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INTRODUCTION

The classical heat�conduction and diffusion mod�
els based on the Biot–Fourier–Fick law are widely
used to describe non�steady�state thermal and reac�
tion–diffusion processes in chemical engineering:

(1)
where q is the heat flux, T is temperature, λ is the ther�
mal conductivity, and  is the gradient operator. Law
(1) leads to parabolic heat�conduction and diffusion
equations [1–6]:

(2)

where t is time;  is the thermal diffusivity; ρ
is density; cp is the specific heat of a body (medium) at
constant pressure; x, y, and z are Cartesian coordi�
nates; and Δ is the Laplace operator.

Parabolic equation (2) has a physically paradoxical
property, i.e., an infinite disturbance propagation rate,
which is not observed in nature. This leads to the need
to develop heat� and mass�transfer models that result
in a finite rate of heat or mass propagation. The Catta�
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neo–Vernotte model shown below is the most com�
monly used among them [7, 8]:

(3)

where τ is the relaxation time.
Model (3) leads to the following hyperbolic heat�

and mass�transfer equations [7–11]:

(4)

which have a finite disturbance propagation rate at
τ > 0. The thermal and diffusion relaxation times can
vary in extremely wide limits from milliseconds (or
less) to several tens of seconds [9–19] and should be
taken into account in solving many heat� and mass�
transfer problems. In the degenerate case, which cor�
responds to τ = 0, Eq. (4) transforms into Eq. (2). 

The second important feature of evolutionary pro�
cesses, including heat� and mass�transfer processes
with chemical conversions, is that, in the general case,
the rate of variations in the desired quantities in chem�
ical, biological, physicochemical, biochemical, and
chemical engineering, as well as bioengineering, bio�
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medical, ecological, and other systems, depends not
only on the state at the given time point, but also on
the entire previous evolution of the process [9, 13, 20].
These systems are called hereditary systems. In the par�
ticular case where the state of the system is only deter�
mined by a particular time point in the past, rather
than the entire evolution of the system, the system is
referred to as a delayed feedback system.

Systems with delayed feedback are frequently mod�
eled by reaction–diffusion equations, in which the
kinetic function F (the rate of chemical or biochemi�
cal reactions) depends on both the sought function u =
u(x, t) and the same function, but with the delayed
argument w = u(x, t – τ). The special case of F(u, w) =
f(w) has a simple physical interpretation, i.e., heat�
and mass�transfer processes in media with local non�
equilibrium have inertial properties, i.e., the system
does not react to action instantaneously at the given
time point t, as in the classical local equilibrium case,
but it reacts by the delay time τ later. In certain cases,
delay can be the prescribed time function τ = τ(t).

We now consider certain heat� and mass�transfer
equations with delay. The simplest equation is the gen�
eralization of the classical diffusion equation, which
includes the reaction term with delay (parabolic delay
reaction–diffusion equation). In the one�dimensional
case, this equation has the following form: 

where τ is the delay time and F(u, w) is the kinetic
function. Various properties and exact solutions to the
above equation and systems of these equations are
described in [21–31].

Another heat� and mass�transfer equation with
delay is the differential�difference diffusion equation
with a finite relaxation time as follows:

which is derived from the differential�difference
model for a mass flux [17, 18]. A number of exact
solutions to this nonlinear equation were obtained
in [18, 19].

Since, when solving non�steady�state mass transfer
problems in chemical engineering, it is necessary to
take into account relaxation phenomena associated
both with the finiteness of the rate of heat and mass
transfer and with the finiteness of the times of chemi�
cal conversions and/or the microkinetic interaction
between different phases that form a single transport
macromedium, exact solutions to the following non�
linear hyperbolic reaction–diffusion equations are
derived and analyzed in this study: 

(5)
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where a > 0, ε ≥ 0, and σ ≥ 0 (ε + σ ≠ 0). It should be
noted that, as a particular case, at ε = 0, Eq. (5)
includes parabolic equations with delay. More com�
plex nonlinear reaction–diffusion equations with vari�
able delay of the general form τ = τ(t) will also be con�
sidered. The generalized Stokes problem subject to the
periodic boundary condition will be solved for a linear
diffusion equation with delay at F(u, w) = –kw. 

Exact solutions to nonlinear reaction–diffusion
equations with a variable transport coefficient G(u)
will also be presented in this study:

(6)

In the degenerate case, at ε = 0, i.e., for the parabolic
equation, certain exact solutions to Eq. (6) were
obtained in [32–34].

In addition, we will derive conditions for the insta�
bility of solutions to nonlinear systems of hyperbolic
reaction–diffusion equations with delay of the special
form. It will be shown that, when instability conditions
are satisfied, initial value problems and certain initial�
boundary value problems are ill�posed in the sense of
Hadamard.

EXACT SOLUTIONS: 
METHODS FOR FINDING SOLUTIONS

Exact solutions to nonlinear differential equations
promote the better understanding of the qualitative
features of the processes under description (nonu�
niqueness, spatial localization, blowup regimes, etc.).
It should be emphasized that delay substantially com�
plicates the analysis of equations and is a factor that
can lead to the instability of the systems being modeled
[19, 30, 35, 36].

