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Abstract—We study chiral mesophases arising as a result of the interplay between microphase separation and
orientational ordering in diblock rod-coil copolymers. It is shown that nearly compositionally symmetric
copolymers form a columnar structure with twisted rod-rich domains, whereas there is a suppression of the
lamellar morphologies with respect to the columnar one. Using high-resolution three-dimensional self-con-
sistent field simulations, we show that chirality in the unit cell of the hexagonal phase develops in two different
ways, leading to either homochiral state or heterochiral (locally chiral) state. Thus, chiral polarization, which
occurs when the rigid and flexible blocks are segregated, causes a transition to two degenerate chiral states. In
a system with many twisted domains, the magnitude of the chirality charge obeys the binomial distribution
with random selection of the twist direction for each of the rod-rich domains. We suggest a model of pseudo-
dynamical structural evolution aimed at understanding of how chirality arises from the achiral state and how
it evolves. At the initial stage of the evolutionary process, there exists some waiting time for the onset of irre-
versible changes in chirality; during this time the system flips between the two chirality states.
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INTRODUCTION
Copolymers consisting of f lexible and rigid seg-

ments expand the scope and complexity of micro-
phase separation phenomena. Due to the highly dispa-
rate aspect ratios of coil and rod segments, rod-coil
copolymers (RCCs) are capable of self-assembling
into a large variety of nanostructures with unique
architectures and properties. In this connection, it is
no great surprise that in the last decade, various theo-
retical and numerical approaches have been exten-
sively used for studying the rich phase behavior in
RCCs [1–5]. In particular, the numerical implemen-
tation of self-consistent field theory (SCFT) [6, 7] has
been applied in several publications [8–21]. It should
be noted, however, that despite the considerable
advances of the SCFT method, as applied to RCCs, it
is notable that until now only oversimplified one- and
two-dimensional (1D and 2D) model systems of
RCCs have been studied. Although various morphol-
ogies have been observed in these simulations, no
three-dimensional (3D) continuous SCFT calcula-
tion on the RCCs with the orientational interaction

has been reported before the publication of our results
[22]. The 3D SCFT studies of worm-like [23, 24] and
rod-coil [25] copolymers were carried out only
recently.

In order to adequately describe the equilibrium
microphase separated morphologies formed via self-
assembly by RCCs, numerical SCFT simulations must
be implemented in the 3D space for large systems with
high spatial resolution. Such studies are needed in
order to distinguish between thermodynamically sta-
ble structures and metastable structures that often sur-
vive in low-dimensional systems. Moreover, certain
types of equilibrium structures, which can arise in
reality, may never occur in low-dimensional systems.
It should also be kept in mind that due to long wave-
length f luctuations, mean-field theories describe
order-disorder phenomena often very inaccurate at
low dimensionality.

To theoretically understand the phase behavior of
flexible block copolymers, two main parameters are
introduced: the isotropic Flory–Huggins interaction
parameter χ and the copolymer composition f. For
the microphase-separating RCC systems, additional
parameters are required to characterize the anisotro-1 The article is published in the original.
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Fig. 1. (Color online) Examples of stable periodic structures predicted from the SCFT simulation [22]: (a) chiral hexagonal phase
HEX* (f = 0.5 and χN = 14); (b) achiral phase with nearly cubic rod-rich domains (f = 0.625 and χN = 16); (c) achiral BCC-like
phase (f = 0.75 and χN = 16). Here, f is the fraction of f lexible blocks and N is the total number of chain segments. The surface
represents the interface between the coil-rich domains and the rod-rich domains. The rigid blocks are located inside closed
regions. The matrix consists of the f lexible-chain segments. Adapted from [22].

(a) (b) (c)
pic orientational interaction of rigid rodlike blocks and
their shape. Because of the coupling between orienta-
tional ordering and block incompatibility/stretching,
RCCs are able to self-organize into various 3D nano-
structures, depending on different combinations of
these parameters.

Previously, we have presented an efficient parallel
algorithm for the high-resolution 3D SCFT simula-
tions of RCCs with a Maier-Saupe-type mean field
orientational interaction accounting for the coupling
of the rodlike segments [22]. The parallelization was
achieved using a 2D domain decomposition strategy
(also known as “pencil” or “drawer” decomposition)
for fast Fourier transform (FFT) which is employed
for solving the modified diffusion equations via a
pseudo-spectral (PS) collocation technique. The
FFT-based trigonometric interpolation and Gauss-
Legendre or Lebedev quadratures were utilized for
evaluating the angle-dependent integrals. To acceler-
ate the convergence of the iterative process, the paral-
lel Ng method was used. With this numerical imple-
mentation of SCFT, it was possible to reveal a variety
of new intrinsic 3D structures and particularly identify
one interesting morphology of hexagonally arranged
chiral cylinders [22, 26–28], which has not been pre-
viously reported for rod-coil diblocks or related sys-
tems and cannot be predicted theoretically in low-
dimensional space. Some of these structures are
shown in Fig. 1.

A rather unexpected result was that hexagonal
morphology is formed for compositionally symmetric
RCCs, whereas f lexible block copolymers with the
same composition self-organize into lamellae. A spe-
cific feature of this structure is that hexagonally
(HEX) packed columnar domains are twisted around
their long axes like a corkscrew (HEX* phase, Fig. 1a),
thereby producing chirality. Except for the HEX*
phase, all others were found to be metastable at the
coil fraction f close to 0.5. For the diblocks with a coil
POLY
fraction of ≈0.6, two morphologies were predicted: a
structure with nearly cubic domains packed into a
simple cubic (SC) lattice (Fig. 1b) and truncated poly-
hedrons arranged in a body-centered cubic (BCC) lat-
tice. The free energy of both structures practically does
not differ. Finally, only BCC-like stable structure with
space group Pm m was observed at f > 0.7 (Fig. 1c).
In these micellar structures, the rigid segments tend to
be parallel or antiparallel in the micelle interior
because of the restrictions caused by conditions of
packing. Therefore, there are polyhedra instead of
geometrically perfect spherical microdomains in the
conventional BCC morphology (Figs. 1b, 1c). Unlike
the HEX* phase, the micellar phases are achiral due to
the inherent reflection planes.

