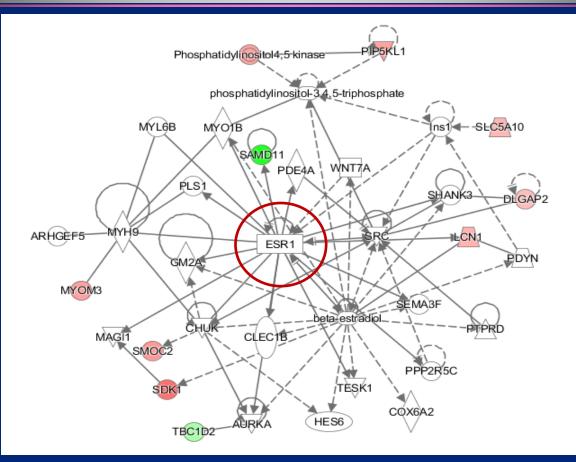
WGBS – 52 DMRs in two groups



Clustering and heatmap of the 52 significant DMRs

High percent methylation is shown in red while low percent methylation is in blue
75% of the DMRs were hypomethylated in HE compared to LE

Pilsner et al, 2018


WGBS – 52 DMRs in two groups

Across 52 DMRs:

- The mean methylation lower in the HE group compared to LE 49.1 and 63.2
- The majority of sperm DMRs were located in gene bodies (56%) and intergenic regions (38%)

ESR1 – key regulator

- Integrity Pathway Analysis (IPA; Qiagen)– functional enrichment analysis
- Top scoring networks, "Cellular Assembly and Organization, Cellular Function and Maintenance, Carbohydrate Metabolism" identified estrogen receptor alpha (ESR1) as its central regulator

Pilsner et al, 2018

Strengths and Limitations

- Limitations:
 - Small number of subjects (other factors can affect)
 - Relatively low depth of coverage (average ~ 3x) across the genome and restriction of analyses to regions with ≥ 10x depth of coverage - 13% genome-wide coverage
- Strengths:
 - Longitudinal design of well-established cohort
 - Selected subjects with the lowest and highest peripubertal serum TCDD concentrations in population-based cohort
- Future directions:

Pilsner et al, 2018

- RRBS for whole cohort, n=217 (for n=51 done)
- sncRNA in sperm and leukocytes (n=51) RSF #18-15-00202
- Association of exposure, DNA methylation, sncRNA and semen quality

Key findings and conclusions

- Higher peripubertal serum concentrations of TCDD was associated with lower semen parameters 10 years later at age 18 yrs¹
 sperm concentration; - total sperm count; - total motile sperm count
- WGBS of sperm in young adults was conducted to examine
- associations with serum dioxin concentrations at 8-9 years
- Mean methylation across all CpG sites was lower in those with highest vs lowest TCDD concentrations
- 52 DMRs associated with peripubertal serum TCDD concentration²
- Estrogen receptor α (ESR1) is the central regulator under top scored function
- First human study to show the association of the peripubertal environmental exposures with subsequent semen quality and sperm DNA methylation in humans

¹Mínguez-Alarcón et al, 2017; ² Pilsner et al, 2018

SCHOOL OF PUBLIC HEALTH

Acknowledgements

 Russian Children's Study – design, cohort enrollment and annual follow-up from 2003

US EPA R82943701 NIEHS R01-ES014370

Acknowledgements

Russian Science Foundation (#14-45-00065; #18-15-00202) Vavilove Institute of General Genetics, RAS, Moscow **RS**

E. Rogaev

A. Goltsov

F. Gusev

E. Lukianov T. Andreeva

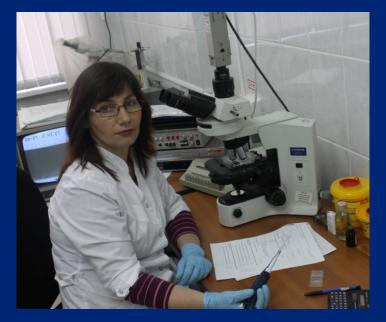
Russian

Science Foundation

A.Manahov

University of Massachusetts, Amherst, USA

A.N. Belozersky Institute Of Physic-Chemical Biology MSU Moscow Institute of Bioengineering, Research Center of Biotechnology, RAS



M.Logacheva V.Shtratnikova A.Shershebnev Y.Medvedeva **R**.Pilsner A.Suvorov

Acknowledgements

Study participants

Staff of Chapaevsk Medical Association (15 people)

Chapaevsk Local Governmnent (Lipchenko Y., Malahov N., Blynsky D., Ashepkov V.) Chapaevsk Central Hospital (Zeilert V., Saraeva N., Kochkarev A.)

Thank you for your attention!

olegsergeyev1@yandex.ru

AUSSIA

Thank you for your hospitality!

USSIA 2018

RESID

