— МИНЕРАЛОГИЯ —

ХИМИЧЕСКИЙ СОСТАВ САМОРОДНОГО ЗОЛОТА В МАГНЕТИТОВЫХ РУДАХ КАГАНСКОГО УЛЬТРАБАЗИТОВОГО МАССИВА (ЮЖНЫЙ УРАЛ)

© 2018 г. В. В. Мурзин, Д. А. Варламов*

В последовательности образования золотомагнетитовых руд Каганского массива, включающей три рудные стадии, выделены пять генераций золота. В 1 стадию при 350–500°С сформированы антигоритовые серпентиниты с повышенным содержанием Au, Ag и Cu. Во 2 стадию образованы жильные магнетитовые руды с золотом I генерации (Au-Ag твердые растворы с пробностью 580–960). В 3 стадию (T от 200–300 до 350–450°С) последовательно отложено золото II–IV генераций, формирующее единые зональные зернистые агрегаты. II генерация золота представлена Au-Ag-Cu твердыми растворами (до 24.2 мас. % Cu, пробность 648–744), а III генерация – кюстеллитом и электрумом (до 2.9 мас. % Cu, пробность 280–514). К золоту IV генерации (1.4–3.8 мас. % Cu, до 1.4 мас. % Hg, пробность 740–853) отнесены его тонкие прожилки в агрегате зерен золота III генерации, к V генерации – каймы высокопробного золота (933–976) гипергенного этапа. Широкие вариации состава золота свидетельствуют об изменчивости флюидного режима в истории формирования руд.

ВВЕДЕНИЕ

Объектом нашего исследования являются золотомагнетитовые руды Каганского массива, локализованного в пределах Вишневогорско-Ильменогорского метаморфического комплекса на Южном Урале. Ультраосновные породы этого комплекса контролируются глубинными разломами и относятся к рифейским рифтогенным офиолитам, претерпевшим высокотемпературный зональный метаморфизм в позднем докембрии [Варлаков, 1995].

В результате метаморфизма гипербазиты, вместе с вмещающими их вулканогенно-осадочными породами, были преобразованы (по мере понижения температуры) в оливин-энстатитовые, тальколивиновые, оливин-антигоритовые и антигоритовые серпентиниты. Золотомагнетитовое оруденение приурочено к наиболее низкотемпературной зоне антигоритового серпентинита.

Массивные и прожилково-вкрапленные магнетитовые руды Каганского массива содержат до 2–3% сульфидов и приурочены к тектонической зоне, протягивающейся вдоль восточного контакта в северной части массива на расстояние до 2 км. Линзы магнетита длиной до 5–6 м и мощностью до 0.2 м располагаются цепочками вдоль тектонической зоны и быстро выклиниваются. По данным пробирного анализа содержание золота в золотомагнетитовых рудах составляет 0.2–1.2 г/т и резко возрастает на участках с видимым золотом. По данным химико-спектрального анализа проб в магнетитовых рудах, кроме золота, установлены элементы платиновой группы, мг/т: Pd – до 770, Pt – до 20, а также Rh, Ir, Os и Ru – до 10–20 [Мурзин, Варламов, 2006].

Данные по минералогии, геохимии и условиям формирования золотомагнетитовых руд приведены в наших ранних статьях [Мурзин, Варламов, 2006, 2008; Мурзин и др., 2007]. Цель данной статьи – проследить эволюцию химического состава частиц самородного золота в рамках схемы стадийности рудообразующего процесса.

ПОСЛЕДОВАТЕЛЬНОСТЬ ФОРМИРОВАНИЯ ЗОЛОТОМАГНЕТИТОВЫХ РУД

В последовательности образования руд мы выделяем следующие этапы: гипогенный, включающий три рудные стадии, и гипергенный. Рудообразующий флюид формируется в процессе зонального регионального метаморфизма, выделенного А.С. Варлаковым [1995]. Гипербазиты и вмещающие их вулканогенно-осадочные породы при метаморфизме превращены в оливин-энстатитовые породы, плагиосланцы и амфиболиты. Согласно изотопным данным вода метаморфогенного рудообразующего флюида имела метеорное происхождение [Мурзин и др., 2007]. Флюид нес такие элементы, как Cu, Ag, Au, Zn, Mn, S, поскольку в результате его перемещения и разгрузки вдоль зоны тектонических деформаций образовались обогащенные этими элементами серпентиниты 1 рудной стадии.