There is an active current search for routes to create
chiral structures from achiral molecules and for mech-
anisms responsible for the appearance of chirality. The
scale of interest is ranged from nanometers to microm-
eters and beyond, which reveals the most interesting
features of chirality in chemistry, materials sciences
and biology. The origin of the mirror symmetry break-
ing at the molecular level is also a long-standing ques-
tion in molecular evolution. However, the relationship
between the molecular and macroscopic levels
remains far from being understood. In this study, we
apply a continuum RCC model and use our SCFT
computational technique [22] (see also [29–31]) to
investigate in more detail the chiral properties of the
columnar structure arising in the system from the
packing of achiral building blocks. In particular, we
are going to answer the following question: is this
phase macroscopically chiral (that is, can molecular
chirality propagates over macroscopic distances) or
does it have only local chirality restricted by rod-rich
domains?

The paper proceeds as follows. The SCFT model
and computational scheme are briefly described and
the results are discussed. First, to understand the
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twisting mechanism responsible for the confinement-
induced chirality in the self-assembly of RCCs, we
introduce a simple theoretical formalism in terms of
interfacial curvature and packing frustration for the
strong segregation regime. Next, using the SCFT cal-
culations, we explore both global and local chirality of
the hexagonal mesophase. Our goal here is to under-
stand how chirality is distributed across columnar
domains in the unit cell. Then we investigate chiral
degeneracy of the hexagonal ground state. Finally,
some issues related to the chirality evolution are
reported. Conclusions are summarized in Concluding
remarks section.

SCFT MODEL
AND COMPUTATIONAL SCHEME

The RCC model and SCFT approach have been
presented by Pryamitsyn and Ganesan [12] and here
will be only brief ly introduced. Differently from [12]
(see also [13]), where 1D and 2D models were
employed, we will consider a 3D system. The system is
composed of n monodisperse RCC chains in
volume V. The coil (A) block is assumed to be com-
pletely f lexible with a Kuhn segment length a, and the
rod (B) block is completely rigid. The coil and rod
blocks consist of fN and (1 − f)N segments, respec-
tively, and therefore the total number of segments in
the copolymer is N. We denote the position of the ith
segment by ri and the orientation of the ith rod by ui.
We neglect the chirality of rod blocks; that is, all cor-
responding functions should be invariant with respect
to f lip u → –u. All lengths are scaled by Rg = a(N/6)1/2

and the relative length of the rod is defined by the
microscopic parameter γ [12].

Since the polymer self-consistent-field theory has
been well developed, we only provide a brief summary
of the SCFT calculations here; readers are referred to
e.g. [22] for detailed derivation and explanation of this
approach. The total system Hamiltonian is assumed to
be H = H(0) + H(1) + H(2), where H(0) comes from
stretching of each chain and specifies the ideal (entro-
pic) contribution, H(1) comes from the effective seg-
ment-segment repulsion that is determined by Flory-
Huggins parameter χ, and H(2) characterizes a Maier–
Saupe (MS)-type mean field orientational interaction.
The strength of the anisotropic orientational interac-
tion favoring the alignment of the rods is quantified by
MS energy parameter μ. The theoretical description of
the phase behavior of RCCs requires the introduction
of a compositional (density) order parameter, φα(r),
and an orientational order parameter, η(r). The η(r)
may vary from 0 in an isotropic phase to 1 when the
segments are aligned perfectly parallel.

As is customary in the SCFT [7], the interactions
between a chain segment and its neighbors in the bulk
are replaced with the interactions of the segment with
external fields wα(r) and M(r) that represent the iso-
POLYMER SCIENCE, SERIES C  Vol. 60  Suppl. 1  20
tropic and anisotropic interactions, respectively, with
all neighbors in a many-chain system and are equiva-
lent to the chemical potential fields conjugated to the
local density fields φα(r) and the local orientational
order parameters η(r), which in turn depend self-con-
sistently on the corresponding potential fields. Note
that M(r) is a tensorial field. In the mean-field
approximation, one makes the assumption that there
is a single set of “saddle point” field configurations
that dominates the partition function [7]. When the
saddle point mean fields w*(r) and M*(r) are known,
in principle, any property of the many-chain system,
including its free energy F, can be accessed. In this
approximation, the SCFT equations are obtained by
minimizing the system Hamiltonian with respect to
the potential fields at the saddle point of H. These
equations are solved numerically by an iterative tech-
nique, which yields density fields and orientational
order parameters at point r. For a 3D system of RCCs,
such calculations can easily become extremely com-
putationally demanding as the size (resolution) of the
simulated system increases, exceeding what conven-
tional small clusters can provide, thus making mas-
sively parallel computing a necessity. As mentioned in
the Introduction, we developed an efficient parallel
algorithm for the large-scale, high-resolution 3D
SCFT simulations [22]. Based on this technique, a
modified diffusion equation was solved using the
pseudo-spectral operator splitting approach [6, 7] and
2D domain decomposition for Fast Fourier Transform
(FFT). The FFT-based trigonometric interpolation
and the Lebedev-Laikov (LL) quadrature [32] were
utilized in this study for evaluating the angle-depen-
dent integrals. In order to reduce the influence of the
computational cell shape/size on final morphologies,
the system free energy was minimized with respect to
the cell parameters [22, 29], using the hexagonal basis

 = D2,  and , where
 is the cell edge length (i = 1, 2, 3) and the basis

of the cell {t1, t2, t3} defines the set of the translation
vectors.