The term exact solutions with respect to the nonlin�
ear delay of partial differential equations is used in the
cases where a solution is expressed as follows [27–29]: 

(i) The solution can be expressed in terms of ele�
mentary functions or can be represented in the closed
form (the solution is expressed in terms of indefinite or
definite integrals). 

(ii) The solution can be expressed in terms of solu�
tions to ordinary differential equations or delay ordi�
nary differential equations (or systems of these equa�
tions).

(iii) The solution can be expressed in terms of solu�
tions to linear partial differential equations. 

The combinations of solutions from items (i)–(iii)
are also allowable. 

Remark 1. Solution methods and various applica�
tions of linear and nonlinear ordinary differential
equations with delay, which are substantially simpler
than nonlinear partial differential equations with
delay, are described, e.g., in [37–40]. 
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Remark 2. A number of exact solutions to certain
nonlinear partial differential equations with delay (as
well as systems of equations with delay), which are dif�
ferent from reaction–diffusion equations, are given in
[36, 41, 42].

Remark 3. The numerical solving of various non�
linear equations and systems of equations with delay
and difficulties that arise in this case are described in
[43–46].

In this study, to seek exact solutions to nonlinear
hyperbolic reaction–diffusion equations such as (5)
and (6), we used various modifications of the methods
of generalized and functional separation of variables
[47–50] and the functional constraints method [28,
33, 51]. From this point on, intermediate calculations
are generally omitted for the sake of brevity.

Remark 4. In the general case, Eqs. (5) and (6)
admit evident exact solutions such as traveling wave
solutions u = U(z), where z = kx + λt.

EXACT SOLUTIONS TO EQ. (5) 
WITH A KINETIC FUNCTION 

THAT DEPENDS ON THE RATIO w/u

We consider Eq. (5) in the following form:

(7)

where F(z) is an arbitrary function.
1. Equation (7) yields the separable solution as the

product of the functions of different arguments as fol�
lows:

u = [C1cos(λx) + C2sin(λx)]ψ(t), (8)

where C1, C2, and λ are arbitrary constants and the
function ψ(t) in (8) is described by the following ordi�
nary differential equation with delay: 

εψ''(t) + σψ'(t) = –aλ2ψ(t) + ψ(t)F(ψ(t – τ)/ψ(t)). (9)
Equation (9) yields the particular solution ψ(t) = Aeβt,
where A is an arbitrary constant and β is determined
from the algebraic (or transcendental) equation

εβ2 + σβ + aλ2 – F(e–βτ) = 0.

2. Equation (7) yields another separable solution, 
u = [C1exp(–λx) + C2exp(λx)]ψ(t), (10)

where the function ψ(t) is described by the following
delay differential equation: 

εψ''(t) + σψ'(t) = aλ2ψ(t) + ψ(t)F(ψ(t – τ)/ψ(t)). (11)
Equation (11) yields the particular solution ψ(t) =
Aeβt, where β is determined from the algebraic (tran�
scendental) equation

εβ2 + σβ – aλ2 – F(e–βτ) = 0.
3. Equation (7) also yields the solution 

u = exp(αx + βt)θ(z), z = λx + γt,  (12)
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where the function θ(z) is described by the following
delay ordinary differential equation: 

(aλ2 – εγ2)θ''(z) + (2aαλ – 2εβγ – σγ)θ'(z) 
+ (aα2 – εβ2 – σβ)θ(z) + θ(z)F(e–βτθ(z – δ)/θ(z)) = 0, 

δ = γτ.

This equation yields the particular solution
θ(z) = Aevz, where v is determined from the algebraic
(transcendental) equation

(aλ2 – εγ2)v2 + (2aαλ – 2εβγ – σγ)v 
+ (aα2 – εβ2 – σβ) + F(e–βτ – vδ) = 0, δ = γτ.

Solution (12) is the nonlinear superposition of two dif�
ferent traveling waves.

4. Let the function

(13)
be any τ�periodic solution to the following linear
hyperbolic equation:

(14)

(from this point on, for the sake of brevity, the depen�
dence of solutions (13) and (18) on the parameters ε
and a, which appear in Eqs. (14) and (19), is not indi�
cated explicitly). In that case, Eq. (7) yields the gener�
alized separable solution

 (15)

where c is an arbitrary constant.
It can be shown that the general solution to

Eq. (14) subject to the aforementioned condition of τ�
periodicity with respect to time has the following
form:

  (16)

(17)

where An, Bn, Cn, and Dn are arbitrary constants at

which series (16) and series for the derivatives 

, and  are convergent (the convergence can be

ensured, e.g., if we set An = Bn = Cn = Dn = 0 at n > N,
where N is any positive integer). 