Серпентиниты 1 стадии вмещают золотомагнетитовое оруденение. Они сложены антигоритом и реликтовым петельчатым серпентином с рассеян-

^{*} Институт экспериментальной минералогии РАН, г. Черноголовка

ным тонким магнетитом, а также более крупным магнетитом, замещающим хромшпинелид (содержит 0.4–2.0 мас. % Сг₂О₃). Условия процесса антигоритизации – верхние степени зеленосланцевой фации, отвечающие температуре устойчивости антигорита (350–500°С). По данным ICP-MS анализа серпентиниты 1 стадии содержат до 1 г/т Ад, 650 г/т Си и, по данным химико-спектрального анализа, 0.01 г/т золота. Известно также, что медь в породе преимущественно рассеяна в силикатах (серпентине, реликтовом оливине) [Мурзин, Варламов, 2008].

Во 2 стадию были сформированы жильные и вкрапленные магнетитовые руды. Эти руды образуются в зонах рассланцевания антигоритовых серпентинитов 1 стадии, т. е. имело место проявление межрудных деформаций с появлением свободного трещинного пространства и разгрузки в нем флюида, поступающего из высокотемпературной зоны метаморфизма. Этим флюидом привносилась основная масса железа, необходимого для образования магнетитовых руд. Руды сложены полигонально-зернистыми агрегатами магнетита с рассеянными в нем округлыми и овальными включениями сульфидов (халькопирита, пирротина, талнахита, кубанита, Cu-Co-Ni-содержащего макинавита) размером менее 50 мкм и еще более мелких частиц самородного золота I генерации.

3 стадия рудообразования (завершающая гипогенный этап) – трансформация продуктов 2 стадии при остывании флюида до температур устойчивости хризотила, талька, хлорита (клинохлорпеннина), замещающих антигорит (200–300°С). В эту стадию в межзерновом пространстве агрегатов магнетита отлагаются сульфиды (халькопирит, борнит, пирротин, кобальтпентландит), а также агрегаты самородного золота II–IV генераций, размеры которых достигают 3–5 мм. В пространстве продукты 2 и 3 стадий совмещены.

В гипергенный этап происходит окисление сульфидов меди и железа с образованием агрегатов гидроксидов железа (FeOOH), тенорита (CuO), медно-магнезиального карбоната ("купромагнезита"). С этими минералами ассоциирует самородное золото V генерации.

ХИМИЧЕСКИЙ СОСТАВ САМОРОДНОГО ЗОЛОТА

По взаимоотношениям различных фаз золота нами выделено пять его генераций (рис. 1). Состав золота разных генераций приведен в табл. 1 и на рис. 2. Частицы золота I генерации отложены совместно с основной массой магнетита и сульфидов 2 стадии. Они обнаружены среди скоплений сульфидов, локализованных в каймах замещения магнетитом реликтовых зерен хромшпинелида (см. рис. 1а, б). Химический состав золота I генерации отвечает Au-Ag твердым растворам, содержащим до 1 мас. % Рd и Cu (см. табл. 1). Вариации его пробности весьма значительны (580–960) даже при нахождении частиц золота в пределах единого их скопления (например, на рис. 16).

В 3 стадию в межзерновом пространстве агрегатов магнетита было последовательно отложено золото II, III и IV генераций, формирующее единые зональные зернистые агрегаты размером до нескольких миллиметров. Золото II генерации слагает центральные части таких агрегатов (см. рис. 1д, е) и представлено Au-Ag-Cu-(Hg) твердыми растворами. Для золота этой генерации характерны значительные вариации содержания серебра (2.8–26.7 мас. %) и меди (6.6–24.2 мас. %) при относительно стабильной пробности (648–744) (см. табл. 1).

Золото III генерации слагает основную часть зернистых зональных агрегатов, в том числе вмещает золото II генерации (см. рис. 1д, е). Основная масса анализов золота III генерации отвечает кюстеллиту и электруму, содержащим до 2.9 мас. % Си (пробность 280–514). Зерна его в агрегате иногда отчетливо зональны – центральные части зерен слагаются электрумом (пробность выше 300), а краевые – более низкопробным кюстеллитом (на рис. 1 электрум более светлый, нежели кюстеллит). Меньшее количество анализов золота III генерации, образующие обособленное поле в верхней части диаграммы составов на рис. 2, отвечает относительно высокопробным Au-Ag твердым растворам (пробность 810–890).

Золото IV генерации составляет небольшую долю в общей массе золота. К нему отнесены прожилковидные зонки мощностью не более 5–10 мкм, развивающиеся в межзерновом пространстве зернистого агрегата золота III генерации (см. рис. 1г). По химическому составу золото IV генерации близко к наиболее высокопробным фазам золота III генерации (см. рис. 2). Оно содержит примеси 1.4– 3.8 мас.% Си и до 1.4 мас. % Нg, характеризуясь пробностью 740–853 (см. табл. 1).