The phase behavior of rod-coil diblocks is deter-
mined by their chemical composition f, the Flory-
Huggins parameter χ and the MS parameter μ. Since
the dimension of the parameter space in our model is
large to explore all possible combinations, below we
will restrict ourselves to the case of relatively weak ori-
entational interaction (μ/χ = 1.3) and the symmetric
diblock copolymers with f = 0.5. We note that the μ/χ
ratio of the order of 1 is quite typical for many RCCs
with the microphase separated morphologies. Repre-
sentative examples are the poly-(diethylhexyloxy-p-
phenylenevinylene)-b-(styrene) (DEH-PPV-b-PS)
block copolymers containing π-conjugated rod-like
segments [33]. It should be stressed that when the μ/χ
ratio is close to unity, the orientational interaction is
not so large that the microphase-separating system
tends to form into a large area of lamellar structures by

2
it ⋅ = 2
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rods aligning with each other. Following Pryamitsyn
and Ganesan [12] the parameter γ was fixed to be γ =
16.33.

In our previous work [22, 26–28], it was shown that
the compositionally symmetric RCCs form the con-
ventional hexagonal mesophase (HEX), which is sta-
ble in the range 8.8 ≤ χN < 13.1. Importantly, the
order-disorder transition (ODT) occurs at much lower
χN than that known for coil-coil diblock copolymers.
Indeed, on the basis of a Landau theory, Leibler pre-
dicted a critical point of microphase separation at
χN = 10.495 and f = 0.5 for a compositionally and
conformationally symmetric f lexible-chain diblocks
[34]. Moreover, a microphase separation critical point
does not exist in a RCC system because RCC diblocks
lack the conformational symmetry (the free energy is
not invariant when the two rigid and flexible blocks
interchange their volume fractions). The chiral mor-
phology HEX* with twisted hexagonally packed
columnar domains (Fig. 1a) arises at χN ≥ 13.1 as a
result of the phase transition HEX → HEX* from the
achiral morphology. In what follows, we will discuss
this chiral structure. It should be noted that the HEX*
structure consists of elliptical cross-sectional colum-
nar domains rather than from geometrically regular
cylinders [22]. Therefore, although the domains are
packed approximately in a hexagonal array, the six-
fold rotation (C6) symmetry about the cylinder axis is
now destroyed. Only a two-fold rotation symmetry
(the C2 point-group symmetry) and a mirror symme-
try still remain.

RESULTS AND DISCUSSION
Chirality in the Strong Segregation Regime

The reasons for the stability of HEX* phase and the
appearance of chirality are easy to understand for the
strong segregation regime, which is difficult to realize
in SCFT calculations. The smectic behavior of layered
RCCs was first studied in the strong segregation limit
by Semenov and Vasilenko for large rod volume frac-
tions [35]. From a microscopic viewpoint, the con-
finement-induced chirality is due to the competition
between the interfacial energy and the elastic stretch-
ing energy of the f lexible coil blocks with a certain
anisotropy of the elastic properties.

In the strong segregation limit, the free energies of
all microphases scale the same way with chain length
N and interfacial tension, so the sharp phase boundar-
ies become independent of the strength of the repul-
sion χ between chemically dissimilar blocks and
depend only on the copolymer composition [36].
Since amorphous and orientationally ordered liquid-
crystalline (LC) regions are completely segregated,
interactions between them proceed at interfaces only.
Owing to the strong stretching of the f lexible blocks in
the amorphous phase, a hierarchy of contributions to
the system free energy is a two-stage. The dominant
POLY
terms are the elastic free energy of the f lexible blocks
and the energy of the interfaces (for example, they are
~(fN)1/3 ≫ 1 per chain in the case of the smectic C
domains), whereas the ideal gas and steric contribu-
tions are on the order of unity (apart from π-conju-
gated rod-like segments). The ideal gas term describes
the entropic losses due to the ordering, and the steric
term is responsible for the free energy gain because of
alignment of the rods (the latter is usually described
either within the Flory or Maier-Saupe approximation
[37, 38]). That is why the LC structure in the strong
segregation regime is enforced by the f lexible blocks
and condition for the dense packing of the rods in the
domains which provides minimum unfavorable con-
tacts between the rod and coil blocks. At the first
glance, nearly symmetric RCCs should form lamellar
structure with the smectic A or C domains where the
rods are organized in mono- or bilayers [37]. However,
even in this case the hexagonal structure is stable: the
HEX* columns longitudinally shrink increasing the
area of the cross-section (it takes an ellipsoid rhombus
shape [22]) and twisting reduces to the formation of
smectic C structure in each cross-layer, however, the
neighbor layers have different directors as schemati-
cally shown in Fig. 2. Such layer-to-layer alternation
of the director in the strong segregation regime (the
pitch of the “helix” on the order of the diameter d) is
driven by the stretching of the f lexible blocks which
becomes lower in comparison with unidirectional ori-
entation of the rods like in the lamellar structure (see
Fig. 2).

The dominant contributions to the free energy per
chain of the lamellar structure

(1)

(2)

are the elastic free energy of the f lexible blocks,
3H2/2a2fN, and the interfacial energy. The space-fill-
ing condition for the amorphous layer determines its
thickness, H = fN  sinα/2d2, and factor 2 in front of
the surface tension coefficient σ corresponds to the
single smectic layer. Minimization of the free energy
with respect to the tilt angle α results in the equilib-
rium value (right hand side of Eq. (1)).