( )1 , , ,V x t b= σv

( )∂ ∂ ∂
ε + σ = + = − τ

∂∂ ∂

v v v
v v v

2 2

2 2
, , ( , )a b x t x t

tt x

( ) ( ) 2
1 , , 2 , , ,ct cu e V x t c b b F e c c− τ

= σ + ε = − ε − σ

( ) [

]

[ ]

∞

=

∞

=

σ = −λ β − γ

+ λ+ β − γ

× β + γ + β + γ

∑

∑

1

0

1

, , , exp( ) cos( )

exp( )sin( )

cos( ) sin( ) ,

n n n n

n

nn n n

n

n n n n n n

V x t b x A t x

xB t x

C t x D t x

πβ =
τ

⎡ ⎤εβ + + σ β + εβ +γ = ⎢ ⎥
⎢ ⎥⎣ ⎦

σβλ =
γ

1 2
2 2 2 2 2

2 ,

( )
,

2

,
2

n

n n n
n

n
n

n

n

b b

a

a

2
1

2
,

V

t

∂

∂

1V

t

∂

∂

2
1

2

V

x

∂

∂



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING Vol. 49  No. 5  2015

EXACT SOLUTIONS AND QUALITATIVE FEATURES 625

The following particular cases can be distin�
guished: 

(i) τ�periodic (with respect to the time t) solutions
(14) that decay at x → ∞ are given by formulas (16) and
(17) at A0 = B0 = 0, Cn = Dn = 0, and n = 1, 2, …. 

(ii) τ�periodic (with respect to the time t) solutions
(14) bounded at x → ∞ are given by formulas (16) and
(17) at Cn = Dn = 0 and n = 1, 2, …. 

(iii) A stationary solution is given by formulas (16)
and (17) at An = Bn = Cn = Dn = 0 and n = 1, 2, ….

5. Let the function

(18)

be a τ�aperiodic solution to the following linear hyper�
bolic equation:

 (19)

In that case, Eq. (7) yields the generalized separable
solution

(20)

The general solution to Eq. (19) has the following
form: 

  (21)

(22)

Solutions (τ�aperiodic with respect to the time t) that
decay at x → ∞ are given by formulas (21) and (22) at
Cn = Dn = 0 and n = 1, 2, ….

Solutions (16)–(17) and (21)–(22) are very similar.
However, in the first solution, the first sum begins from
n = 0 and, in the second solution, it begins from n = 1;
the values of βn are also different. 
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EXACT SOLUTIONS TO EQ. (5) 
WITH A KINETIC FUNCTION

THAT DEPENDS ON THE DIFFERENCE u – w

We now consider Eq. (5) in the following form:

(23)

1. Equation (23) yields the separable solution as the
sum of the functions of different arguments 

u = ϕ(x) + ψ(t), (24)
where 

(25)

and the function ψ(t) is described by the following
delay differential equation:

εψ''(t) + σψ'(t) = bψ(t) + F(ψ(t) – ψ(t – τ)). (26)
2. At b = 0, Eq. (23) yields the separable solution

that is quadratic with respect to x: 
u = C1x

2 + C2x + ψ(t), (27)
where the function ψ(t) is described by the following
delay differential equation: 

εψ''(t) + σψ'(t) = 2C1a + F(ψ(t) – ψ(t – τ)). (28)
3. The solution to Eq. (23) that generalizes solution

(24) has the form 
u = ϕ(x) + θ(z), z = βx + γt, (29)

where the function ϕ(x) is determined by formulas
(25) and the function θ(z) is described by the following
delay ordinary differential equation: 

(30)

At b > 0, solution (29) describes the nonlinear interac�
tion between a periodic standing wave and a traveling
wave.

4. At b = 0, the solution to (23) that generalizes
solution (27) has the form 

u = C1x
2 + C2x + θ(z), z = βx + γt, (31)

where the function θ(z) is described by the following
delay ordinary differential equation: 

(εγ2 – aβ2)θ''(z) + σγθ'(z) 
= 2C1a + F(θ(z) – θ(z – δ)), δ = γτ.

5. Equation (23) yields the degenerate generalized
separable solution

u = tϕ(x) + ψ(x),

where the function ϕ(x) is determined by formulas
(25) and the function ψ(x) is described by the follow�
ing linear inhomogeneous ordinary differential equa�
tion:

aψ''(x) + bψ(x) + F(τϕ(x)) – σϕ(x) = 0.
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More complex solutions to Eq. (23) can be derived
using the following property. 

Property 1 (nonlinear superposition of solutions).
Let  be a solution to nonlinear equation (23) and
v = V1(x, t; σ, b) be any τ�periodic solution to linear
equation (14). In that case, the sum 

u =  + V1(x, t; σ, b) (32)

is also the solution to Eq. (23). The general form of
the function V1(x, t; σ, b) is determined by formu�
las (16)–(17). 

For example, the traveling wave solution
u0 = u0(αx + βt) can be used in (32) as the particular

solution  to nonlinear equation (23).

We now consider Eq. (5) in the following form:

(33)

where F(z), G(z), and H(z) are arbitrary functions.