Золото V генерации имеет облик, который характерен для гипергенных высокопробных каемок на частицах золота гипогенного происхождения. Среди всех генераций золота оно обладает наиболее высокой пробностью (933–976) и развивается по золоту III генерации. Оно является также составной частью тонкозернистого агрегата гипергенных гидроксидов железа, тенорита, медномагнезиального карбоната, развивающегося вдоль контактов золота с окисленными сульфидами меди (см. рис. 1д, е). По химическому составу оно отвечает Au-Ag твердому раствору, содержащему до 2.2 мас. % Cu (см. табл. 1).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Магнетит является характерным минералом серпентинитов. В виде рассеянной вкрапленности

Рис. 1. Самородное золото разных генераций из магнетитовых руд Каганского массива. Электронно-микроскопические снимки в режиме обратнорассеянных электронов (BSE).

а – включения самородного золота I генерации и сульфидов меди в магнетите (Mag), замещающем хромшпинелид (Chr); б – деталь снимка а; в – зернистые агрегаты золота III генерации; г – тонкие прожилки золота IV генерации в зернистом агрегате золота III генерации; д, е – зональные агрегаты золота II и III генераций, окаймленные золотом V генерации и тонкозернистым агрегатом гипергенных гидроксидов железа, тенорита (Tnr), медно-магнезиального карбоната и самородного золота (Gip). В золоте III генерации присутствует включение борнита (Bn).

№ обр/зерна	Генерация	Au	Ag	Cu	Hg	Pd	Total	Пробность	
888/23		93.99	2.00	1.33	0.00	0.44	97.76	961	
888/24	I	81.58	13.79	0.20	0.00	0.75	96.33	847	
888/25		55.24	40.11	0.12	0.00	0.97	95.44	579	
KAG-3/16		67.51	19.70	13.48	0.26	0.00	100.95	669	
KAG-3/20		74.18	2.82	24.19	0.04	0.00	101.23	733	
KAG-3/31	П	73.81	4.84	20.57	0.00	0.00	99.22	744	
KAG-3/33		73.51	9.10	16.68	0.32	0.00	99.61	738	
KAG-3/35		71.94	8.02	19.41	0.00	0.00	99.37	724	
890b/42		64.86	26.70	6.58	2.00	0.00	100.14	648	
KAG-3/5		65.82	20.36	11.91	0.00	0.00	98.09	671	
890s/1		31.73	67.93	0.08	0.49	0.00	100.23	317	
890s/6		28.22	72.28	0.56	0.00	0.00	101.06	279	
890s/7	ш	43.51	53.86	2.89	0.32	0.00	100.58	433	
KAG-3/27	111	84.66	13.19	1.94	0.00	0.00	99.79	848	
KAG-3/38		51.45	46.82	0.98	0.82	0.00	100.07	514	
890/13		33.35	65.60	1.08	0.00	0.00	100.03	333	
890s/9		78.43	19.88	1.51	1.38	0.00	101.20	775	
890s/4	IV	74.11	22.35	2.31	1.43	0.00	100.20	740	
890/7	1 V	84.88	10.85	3.79	0.00	0.00	99.52	853	
890/14		74.09	24.26	1.38	0.00	0.00	99.73	743	
KAG-3/29		95.60	2.99	0.45	0.00	0.00	99.04	965	
KAG-3/45	V	96.46	0.20	2.21	0.00	0.00	98.87	976	
KAG-3/47		92.24	4.99	1.62	0.00	0.00	98.85	933	

Таблица 1. Типовой химический состав самородного золота различных генераций Каганского месторождения

Примечание. Микроанализ выполнен в ИЭМ РАН на электронном сканирующем микроскопе CamScan MV2300 с энергодисперсионным рентгеновским микроанализатором Link INCA Energy 350. Здесь и в табл. 2 курсивом выделены определения со значениями концентрации элемента ниже 20 (среднеквадратичной ошибки анализа). Пониженная сумма элементов в обр. 888 обусловлена малыми размерами частиц золота и частичным захватом вмещающего магнетита (железо из суммы исключено).

Рис. 2. Состав разных генераций самородного золота Каганского массива на диаграмме Au–Ag–Cu. На диаграмму нанесены изотермы тройного твердого раствора по экспериментальным данным [Двойные и многокомпонентные системы..., 1979].