The free energy of the HEX* structure can easily be
estimated if we assume that the f lexible blocks have
one-dimensional stretching like in the lamellar phase
(see Fig. 2)
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Fig. 2. (Color online) (a) Schematic picture of the adjacent layers of the HEX* structure in the strong segregation regime. Rect-
angular areas correspond to one-dimensional stretching of the f lexible blocks. In reality, the area occupied by the coils, is close
to the rhombus-like layer and they are less stretched than in one-dimensional approximation. (b) Different orientations of the
director in the adjacent layers reduce stretching of the coils.

(a)

α

(b)
where t = σ0/σ < 1 and σ0 is the surface tension coef-
ficient of the interfacial regions along the rods (σ0 < σ
[39]). Such approach overestimates the elastic free
energy, which in reality is lower. Figure 2 demonstrates
the difference: one-dimensional stretching neglects
space-filling near the corners, thus resulting in less
space for the chains to explore, whereas the filling of
these regions makes the thickness of the f lexible-chain
corona smaller. Also, the two-dimensional stretching
of the chains in the corner regions is lower than one-
dimensional stretching. However, even such crude 1D
approximation demonstrates stability of the HEX*
structure. The elastic free energy in Eq. (3) is smaller
than that in Eq. (1) because the interfacial area per
flexible chain is two times larger (see Fig. 2). On the
other hand, the increase of the interfacial area leads to
the increase of the energy (the second term in Eq. (3)).
Inequality σ0 < σ (see Ref. [39]) is kept by the fact that
the interface along the rod is “flat”, whereas the ends
of the rods make it “rough”, zigzag-like in the shape.
Comparing Eqs. (1) and (3), one can find that  <
FL, and the real free energy of the hexagonal structure

, having lower stretching of the blocks, satisfies
inequality . Thus, we conclude that in the
strong segregation regime, nearly compositionally
symmetric rod-coil block copolymers should form a
hexagonal structure with twisted columnar domains.

Global and Local Chirality

In this subsection, using the SCFT based results,
we will analyze both global and local chirality of the
hexagonally packed cylinder phase. Our goal is to

HF

�

HF
<�

H HF F
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understand how chirality is distributed across colum-
nar domains in the unit cell. Unlike the qualitative
theoretical formalism outlined in the previous subsec-
tion, SCFT method allows us to obtain more detailed
information about the structural organization of the
system.

Several dozen random starts were made in our
SCFT calculations of compositionally symmetric
RCCs. Having the randomly generated stable or meta-
stable structures, we can select from them the most
stable hexagonal structures with the minimum free
energy. It was found that these minimal free energy
configurations can exhibit various chiral properties. In
other words, a chiral state corresponding to a given
stable structure can be degenerate. Thus, it is instruc-
tive to select and explore such stable hexagonal struc-
tures that have different chiral properties.

Let us consider the unit cell of hexagonal phase.
This cell has the shape of a rectangular parallelepiped
with dimensions X, Y = X and Z (Fig. 3a). The cell
contains two cylindrical domains: one cylinder is
located in the center of the cell and a quarter of the cyl-
inder is located in each of the corners of the cell. Due
to the periodic conditions imposed on the system,
there are only two possible chiral states: homochiral
state HEX* (Fig. 3a) and heterochiral state, which we
will denote as HEX** (Fig. 3b). All the rod-rich
domains of the HEX* phase are twisted in the same
direction (clockwise or counterclockwise). In con-
trast, the half of the cylinders of the HEX** phase is
twisted clockwise (chirality charge qch is −1) and the
other half is twisted counterclockwise (qch = +1).
Consequently, the first structure can be characterized

3
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Fig. 3. (Color online) (a) Homochiral structure HEX* and (b) heterochiral structure HEX**. Dark cylinders show the clockwise
twisting, while light cylinders depict counterclockwise twisting. The unit cell is shown as the rectangular region containing two
rod-rich domains (one cylinder and four quarters of a single cylinder). The truncated subcell depicted by the square is used for
calculation of the local chirality index of a single rod-rich domain.

(a) (b)
as macroscopically homochiral, while the second
structure has only local chirality. This means that the
chirality of the HEX** phase can only be identified on
a local length scale (see the square outlined around the
central cylinder in Fig. 3), whereas the structure as a
whole does not possess chirality because the total
number of positive and negative chirality charges
(right- or left-handed twisting directions) is the same
by definition.

Chirality (“handedness”) is a geometrical-topo-
logical property of many physical systems. Apart from
the practical issue of the experimental identification of
chirality, the natural question arises: How chiral is a
given object, which is sufficiently complicated to be of
interest? Speaking about the quantitative measure of
chirality, it is important to note that there is a strong
belief that chirality is essentially a Boolean data type
and its universal measures are problematic: an object is
either chiral or not. However, it is not the case.
Indeed, the above-mentioned difficulty can be cir-
cumvented because molecular chirality gives rise e.g.
to several chiroptical effects, which, being quantifi-
able, serve to classify substances as more or less chiral,
thereby demonstrating different degree of chirality.