1. Equation (33) yields the solution 

(34)

The general form of the function V1(x, t; σ, b) is given
by formulas (16) and (17).

2. Equation (33) has the generalized separable
solution
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where N is any positive integer and the functions
ϕn(x), ψn(x), θ(x), and ξ(x) are described by the fol�
lowing ordinary differential equations: 
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αθ'' + [F(τθ) + G(τθ)]θ = 0,

aξ'' + [F(τθ) + G(τθ)]ξ – [σ + τG(τθ)]θ + H(τθ) = 0.

The third nonlinear equation of this system is inde�
pendent and yields the solution θ = 0. In this case, the
other equations become linear equations with con�
stant coefficients. 
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EXACT SOLUTIONS TO EQ. (5) 
WITH A KINETIC FUNCTION 

THAT DEPENDS ON A LINEAR 
COMBINATION OF w AND u

We now consider Eq. (5) in the following form:

(36)

Property 2 (generalizes property 1). Let  be a
solution to nonlinear equation (36), and the function
v = V1(x, t; σ, b) is any τ�periodic solution to linear
hyperbolic equation (14). In that case, the sum 

(37)

is also the solution to Eq. (36). The general form of the
function V1(x, t; σ, b) is determined by formulas
(16)–(17). 

Property 2 makes it possible to derive a wide class
of exact solutions to Eq. (36). The simplest particular
solutions to Eq. (36) are the constant solutions u0 =
const, which are found from the following algebraic
(transcendental) equation:

bu0 + F((1 – k)u0) = 0.

In the special case of k = 1, we have u0 = –F(0)/b.
In the general case, for Eq. (36) with the arbitrary

function F(z), we can take the particular solutions
 of the following forms in formula (37):

u0 = ϕ(x) (38)
(stationary solution);

where the last solution generalizes the first two solu�
tions. The traveling wave solution  = θ(z),
where z = βx + γt, is described by the following
delay equation: 

(εγ2 – aβ2)θ''(z) + σγθ'(z) = bθ(z) 
+ F(θ(z) – kθ(z – δ)), δ = γτ.

We now consider Eq. (5) in the following form:

(39)

1. Let ξ0 be the root of the algebraic (transcenden�
tal) equation

ξ0[F(ξ0) + G(ξ0)] + (1 – k)H(ξ0) = 0. (40)
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In that case, Eq. (39) yields the following exact solu�
tion:

(41)

where v = V1(x, t; σ, b) is any τ�periodic solution to
Eq. (14). In the general case, the function V1(x, t; σ, b)
is given by formulas (16) and (17). The different roots
of Eq. (40) generate different solutions, such as (41) to
Eq. (39).

2. Equation (39) also yields the solution

Here, N is any positive integer and the functions θ(x),
ϕn(x), ψn(x), and ξ(x) are described by the following
system of ordinary differential equations: 

where η = (1 – k)ξ. The last equation is independent.
We now consider Eq. (5) in the following form:
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ear equation (42), and the function v = V2(x, t; σ, b) is
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solutions to Eq. (42) are the constant solutions u0 =
const, which are found from the following algebraic
(transcendental) equation:

bu0 + F((1 + k)u0) = 0.

In the general case, for Eq. (42) with the arbitrary
function F(z), the aforementioned particular solutions
of form (38) can be used in formula (43). In particular,
using the traveling wave solution  = θ(z), where
z = βx + γt, we derive the following delay ordinary dif�
ferential equation: 

(εγ2 – aβ2)θ''(z) + σγθ'(z) = bθ(z) 
+ F(θ(z) + kθ(z – δ)),  δ = γτ.

We now consider Eq. (5) in the following form:

(44)

1. Let ξ0 be the root of the algebraic (transcenden�
tal) equation

ξ0[F(ξ0) + G(ξ0)] + (1 + k)H(ξ0) = 0. (45)

In that case, Eq. (44) yields the solution

(46)

where v = V2(x, t; σ, b) is the τ�aperiodic solution to
linear equation (19). In the general case, the function
V2(x, t; σ, b) is given by formulas (21) and (22). The
different roots of Eq. (45) generate different solutions
such as (46) to Eq. (44).

2. Equation (44) also yields the solution

Here, N is any positive integer and the functions ϕn(x),
ψn(x), and ξ(x) are described by the following system
of ordinary differential equations: 
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GENERAL REACTION–DIFFUSION 
EQUATIONS WITH VARIABLE DELAY

We now consider the following more complex non�
linear hyperbolic reaction–diffusion equations with
time�varying delay: 

 (47)

where u = u(x, t), a > 0, ε ≥ 0, σ ≥ 0 (ε + σ ≠ 0), F(u, w)
is the kinetic function, and the delay time τ is consid�
ered to be the prescribed function of t. At ε = 0,
parabolic equations of this type were considered in
[15, 17].

