New data on ferriakasakaite-(La) and related minerals extending the compositional field of the epidote supergroup

NIKITA V. CHUKANOV^{1,2,*}, NATALIA V. ZUBKOVA², CHRISTOF SCHÄFER³, DMITRY A. VARLAMOV^{1,4}, VERA N. ERMOLAEVA⁵, YURY S. POLEKHOVSKY⁵, SIMEON JANČEV⁶, IGOR V. PEKOV² and DMITRY YU. PUSHCHAROVSKY²

¹ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region 142432, Russia

*Corresponding author, e-mail: chukanov@icp.ac.ru

² Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia

³ Südwestdeutsche Salzwerke AG, Salzgrund 67, 74076 Heilbronn, Germany

⁴ Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432,

Russia

⁵ Department of Mineral Deposits, Faculty of Geology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia

⁶ Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Ruger Boskovic 16, 1000 Skopje, Republic of Macedonia

Abstract: Detailed studies of ferriakasakaite-(La) including determination of chemical composition and crystal structure, infrared spectroscopy, optical characteristics in reflected light and micro-indentation hardness have been carried out on a non-metamict sample from young nosean-bearing sanidinite from the Laach Lake volcanic complex, Eifel, Germany. The chemical composition is (electron microprobe, Fe²⁺: Fe³⁺ determined from structural data, wt%): CaO 6.74, La₂O₃ 13.35, Ce₂O₃ 10.58, Pr₂O₃ 0.42, Nd₂O₃ 0.49, Sm₂O₃ 0.34, Eu₂O₃ 0.18, Gd₂O₃ 0.20, ThO₂ 0.43, UO₂ 0.10, MgO 0.89, MnO 9.98, Al₂O₃ 11.47, Fe₂O₃ 7.39, FeO 4.04, TiO₂ 1.32, SiO₂ 29.80, H₂O (calc.) 1.49, total 99.22. The empirical formula is $(Ca_{0.68}Mn_{0.32}^{2})_{\Sigma 1.00}(La_{0.49}Ce_{0.39}Pr_{0.02}Nd_{0.02}Sm_{0.01}Eu_{0.01} Gd_{0.01}Th_{0.01}Ca_{0.04})_{\Sigma 1.00}(Fe_{0.52}^{3.5}Fe_{0.04}^{2.4}Al_{0.14}Ti_{0.10}^{4.5})_{\Sigma 1.00}Al_{1.00}(Mn_{0.53}^{2.5}Fe_{0.34}^{2.4}Mg_{0.13})_{\Sigma 1.00}(Si_{2.98}Al_{0.02})_{\Sigma 3.00}O_{12.00}(OH)$. The crystal structure was solved by direct methods and refined to R = 0.018 based on 1259 unique reflections with $I > 2\sigma(I)$. The H atom was located. The mineral is monoclinic, space group $P2_1/m$, a = 8.9054(1), b = 5.7545(1), c = 10.1037(2) Å, $\beta = 114.103(2)^\circ$, V = 472.63(1) Å³. The IR spectrum confirms the presence of OH groups. Reflectance spectra of ferriakasakaite-(La) obtained in the visible range show reflectance minima at the wavelength of ~590 nm. Various epidote-supergroup minerals including ferriakasakaite-(La), allanite-(Ce), Al-dominant (at the *M*1 site) analogue of ferriakasakaite-(Ce), piemontite, piemontite-(Pb), as well as Pb-, Zn- and Cu-bearing varieties of Fe³⁺-dominant (at the *M*1 site) analogues of piemontite and piemontite-(Pb), have been discovered in sulfide-free metasomatic rocks containing oxide/oxysalt compounds of chalcophile elements (Zn, Cu, Sb, and Pb), within the Pelagonian massif, Republic of Macedonia. Crystal chemical

Key-words: epidote supergroup; allanite group; ferriakasakaite-(La); crystal structure; Laach Lake volcanic complex; Germany; Nežilovo; Pelagonian massif; Macedonia.

1. Introduction

Epidote-supergroup minerals rich in rare-earth elements (*REE*) are common accessory components of igneous, metamorphic and metasomatic rocks. Most *REE*-dominant epidote-supergroup minerals belong to the allanite group, which includes 15 species. Allanite-group minerals (or 'allanites' in the following) are monoclinic neso-soro silicates with the general formula $A1A2M1M2M3(Si_2O_7)$ (SiO₄)O(OH) where A1 = Ca, Mn²⁺ (sometimes with minor Na); $A2 = REE^{3+}$ (sometimes with subordinate or minor Ca,

Pb²⁺, Sr, Ba, Th⁴⁺, U⁴⁺); M1,2=A1, Fe³⁺, Mn³⁺, V³⁺ (sometimes with subordinate or minor Cr³⁺, Ti⁴⁺, Sn⁴⁺); $M3 = Fe^{2+}$, Mg, Mn²⁺ (sometimes with subordinate or minor amounts of trivalent cations, such as Fe³⁺ and/or Mn³⁺) (Armbruster *et al.*, 2006; Mills *et al.*, 2009). The M1-3 cations have octahedral coordination. In all known 'allanites' the M2 site is Al-dominant, whereas the sites A1, A2, M1, and M3 show wide compositional variations.

The presumed Mn^{2+} -dominant analogue of ferriallanite-(La) was discovered by us in 2010 in the course of investigations of the new mineral species piemontite-(Pb)