The most common quantitative measures of chiral-
ity are based on continuous pseudoscalar functions
that change sign under space inversion. The well
known Osipov–Pickup–Dunmur (OPD) molecular
chirality index [40] is one of the first pseudoscalar
geometrical measures of chirality which can be calcu-
lated numerically using the molecular structure and
composition. It was scaled in order to enable a com-
parison of chirality for molecules of different size [41,
42] and then successfully used to predict chirality of
various molecules, including proteins [43]. The OPD
functional can be easily calculated for arbitrary molec-
ular systems (discrete sets of atoms), but not for con-
tinuous periodic objects characterized by a density
distribution ρ(r). This chirality measure also ignores
the fact that chirality can manifest itself in a different
manner on different length scales.
POLY
To quantify the degree of chirality, we suggested a
new pseudoscalar functional that may be efficiently
computed for any periodic object specified by the local
density as a function of continuous coordinates [26].
High computational efficiency is achieved by using a
fast Fourier transform. Like the previously proposed
OPD index [40], this chirality index is a pseudoscalar
function, which vanishes if and only if the object is
achiral, and takes equal and opposite values for an
object and its mirror image. However, unlike the OPD
pseudoscalar, our chirality index explicitly depends on
the parameter of the linear scale on which the chirality
is evaluated.

In order to quantify the global and local chirality,
we introduce the corresponding continuous global
and local chirality measures. The fundamental struc-
tural element of a periodic system is a unit cell that
represents the most basic and least volume consuming
repeating structure. The density distribution ρ(r) in
this cell determines all the structural properties,
including chirality of the structure. Therefore, the
unit-cell chirality index can be considered as the
global chirality index (GCI). In the context of the
present discussion, it is necessary to select an individ-
ual object (cylindrical domain) in the unit cell and
estimate its chirality. To that end, we define a square
subcell in the XY plane within the rectangular unit cell
(cf. Fig. 3). This subcell includes an object of interest.
In order to ensure FFT-based calculations, we impose
artificial periodic boundary conditions on the subcell.
The chirality index calculated from the subcell density
distribution can be considered as a local chirality index
(LCI). Importantly, both GCI and LCI should be dis-
tance-dependent quantities. With this in mind, as in
our previous work [26], we introduce the following
distance-dependent chirality index of an arbitrary 3D
object characterized by some density distribution ρ(r)

(4)

where

λ ρ = λ ρ λ ρ1 0( ; , ) ( ; , )/ ( ; , ),G f I f I f
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Fig. 4. (a) Global chirality index as a function of λ, at f = 0.5 and μ/χ = 1.3. χN = (1) 13.1, (2) 13.3, (3) 13.5, (4) 13.7, (5) 13.9,
(6) 14.1, (7) 14.3, (8) 14.5. (b) Local chirality index of two neighboring columnar domains (1 and 2) having chirality charges of
the opposite sign as a function of λ for HEX** morphology, at f = 0.5, χN =13.5 and μ/χ = 1.3.
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which defines the spherically symmetric density dis-
tribution. The normalized density  high-
lights a fuzzy window of the linear scale λ to quantify
chirality relating to this window (for more detail, see
[26]). Note that the calculation of the G functional (4)
for a discrete 3D object defined by n points is equiva-
lent to a full enumeration of all possible (~n4) irregular
tetrahedra, at the vertices of which the local density is
determined. The evaluation of the OPD pseudoscalar
geometrical chirality index [40] is always organized in
this way. For a continuous periodic system defined by
its density distribution ρ(r), the G value in Eq. 4 is nor-
malized weighted sum of chirality indices for an
infinite number of tetrahedra, so that the chirality
index of the system is conditional and characterizes
the preponderance of tetrahedra with one orienta-
tional type over those with other types. Therefore, not
the values of the chirality index themselves but rather
their differences from zero for a given λ are important.
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The G index defined by Eqs. (4)–(7) has the fol-
lowing specific properties: (i) it is a quantitative mea-
sure of chirality—the larger the absolute value of the
index, the more chiral the object; (ii) it vanishes for
any achiral object; (iii) it changes sign when the system
density ρ(r) is replaced by its mirror image ,

 = ; (iv) similarity conversion
 leads to . It should

be borne in mind that because the chirality index G is
a “tetrahedron-based” functional by definition, G = 0
for any one- and two-dimensional objects. Also, we
would like to note that the disadvantage of all pseu-
doscalar chirality measures is related to the so-called
problem of chiral zeros: any chiral set of points can be
continuously transformed into its mirror image with-
out passing a nonchiral state [44, 45]. In other words,
any pseudoscalar chirality index can turn zero despite
the fact that the object is chiral. Pseudoscalar chirality
measures, however, are closely related to chiral physi-
cal properties, such as molecular optical activity, the
spontaneous polarization in the smectic C* liquid
crystal phase [46], etc. Pseudoscalar functionals may
also be used to characterize the effects of relatively
small changes of the structure (including those occur-
ring in microphase segregated copolymers) on macro-
scopic chiral properties.

We begin with the analysis of the global chirality
index GCI calculated for homochiral phase HEX* as a
function of λ at different values of χN. Some represen-
tative results are shown in Fig. 4a.

The trends displayed in this figure are not heuristi-
cally obvious. As seen, the GCI value practically van-
ishes when λ < 0.5 and λ > 3.0. This means that the

ρ�( )r
λ ρ�( ; , )G f − λ ρ( ; , )G f

ρ = ρ�( ) ( )Cr r λ ρ = λ ρ�( ; , ) ( ; , )G f G C f
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Fig. 5. (Color online) Orientation vector field (represented
by arrows) for one of the domains in the hexagonal phase
at χN = 14 and μ/χ = 1.3. The field is represented by
arrows; the solid surface defines the boundaries of the
domain. The maximum value of the scalar orientational
order parameter is ≈0.68. Two projections are shown.
chirality manifests itself on the length scale of the
order of unity (we recall that all lengths are measured
in units of the radius of gyration Rg). An increase in χN
sharpens the G profile and is accompanied by an
increase in the absolute value of this index.