We now consider Eq. (47) in the following form:

 (48)

1. Equation (48) yields solution (8) periodic with
respect to x, where the function ψ(t) is described by
the following functional�differential equation: 

εψ''(t) + σψ'(t) = –aλ2ψ(t) + ψ(t)F(ψ(t – τ(t))/ψ(t)).
2. Equation (48) also yields solution (10), where

the function ψ(t) is described by the following ordi�
nary functional�differential equation: 

εψ''(t) + σψ'(t) = aλ2ψ(t) + ψ(t)F(ψ(t – τ(t))/ψ(t)).
Equation (47) of the form 

yields solution (24)–(25), where the function ψ(t) is
described by the following ordinary functional�differ�
ential equation: 

εψ''(t) + σψ'(t) = bψ(t) + F(ψ(t) – ψ(t – τ(t))).

EQUATIONS WITH A VARIABLE TRANSPORT 
COEFFICIENT

We now consider the following more complex non�
linear hyperbolic delay reaction–diffusion equation
with a variable transport coefficient

(49)

where u = u(x, t), ε ≥ 0, σ ≥ 0 (ε + σ ≠ 0), G(u) is the
transport coefficient, and F(u, w) is the kinetic func�
tion.

We consider Eq. (49) in the following form: 

(50)

1. At b(n + 1) > 0, Eq. (50) yields the separable
solution 

u = [C1cos(λx) + C2sin(λx)]1/(n + 1)ψ(t), 
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where the function ψ(t) is described by the following
delay ordinary differential equation: 

εψ''(t) + σψ'(t) = ψ(t)F(ψ(t – τ)/ψ(t)). (51)
Equation (51) yields the particular solution ψ(t) =

Aeβt, where β is determined from the algebraic (tran�
scendental) equation

εβ2 + σβ – F(e–βτ) = 0.

2. At b(n + 1) < 0, Eq. (50) yields the following sep�
arable solution: 

u = [C1exp(–λx) + C2exp(λx)]1/(n + 1)ψ(t), 

where the function ψ(t) is described by delay ordinary
differential equation (51).

3. At n = –1, Eq. (50) yields the following separable
solution: 

where the function ψ(t) is described by delay ordinary
differential equation (51).

Equation (49) of the form

yields the separable solution 

u = ϕ(x)ψ(t),

where the functions ϕ(x) and ψ(t) satisfy the following
ordinary differential equation and delay differential
equation: 

a(ϕnϕ')' = bϕ,  (52)
εψ''(t) + σψ'(t) = bψn + 1(t) + 

ψ(t)F(ψ(t – τ)/ψ(t)), (53)
where b is an arbitrary constant.

At b = 0, Eq. (53) transforms into (51), and
Eq. (52) has the solution

At n ≠ –2 and n ≠ 0, Eq. (52) has the following par�
ticular solution: 

Equation (49) of the form

yields the separable solution 

u = eλtϕ(x),
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where λ is the solution to the algebraic (transcenden�
tal) equation

ελ2 + σλ = F(e–λτ),

and the function ϕ(x) is described by the following
ordinary differential equation:

a(ϕnϕ')' + ϕn + 1H(e–λτ) = 0.

At n ≠ –1, the substitution θ = ϕn + 1 leads to the
second�order linear ordinary differential equation; at
n = –1, the substitution θ = lnϕ should be made.

At ε = 0, σ = 1, and k ≠ 0, Eq. (49) of the form

yields the generalized separable solution 

where ψ(t) is described by the following delay ordinary
differential equation: 

ψ'(t) = kF(ψ(t) – ψ(t – τ)).

At ε ≠ 0, σ = 0, and n ≠ –1, Eq. (49) of the form

yields the generalized separable solution 

u = (At + Bx2 + C1x + C2)
1/(n + 1),

where the constant A is determined from the following
algebraic (transcendental) equation:

εnA2 + (n + 1)2H(Aτ) = 0.

Equation (49) of the form

yields the generalized separable solution 

u = [tϕ(x) + ψ(x)]2,

where the functions ϕ(x) and ψ(t) are described by the
following ordinary differential equations:

2aϕ'' + ϕH(τϕ) – 2σϕ2 = 0,

2aψ'' + ψH(τϕ) – 2σϕψ – 2εϕ2 + F(τϕ) = 0.

The particular solution to this system of equations
has the form
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where the constant A is determined from the algebraic
(transcendental) equation

H(Aτ) – 2σA = 0.

We now consider Eq. (49) in the form

(54)

1. At b = 0, Eq. (54) has a solution in the following
form of the sum of the functions of different argu�
ments:

where the function ψ(t) is described by the delay dif�
ferential equation 

2. At bβ > 0, Eq. (54) yields another solution in the
form of the sum of the functions of different argu�
ments:

where the function ψ(t) is described by the delay dif�
ferential equation 
εψ''(t) + σψ'(t) = bC1βeβψ(t) + F(ψ(t) – ψ(t – τ)). (55)

3. At bβ < 0, Eq. (54) also yields a solution in the
form of the sum of the functions of different argu�
ments as follows:

where the function ψ(t) is described by delay differen�
tial equation (55).