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

он является продуктом выноса железа из минералов исходных пород в процессе серпентинизации. В то же время проявления сплошных магнетитовых руд в пределах массивов ультраосновных пород описываются достаточно редко, а магнетитовые руды с повышенным содержанием золота являются экзотическими образованиями.

Жилообразные тела халькопиритсодержащих магнетитовых руд мощностью до 30 см, локализованные в хризотиловых серпентинитах, описаны в Халиловском массиве на Южном Урале [Бакиров, 1965]. Здесь они прослеживаются в субмеридиональном направлении на протяжении до 200 м. На контактах тел магнетитовых руд развита зона антигоритового серпентинита мощностью до 2–3 см. Опробование магнетитовых руд на платину и золото дало отрицательные результаты.

Магнетитовые руды в гипербазитах, обогащенные золотом и серебром (несколько десятков миллиграмм на тонну), широко распространены в пределах позднекаледонских массивов Западной Монголии, особенно широко – в серпентинитах Хавцалынгольского массива. Здесь известны жилы массивных магнетитовых руд мощностью до 10 см, сингенетичные процессам серпентинизации. Считается, что золото и серебро привносится серпентинизирующими растворами, заимствующими эти элементы из хромититов или вмещающих вулканогенно-осадочных пород [Агафонов и др., 2005].

Жилоподобные отложения магнетита известны также в мантийном офиолитовом разрезе комплекса Бу-Аззер (Морокко) [Gahlan et al., 2006]. По способу возникновения они сформировались путем заполнения открытого пространства трещин. Магнетит здесь сопровождается главным образом серпентином, магнезитом, клинохлором, тальком и андрадитом. Относительно небольшое обогащение магнетитовых образований золотом (до 8–14 мг/т) связывается с гидротермальным процессом, а высокая подвижность железа была усилена высоким соотношением вода/порода при серпентинизации [Gahlan et al., 2006].

Проведенные нами исследования выявили возможность достижения существенно более высокой концентрации золота в магнетитовых рудах, вплоть до промышленных уровней, а также тесную связь в образования золота с многостадийным периодом образования и трансформации ультраосновных пород, что нашло отражение в присутствии большого количества его генераций.

Экспериментальные исследования показали, что при снижении температуры область смесимости золота, серебра и меди в сплавах резко сужается (см. рис. 2). Положение точек анализов золота II и частично III генераций на диаграмме Au-Ag-Си показывает, что температура отложения золота в магнетитовых рудах, особенно медистого золота II генерации, могла достигать 350-450°C, что соответствует температурному диапазону существования серпентина антигоритового типа. Уменьшение температуры отложения золота ограничивает образование тройных твердых растворов, однако не препятствует образованию бинарных Аи-Ад и Аи-Си фаз широкого диапазона составов. Несколько более низкие температуры были получены путем их оценки по хлоритовому геотермометру, основанному на количестве тетраэдрического алюминия и величине железистости хлорита (табл. 2). Расчет температуры образования хромсодержащего хлорита 2 стадии, развивающегося по хромшпинелиду, показывает, что оно имело место при 225-310°С, а хлорита 3 стадии – при 185–210°С.

Особенностью состава низкотемпературного гипергенного золота V генерации является неполная очистка его от примесных компонентов (серебра и меди), как это обычно бывает в зоне окисления [Мурзин, Малюгин, 1987].

№ обр/зерна	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO*	MnO	MgO	NiO	CuO	Сумма	Al ^{IV}	X(Fe)	T, ℃
888/7	30.55	0.00	13.91	3.77	2.78	0.18	32.49	0.06	0.00	83.74	1.94	0.05	251
888/8	28.45	0.00	20.07	2.59	3.93	0.33	30.90	0.07	0.00	86.34	2.51	0.07	310
888/14	32.48	0.17	13.84	2.95	0.95	0.03	33.80	0.16	0.00	84.38	1.66	0.02	224
888/22	29.27	0.00	14.87	4.65	5.23	0.12	31.60	0.00	0.65	86.39	2.26	0.09	281
1307/11	34.18	0.02	14.00	0.04	3.64	0.00	34.80	0.17	0.06	86.91	1.53	0.06	206
1317/16	33.40	0.00	13.91	0.24	4.62	0.10	33.79	0.07	0.00	86.13	1.59	0.07	212
1317/25	34.57	0.00	12.61	0.06	3.38	0.00	34.52	0.01	0.23	85.38	1.33	0.05	186
1317/29	33.76	0.09	13.99	0.00	4.32	0.00	34.36	0.08	0.00	86.60	1.58	0.07	210
1509/24	30.94	0.04	12.51	1.02	4.40	0.04	30.95	0.25	0.01	85.34	1.56	0.07	213

Таблица 2. Химический состав хлорита в рудах и вмещающих серпентинитах Каганского месторождения

*Измеренное содержание железа в пересчете на FeO.