It is appropriate to consider the GCI value as the
level of helicity relating to the chirality length scale λ.
As seen in Fig. 4a, an increase in χN has a very weak
effect on the position of the global extremum. This
indicates that the characteristic chirality length scale,
having once emerged, remains nearly unchanged. On
the other hand, an increase in the absolute value of
GCI with increasing the parameter χN can be inter-
preted as an increase in the contrast of the chiral struc-
ture. Figuratively speaking, if we identify a twisted
cylindrical domain with a screw, then its thread
becomes deeper with increasing the incompatibility of
f lexible and rigid blocks; that is, the helical motif
becomes more contrast. This behavior is due to an
increase in the sharpness of boundaries between
regions occupied by the microphase segregated blocks.

We now turn to the analysis of the globally achiral
morphology HEX** with the alternating twisted cylin-
ders (Fig. 4b). In this case, we again consider the rect-
angular unit cell, but now it contains two cylinders
with opposite twisting directions. It was found that in
contrast to the homochiral hexagonal phase, the GCI
value calculated for the HEX** phase is very close to
zero for any χN considered in the present study. At
χN > 13.1, the zero value of GCI is provided by the
mutual cancellation of contributions from the oppo-
POLY
sitely twisted cylinders. Nevertheless, the HEX**
phase is locally chiral in the sense that the twisting of
each cylinder may be revealed via the calculation of
the local chirality index in a square subcell surround-
ing the specified cylinder. The subcell dimensions
were chosen as Xsc = Ysc = X/2 and Zsc = Z. Such a
choice ensures that two conditions are met: (i) the
individual rod-rich columnar domain is completely
placed in the subcell and (ii) the domains with the
opposite twisting in the adjacent subcells are isolated
from each other.

Figure 4b presents the value of LCI calculated at
χN = 13.5 for two domains having chirality charges of
the opposite sign. There is a marked difference
between the values of GCI and LCI (compare
Figs. 4a, 4b). This difference is due to the use of artifi-
cial periodic conditions. Although these periodic con-
ditions make some perturbation, they still allow us to
determine the correct chirality distribution within
the domain core. From the data shown in Fig. 4b, we
conclude that the two curves relating to the columnar
domains of the opposite intradomain twist are in fact
mirror images of each other with respect to the hori-
zontal axis. The degree of chirality is maximum
within the rod-rich domain and quickly falls off at its
periphery.

Of particular interest is the local organization of the
rigid blocks inside the rod-rich domains. The saddle-
point orientation tensor was diagonalized to give its
three eigenvalues ξ1(r), ξ2(r), and ξ3(r) and three cor-
responding eigenvectors representing the principal
directions of orientation. The largest eigenvalue
ξmax(r) was normalized by the volume fraction of the
rod segments and multiplied by 3/2. The obtained sca-
lar order parameter provided a measure of how well
the rods are locally ordered. Having the eigenvectors
corresponding to ξmax(r), one can directly visualize
both the value of ξmax(r) and its direction at each grid
point r to create an 3D representation. As an example,
Fig. 5 presents the vector orientation field for one of
the domains.

It is seen that within the columnar domain, the
vector orientation field is distributed with a well-pro-
nounced regular twist about the cylinder axis, forming
a helical structure motif. The pitch of the helicoidal
twist is determined by the balance of isotropic and
anisotropic interactions. Importantly, the surface ori-
entation of vectors is typically tangential. With per-
pendicular orientation relative to the interface, there
would be cavities between adjacent rods, which is
impossible due to incompressibility of the system.
Therefore, the rods are forced to tilt in the tangential
direction to avoid steric conflicts.

Thus, the performed SCFT calculations demon-
strate that chirality in the unit cell of hexagonally
packed cylinder phase can develop in two different
ways, leading to the formation of either homochiral
state with qch = ±2 or heterochiral (locally chiral) state
MER SCIENCE, SERIES C  Vol. 60  Suppl. 1  2018
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Table 1. Theoretical probability distribution of the chirality charge qch, the corresponding empirical frequency and its stan-
dard deviation

Chirality charge, 
qch = n – m

, 
theoretic probability

ν, empirical frequency σ, standard deviation of 
empirical frequency

−8 0.00391 0.03 0.00241
−6 0.03125 0.02 0.01740
−4 0.10938 0.09 0.03121
−2 0.21875 0.20 0.04134

0 0.27344 0.26 0.04457
2 0.21875 0.18 0.04134
4 0.10938 0.15 0.03121
6 0.03125 0.04 0.01740
8 0.00391 0.03 0.00241

= = −P( )chp q n m
with qch = 0. However, the question remains: how are
the twisted domains with different chiral charges dis-
tributed in a macroscopic system? Obviously, both
regular and random distributions are possible. Since
any iterative scheme does not provide an absolutely
accurate result, the observed properties, including the
chirality distribution, are of a statistical nature. There-
fore, large cell SCFT calculations are needed.

Chiral Degeneracy of the Ground State

In order to answer the above question, we need to
perform SCFT calculations for the cell containing a
sufficiently large number of rod-rich domains. To this
end, we increased the dimensions of the computa-
tional cell by four times. A series of runs consisting of
many independent starts with a specifically prepared
initial state was carried out. Initial fields reproduced
the conventional achiral hexagonal phase HEX with 8
hexagonally packed cylinders. A random (white) noise
of 3% level was added to the fields, and a chaotic initial
orientation of rodlike blocks was assumed. The value
of χN was set to 13.5.