At ε = 0, σ ≠ 0, and γ ≠ β, Eq. (49) of the form

has the generalized separable solution 

where the function ψ(t) is described by the following
delay differential equation: 
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At ε ≠ 0 and σ = 0, Eq. (49) of the form

yields the generalized separable solution 

where the constant A is determined from the following
algebraic (transcendental) equation:

εA2 + βH(Aτ) = 0.

Equation (49) of the form

yields the separable solution 

u = exp(λx)ψ(t),
where the function ψ(t) is described by the following
delay differential equation: 

εψ''(t) + σψ'(t) = (a + b)λ2ψ(t) 
+ ψ(t)F(ψ(t)/ψ(t – τ)).

The above equation yields the particular solution
ψ(t) = Aeβt, where β is determined from the algebraic
(transcendental) equation

εβ2 + σβ –(a + b)λ2 – F(eβτ) = 0.

Equation (49) of the form

where g(z) and F(z) are arbitrary functions and the
prime denotes a derivative with respect to the corre�
sponding argument, yields the functional separable
solution in the implicit form

where A is determined from the algebraic (transcen�
dental) equation F(Aτ) = 1.

LINEAR REACTION–DIFFUSION EQUATION 
WITH DELAY: EXACT SOLUTIONS

We now consider the following linear hyperbolic
reaction–diffusion equation with delay:

(56)

where u = u(x, t), a > 0, ε ≥ 0, and σ ≥ 0 (ε + σ ≠ 0).
Equation (56) is the particular case of some of the
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equations considered above and, consequently, yields
the corresponding solutions. For example, Eq. (7) is
reduced to form (56) by choosing the function
F(w/u) = –kw/u and Eq. (36) is transformed into
(56) by choosing the function F(u – w) = –b(u – w)
and b = –k.

1. Separable solutions have the form

u = [Acos(μx) + B sin(μx)]f(t),
where f(t) is described by the following delay differen�
tial equation: 

εf ''(t) + σf '(t) + aμ2f(t) + kf(t – τ) = 0. (57)
The above equation yields exponential and trigono�
metric particular solutions. Methods for solving this
equation are given, for example, in [31].

The other separable solutions have the form

u = [Aexp(–μx) + Bexp(μx)]f(t),

where the function f(t) is described by Eq. (57), in
which μ2 should be replaced by –μ2.

2. Equation (56) yields the generalized separable
solutions that are polynomial with respect to t as fol�
lows:

(58)

where the functions ψm(t) are described by a system of
linear ordinary differential equations. In particular, by
setting n = 2 in (58), we have the solution

u(x, t) = t2ψ2(x) + tψ1(x) + ψ0(x),

where the functions ψm(t) are described by the follow�
ing equations:

a  – kψ2 = 0,

a  – kψ1 = 2(σ – kτ)ψ2,

a  – kψ0 = (kτ2 + 2ε)ψ2 + (σ – kτ)ψ1,

which are integrated.
3. Equation (56) yields the generalized separable

solutions that are polynomial with respect to x:

where the functions ϕm(t) are described by the follow�
ing system of delay differential equations: 

ε (t) + σ (t) + kϕn(t – τ) = 0,

ε (t) + σ (t) + kϕn–1(t – τ) = 0,

ε (t) + σ (t) + kϕm(t – τ) 

= a(m + 1)(m + 2)ϕm + 2(t), m = 0, 1, …, n – 2,
which can be solved sequentially.
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4. We also have the following generalized separable
solutions: 

u(x, t) = ϕ(x)cos(ωt) + ψ(x)sin(ωt).

An example of these solutions is given in the next sec�
tion.

LINEAR REACTION–DIFFUSION EQUATION 
WITH DELAY: THE STOKES PROBLEM

We consider the generalized Stokes problem for
Eq. (56) without the initial conditions and with the
periodic boundary conditions

(59)

The solution to problem (56), (59) has the form

u = Ae–λxcos(ωt – βx + γ), (60)

where the constants λ and β are determined from the
following system of algebraic equations:

(61)

For the sake of convenience, we introduce the
notation

C = (σω – ksinωτ)/a, D = (εω2 – kcosωτ)/a (62)

In that case, the solution to system of equations (61)
can be represented as 

(63)

Solution (63) is not unique for system of equations
(61). Other solutions are not considered, since they
contain either negative or complex�valued λ and cor�
responding solutions (60) to Eq. (56) do not satisfy
boundary conditions (59).

The problem under consideration is interesting
because the damping decrement λ depends on the fre�
quency ω and, at certain sets of values for the parame�
ters ε, σ, a, k, and τ, vanishes at the frequencies ωλ,
which can be found from the first relationship in (61).
The vanishing of the decrement λ leads to the fact that
solution (60) ceases to decay and satisfy boundary
condition (59) at x → ∞. The function λ(ω) is contin�
uous; therefore, similar phenomena, e.g., very slow
decay, are observed at the frequencies close to ωλ,
although the solution itself still satisfies the boundary
condition at infinity. 