Примечание. Пробы: 888 – апохромшпинелевый хлорит из магнетитовой руды, 1307 и 1317 – хлорит из сплошной магнетитовой руды, 1509/24 – из вкрапленной руды. Аl^{IV} определен по расчету кристаллохимических формул хлорита на 20 катионов; X(Fe) – железистость хлорита (Fe + Mn)/(Fe + Mn + Mg). Температура рассчитана по хлоритовому геотермометру, основанному на количестве тетраэдрического алюминия и величине железистости [Zang, Fyfe, 1995].

ЗАКЛЮЧЕНИЕ

Описанное нами самородное золото из магнетитовых руд Каганского массива характеризуется широкими вариациями химического состава, свидетельствующими об изменчивости флюидного режима в длительной истории формирования золотосульфидно-магнетитовых руд. Представляется, что состав золота контролируется не только температурой, но также фугитивностью серы и кислорода, pH, соотношениями Au, Ag и Cu в растворе и другими физико-химическими параметрами рудообразующего флюида. Выявление значимости этих параметров можно осуществить путем термодинамического моделирования, которое стало возможным после появления данных о термодинамических свойствах твердых растворов и интерметаллических соединений золота с медью, серебром и ртутью [Palyanova, 2008; Чудненко, Пальянова, 2014; Chudnenko, Palyanova, 2016].

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-05-00407а.

СПИСОК ЛИТЕРАТУРЫ

- Агафонов Л.В., Лхамсурэн Ж., Кужугет С.К., Ойдуп Ч.К. Платиноносность ультрамафит-мафитов Монголии и Тувы. Улан-Батор: Оюуны зууч, 2005. 224 с.
- Бакиров А.Г. О связи с колчеданным оруденением магнетитовых и сульфидных проявлений в гипербазитах Южного Урала // Минералы рудных месторождений и пегматитов Урала. Минералогический сборник № 6. Свердловск: УФАН СССР, 1965. С. 185–192.
- Варлаков А.С. Рифтогенные офиолиты, метаморфизм гипербазитов и строение Вишневогорско-Ильменогорского комплекса. Миасс: ИГЗ, 1995. 66 с.

- Двойные и многокомпонентные системы на основе меди: справочник / сост.: М.Е. Дриц, Н.Р. Бочвар, Л.С. Гузей и др. М.: Наука, 1979. 248 с.
- Мурзин В.В., Варламов Д.А. Благородные металлы в магнетитовых рудах Каганского массива ультраосновных пород на Южном Урале // Ежегодник-2005. Тр. ИГГ УрО РАН Екатеринбург: ИГГ УрО РАН, 2006. С. 379–381.
- Мурзин В.В., Варламов Д.А. Роль серпентинизации, хлоритизации и оталькования при формировании золотомагнетитовых руд в Каганском гипербазитовом массиве (Ю. Урал) // Уральская минералогическая школа-2008. Минералогия ультрабазит-базитовых комплексов. Екатеринбург: ИГГ УрО РАН, 2008. С. 44–49.
- *Мурзин В.В., Варламов Д.А., Шанина С.Н.* Новые данные о золотоантигоритовой формации Урала // Докл. РАН. 2007. Т. 417, № 6. С. 810–813.
- *Мурзин В.В., Малюгин А.А.* Типоморфизм золота зоны гипергенеза (на примере Урала). Свердловск: УНЦ АН СССР, 1987. 96 с.
- Чудненко К.В., Пальянова Г.А. Термодинамические свойства соединений в системе Au–Ag–Cu // Геология и геофизика. 2014. Т. 55, № 3. С. 449–463.
- *Chudnenko K., Palyanova G.* Thermodynamic modeling of native formation Cu–Ag–Au–Hg solid solutions // App. Geochem. 2016. V. 66. P. 88–100.
- Palyanova G. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications // Chem. Geol. 2008. V. 255. P. 399–413.
- Gahlan H.A., Arai S., Ahmed A.H., Ishida Y., Abdel-Aziz Y.M., Rahimi A. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization // African Earth Sci. 2006. V. 46. P. 318–330.
- Zang W., Fyfe W.S. Chloritisation of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil // Miner. Deposita. 1995. V. 30. P. 30–38.