Preliminary calculations showed that the choice of
the iterative scheme plays an essential role. Our
scheme included a series of “slow” Picard iterations
and subsequent rapidly converging Ng-type iterations.
The Picard iterations were intended to find new possi-
ble morphologies, while the Ng iterations were neces-
sary for “fine tuning” of the predicted structure. We
performed a sufficiently large number of Picard itera-
tions to allow iterative sequence to wander in the state
space and reveal the sets of possible solutions. If the
Ng iterations are switched on too early, the conven-
tional achiral hexagonal phase HEX is obtained. We
established that about 5000 Picard iterations and
~103 Ng iterations are enough to generate the required
number 100 of structures with different distribution of
the chirality sign in cylindrical domains.
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There are 256 equiprobable combinations of chi-
rality states for 8 objects. We denote by HEXmn the set
of all realizations of chirality charge including m
domains twisted clockwise and n domains twisted
counterclockwise. The number of all realizations
belonging to the set HEXmn is (m + n)!/m!n!, where
m + n = 8, and the corresponding total chirality charge
is given by qch = n – m. If all chiral combinations are
equiprobable, the value of the chirality charge should
obey the well known binomial distribution

(8)

Taking into account all possible rotations and reflec-
tions, there are potentially several dozen different chi-
ral states of 8 domains in the computational cell.

We define the empirical frequency of the event
qch = n – m as the number s of successes (realizations
of this event) divided by the total number of the per-
formed SCFT runs, k. It is clear that the value of s is
the random variable, which is binomially distributed
with parameters  (probability of
success) and k (number of runs). Thus, the empirical
frequency ν, its mean E[ν] and variance σ2 are
defined as

(9)

Table 1 shows the theoretical values of the proba-
bility distribution of the chirality charge and the pre-
dicted empirical frequencies with their standard devi-
ations found in our series of SCFT runs with indepen-
dent starts.

Except for the extreme values of the chirality
charge (+8 and –8), the deviation of the empirical fre-
quencies from the binomial distribution is of the order
of the standard error. The deviations outside the 3σ
confidence interval observed for the extreme values of
the chirality charge may result from a weak interaction
between neighboring columnar domains. Thus, the

− += − = ( )!P( ) 2 .
! !

n
ch

m nq n m
m n

= = −P( )chp q n m

ν = ν = σ = −2/ , E[ ] , (1 )/ .s k p p p k
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Fig. 6. Distribution of the chirality charge qch: theoretical probability (dashed line), empirical frequency (solid line). 
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hypothesis that the system forms a racemic mixture of
chiral cylinders, seems plausible. The chirality charge
distribution is shown in Fig. 6.

The solid line denotes the empiric distribution
found in our SCFT calculations, and the dashed line
corresponds to the theoretical binomial distribution. It
seems evident that with an increase in the number of
cylinders in the cell, the distribution of the chirality
charge will become increasingly narrow, tending to the
delta function centered at the origin.

In our previous work [22, 27, 28], we hypothesized
that the chiral hexagonal mesophase is 3D macro-
scopically homochiral and that chirality arises from an
achiral state as a result of spontaneous symmetry
breaking with random selection of the twist direction.
However, as the present SCFT calculations reveal, the
chirality of the hexagonal phase does not extend the
whole periodic simulation cell in the lateral (XY)
direction, thereby not showing a macroscopic three-
dimensional character. An effective confinement of
the rod-rich cylindrical domains surrounded by the
coil-rich polymer matrix induces a locally chiral
structure with random choice of the chirality charge
for each of the domains. All structures belonging to
this structural class have the same free energy within
the calculation accuracy and, consequently, they are
degenerate. Thus, the macroscopic system can exist in
two enantiomeric forms, although necessarily as a
racemic mixture with equal weights of right-handed
and left-handed states in the absence of any external
influences that might lead to a preference of one rather
than the other. On the other hand, an individual cylin-
drical domain can in principle be arbitrarily long, so
POLY
that in formal sense we can regard it as a macroscopi-
cally homochiral quasi-one-dimensional object.

Pseudo-Dynamical Evolution of Chirality

It is accepted that the free energy obtained from
SCFT calculations provides an accurate description
even out of equilibrium, i.e., not close to a saddle
point for a given set of parameters [7]. Based on this
assumption, it is interesting to understand how chiral-
ity arises from the initial achiral state and how it
evolves far from equilibrium. The density field, from
which chirality is evaluated, is natural for building
models of pseudo-dynamical (kinetic) evolution. We
stress that the “SCFT dynamics” are not physical
dynamics and that our goal here is simply to trace how
local chirality changes in the course of the SCFT iter-
ative process. Specifically, we will study in this subsec-
tion how the achiral hexagonal structure is trans-
formed into a three-dimensional chiral morphology of
twisted domains through spontaneous symmetry
breaking. How the chiral bias propagates and transfers
from molecular level to chiral superstructure or phase
from self-assembly is very important for many chemi-
cal and biological processes.

The Picard iterative scheme can be interpreted as a
kind of pseudo-dynamical nonequilibrium evolution,
in which the local measure of chirality LCI varies
depending on the number of iterations t. As an initial
configuration, we took the hexagonal structure con-
sisting of 8 achiral cylinders discussed in the previous
subsection. The chirality index LCI was calculated
separately for each of the 8 cylinders. For each itera-
MER SCIENCE, SERIES C  Vol. 60  Suppl. 1  2018
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Fig. 7. Maximum absolute value of LCI (with its sign) as a function of the Picard iteration step for 8 columnar domains in the
computation cell, at fC = 0.5, χN =13.5 and μ/χ = 1.3. Each curve refers to a single domain. The insert shows the evolution of
chirality for one of the domains.
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tion step, we determined the value of the linear scale
λmax at which the absolute value of the LCI is maximal.
The signed values of LCI(λmax) obtained in this way
are shown in Fig. 7.