The damping decrement λ vanishes at C = 0, i.e., at
the values of ωλ that satisfy the equation σωλ =
ksinωλτ, which can be represented as

Ωλ = ξsinΩλ,  Ωλ = ωλτ, ξ = kτ/σ. (64)

An analysis of Eq. (64) yields the following results:
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(1) Equation (64) has the positive solutions Ωλ only
at ξ > 1.

(2) The number of the solutions Ωλ increases with
an increase in the value of ξ.

(3) All positive solutions Ωλ satisfy the inequality
Ωλ ≤ ξ and lie in the following intervals: 2jπ < Ωλ <

(2j + 1)π, j = 0, 1, …,  where N is the number of

solutions (here, [A] denotes the largest integer that is
less than or equal to A). The first interval contains one
solution, the last interval contains one or two solu�
tions, depending on the value of ξ, and the other inter�
vals contain two solutions each. 

At τ = 0, we have a problem for the linear hyper�
bolic reaction–diffusion equation without delay. Its
solution has the form 

(65)
which is similar to the form of solution (60) to the
problem with delay. The values of damping decrement
λ0 and shear coefficient β0 are calculated using the for�
mulas

(66)

where the following notation was used: 
C0 = σω/a, D0 = (εω2 – k)/a. (67)

An analysis of formulas (66) and (67) shows that
there are no nonzero frequencies ωλ at which λ0(ωλ) = 0;
therefore, solution (65) always satisfies boundary con�
ditions (59). The function λ0(ω) does not decrease at
σ2 > 4εk, does not increase at σ2 < 4εk, and is constant
(does not depend on ω) at σ2 = 4εk. The relationship
β0(ω) strictly increases at any sets of values for the
parameters ε, σ, a, and k. 

GLOBAL INSTABILITY OF SOLUTIONS 
TO CERTAIN DELAY REACTION–DIFFUSION 

SYSTEMS OF EQUATIONS

We now consider the following system of hyper�
bolic delay reaction–diffusion equations:

 (68)
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solution, the homogeneous solution (does not depend
on x), and the traveling wave solution u1 = u1(z), u2 =
u2(z), where z = αx + βt. The stability of these and cer�
tain other solutions to different delay reaction–diffu�
sion equations and systems of these equations is con�
sidered, for example, in [26–29].

Property 4 (generalizes property 2). Let

 (69)
be the solution to system of equations (68). In that
case, system of equations (68) also has the solution

(70)

where V = V(x, t) is any τ�periodic solution to the fol�
lowing linear hyperbolic equation:

 (71)

The general form of the function

 =  +   – 
is given by formulas (16) and (17). 

We use property 4 for deriving the conditions of
instability for nonlinear reaction–diffusion system of
equations (68). To accomplish this, we take the follow�
ing stationary spatially periodic solution to Eq. (71):

(72)

where δ and μ are arbitrary constants.
We analyze formulas (70) and (72). Let the follow�

ing condition be satisfied: 

(73)
In that case, at 0 ≤ t ≤ τ, solutions (69) and (70) differ
little from each other for fairly small values of δ > 0.
However, at t → ∞, these solutions unrestrictedly
diverge due to the exponential factor in (70). This
means that, when conditions (73) are satisfied, any
solution   to system of equations (68) is
unstable. 

Conditions (73) can be more clearly represented as 

(74)

Relationships (74) are the solution to inequality (73)
for τ, and the branch

is not considered, since it contradicts the condition
τ > 0. The physical meaning of conditions (74) is that,
in the region of parameters k > 1 and b > 0, instability
arises due to delay, which should be fairly large, i.e.,
τ ≥ τ0. 
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Since the form of the kinetic functions F and G
does not affect instability conditions (74) for system of
equations (68), they are called the global conditions of
instability. It should be emphasized that we are dealing
with nonlinear instability, and all of the results derived
above are exact (rather than linearized, as is the case in
the theory of linear stability; various assumptions,
expansions, and approximations that are characteris�
tic of the majority of nonlinear theories are not used
either). 

INSTABILITY OF SOLUTIONS TO CERTAIN 
NONLINEAR INITIAL VALUE PROBLEMS

1. Let Eq. (69) be the solution to the Cauchy�type
problem subject to the initial conditions 

(75)

for system of delay reaction–diffusion equations (68)
over the entire range of the variable –∞ < x < ∞. From
this point on, ∂t denotes the partial derivative with
respect to t. 

It follows from property 4 that, at k > 0, system of
equations (68) also has the solution that is determined
by formulas (70) and (72). By designating this solution
as  we have 

(76)

where δ and μ are arbitrary constants, c = lnk, and

the coefficient γ is determined in (72). Comparing
solutions (69) and (76), as well as their derivatives with
respect to t at 0 ≤ t ≤ τ, we have 

 

At fixed values of τ and k (at k > 1, which corre�
sponds to c > 0), the differences between solutions (69)
and (76) and their derivatives with respect to t can be
made arbitrary small due to the choice of δ; i.e., the
initial data for these solutions differ little at 0 ≤ t ≤ τ.
On the other hand, when conditions (74) are satisfied

and at x = , we have 

 at t → ∞,

i.e., when the global instability conditions are satis�
fied, initially close solutions to two Cauchy problems
unrestrictedly diverge with the passage of time.

The specified instability of solutions to system of
equations with delay (68) with respect to the initial
data makes the Cauchy problem for (68) ill�posed in
the sense of Hadamard (in the event that conditions
(74) are satisfied). It should be noted that the instabil�
ity is of a general character and does not depend on the
form of functions F and G. 
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2. We show that, when conditions (74) are satisfied,
there can be global instability in solutions to certain
nonlinear initial�boundary value problems with
boundary conditions of the first, second, and third
kinds in the range of 0 ≤ x ≤ h.

Let Eq. (69) be the solution to the initial�boundary
value problem for a system of equations with delay (68)
subject to initial conditions (75) and general boundary
conditions of the first kind: 

(77)

where h = π/γ and the coefficient γ is determined
in (72).

At μ = 0, formula (76) yields the solution to system
of equations (68) that exactly satisfies boundary con�
ditions (77). Due to the choice of δ, this solution can
be made arbitrary close to solution (69) in the range of
the initial data 0 ≤ t ≤ τ. However, when global insta�
bility conditions (74) are satisfied, initially close solu�
tions (69) and (76) to the initial�boundary value prob�
lems under consideration exponentially diverge at
t → ∞ in the middle x = h/2 of the considered region.
This instability of solutions to system of equations (68)
with respect to the initial data makes the initial�
boundary value problem for system of equations (68)
ill�posed in the sense of Hadamard (in the event that
conditions (74) are satisfied). 

In the case of boundary conditions of the second
kind, when derivatives with respect to the coordinate x
are specified at the domain boundaries, solution (69)
should be compared with the solution derived using
property 4 and formula (72) at μ = π/2. 

SOME GENERALIZATIONS AND REMARKS

1. The system of equations 

(78)

can be written as (68), where

Therefore, instability conditions for solutions to sys�
tem of equations (78) are derived from (74) by replac�
ing the parameter b with b1 + (d1/k).
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2. The derived results on instability extend to the
following nonlinear multicomponent systems of equa�
tions: 

where u = u(x, t), w = u(x,t – τ), un = un(x, t),
wn = un(x, t – τn); F and Gn are arbitrary functions, and
τ and τn are the delay times (which can be different).

3. We now consider the equation

(79)

where b = const and F is an arbitrary function. The
above equation is the particular case of system of equa�
tions (68). When there is no delay (τ = 0 or k = 0), this
equation transforms into the following equation:

(80)

Any well�posed Cauchy problem for Eq. (80) can be
associated with the ill�posed initial value problem for
Eq. (79) by appropriately choosing the parameters b,
k, and τ. As an illustration, we can consider, for exam�
ple, the diffusion equation with a first�order bulk
chemical reaction, which corresponds to the particu�
lar case of Eq. (80) at ε = 0, σ = 1, and F(u) = –c2u.

CONCLUSIONS

New exact solutions to nonlinear reaction–diffu�
sion equations with constant delay are derived that
contain one or two arbitrary functions of one argu�
ment. Generalized and functional separable solutions
are found, including periodic solutions with respect to
time and space variable, solutions that describe the
nonlinear interaction between a standing wave and a
traveling wave, and certain other solutions. The meth�
ods of generalized and functional separation of vari�
ables and the functional constraints method were used
to seek exact solutions. Certain exact solutions are
described for more complex nonlinear reaction–dif�
fusion equations such as those with variable delay of
the general form τ = τ(t) and with a variable transport
coefficient and constant delay. 
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Conditions for the global nonlinear instability of
solutions to systems of delay reaction–diffusion equa�
tions are derived. It is shown that, when instability
conditions are satisfied, the respective initial value
problems and initial�boundary value problems are ill�
posed in the sense of Hadamard. 

Certain exact solutions to the linear reaction–dif�
fusion equation with constant delay are described. The
generalized Stokes problem subject to the periodic
boundary condition is formulated and solved, and a
qualitative analysis of the solution is performed. 

The derived exact solutions contain free parame�
ters (in some cases, there can be any number of these
parameters) and can be used to solve certain model
problems and test approximate analytical and numer�
ical methods for solving similar or more complex non�
linear delay partial differential equations.

NOTATION

A, B, C, D—arbitrary constants;
a—thermal diffusivity (in certain cases, diffusion

coefficient);
cp—specific heat at constant pressure; 
F—kinetic function;
q—heat flux; 
T—temperature; 
t—time; 
u = u(x, t)—sought function (concentration at the

time point t);
w = u(x, t – τ)—sought function at the time point

t – τ;
x—spatial coordinate; 
Δ—Laplace operator;
ε—coefficient in the hyperbolic equation in front

of the highest time derivative;
λ—thermal conductivity; 
ρ—density; 
σ—coefficient in the hyperbolic equation in front

of the first time derivative;
τ—delay or relaxation time;
ω—frequency;

—gradient operator.
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