It is seen that within the first ≈1000 iterations,
LCI(λmax) is close to zero. Then, the LCI(λmax) func-
tions more and more deviate from zero and all the cyl-
inders acquire clearly expressed twist direction: half of
them is twisted clockwise, while the remaining half is
twisted counterclockwise. Hence, the initial achiral
state proved unstable for the used parameter set. The
behavior of the system at the very early stages of evolu-
tion is of particular interest. The insert in Fig. 7
demonstrates the initial evolution of chirality for one
of the domains. As seen, the system flips between the
two chirality states at the initial stage of the evolution-
ary process: the LCI(λmax) value repeatedly changes its
sign, passing through zero.

From the analysis of many pseudo-dynamic trajec-
tories, we can conclude that the chirality sign is chosen
randomly: each of the possible twist directions is
equally likely to occur, but nevertheless only one of
them is finally chosen. By selecting a particular direc-
tion in space, the orientational ordering of rigid blocks
breaks the initial symmetry of the system. It seems,
such a behavior is in line with the concept of sponta-
neous symmetry breaking (SSB), which is based on
the assumption of the instability of the achiral state.
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The basic principles that guide such evolutionary sce-
nario include the notion of statistical f luctuations,
namely that in an initial achiral ensemble of a given
type, there will always be an excess of one enantiomer,
particularly apparent in small ensembles, and that
such fortuitous excess may be greatly amplified. In
other words, it is assumed that any arbitrarily small
deviation of chirality from the instable achiral state
can lead to a complete predominance of one of the
chiral forms in the final state due to the mechanism of
asymmetric (“autocatalytic-like”) amplification
building up upon initial imbalances in the right-
handed and left-handed composition. This means that
in the SSB scenario, the “sign of chiral purity” is the
result of remembering a random choice of the sign of
the small f luctuations with the subsequent amplifica-
tion of this choice.

However, as our data indicate, not all small sym-
metry violations are amplified over a non-equilibrium
evolution to reach the final chirally-pure state. It turns
out that there is no ability to amplify all weak chiral
f luctuations at the initial stage; instead, we more likely
observe a bifurcation process in which there exists
some waiting time t* for the onset of irreversible
changes in chirality. Even if symmetry violations hap-
pen at t < t*, in relation to the possibility of “evolution-
ary recovery”, the situation in a certain sense is still
“reversible”. On the other hand, when t > t*, any ran-
dom choice of a given chiral sign, even with a very
18
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small amplitude of the degree of chirality, becomes
final and irreversible. The subsequent system evolu-
tion is controlled precisely by this small chirality
amount, which is a necessary prerequisite for the irre-
versible violation of mirror symmetry. As can be
expected, the reason for this amplification is that the
achiral medium “follows” the locally induced helicity,
which adjusts to itself the rigid polymer segments
within a single rod-rich domain. In a sense, such
cooperative behavior evokes associations with the well
known “Sergeants-and-Soldiers” principle [47]: as a
few sergeants can control the movements of large
numbers of soldiers, so do the few ordered regions
control the packing of large numbers of the remaining
unordered rods, the latter unable to escape this influ-
ence.

Based on the data presented in subsections Chiral-
ity in the strong segregation regime and Global and local
chirality (cf. also Fig. 5), we can speculate that the ini-
tiation of chirality may be attributed to the ordering of
rods near the rod/coil interface. Chiral symmetry
breaking in a system of achiral molecules at a liquid-
solid interface is known for molecules with certain
symmetry characteristics [48].

CONCLUDING REMARKS

We have investigated at different length scales the
properties of the chiral hexagonal nanostructures aris-
ing as a result of the interplay between orientational
ordering and microphase separation in the system of
diblock rod-coil copolymers (RCCs) with achiral
blocks. Major results obtained in the present paper can
be summarized as follows.

1. Based on the liquid-crystalline model of
Semenov and Vasilenko [35], we have developed a
simple theoretical approach that makes it possible to
describe the structure formation in diblock copoly-
mers containing strongly segregated f lexible and rigid
blocks. It was shown that in the strong segregation
regime, nearly compositionally symmetric RCCs
should form a columnar structure with twisted
domains, whereas there is an interesting suppression
of the lamellar morphologies with respect to the
columnar one. This is due to a delicate balance
between the interfacial free energy and the elastic
stretching energy of the f lexible coil blocks with a cer-
tain anisotropy of the elastic properties. Chirality in
the columnar domains is induced by a twist in the rel-
ative orientation of the rods, which propagates over
macroscopic distances along the domain.

2. The high-resolution three-dimensional SCFT
simulations, coupled with calculations of the degree of
chirality were used to quantify a range of chiral prop-
erties of the hexagonal mesophase with twisted
domains. The interactions and the excluded volume
effects were treated in an approximate manner via the
Flory–Huggins repulsive interaction between the
POLY
blocks, the Maier–Saupe mean field orientational
interaction accounting for a thermotropic isotropic-
nematic transition and the incompressibility con-
straint. It was demonstrated that chirality in the unit
cell of the hexagonally packed cylinder phase can
develop in two different ways, leading to the formation
of either homochiral state or heterochiral (locally chi-
ral) state. Thus, chiral polarization, which occurs
when the rigid and flexible blocks are strongly incom-
patible, causes a transition to two degenerate chiral
states.

3. Our large cell SCFT calculations performed for
the system containing 8 columnar domains revealed
that the chirality of the hexagonal phase does not
extend the whole periodic simulation cell in the lateral
direction, thereby not showing a macroscopic three-
dimensional character. The magnitude of the cell chi-
rality charge obeys the binomial distribution with ran-
dom selection of the chirality charge (twist direction)
for each of the rod-rich domains. We expect, there-
fore, that in a sufficiently large system, chiral cylinders
should form a racemic mixture with equal weights of
right-handed and left-handed states and the delta-
function-like chirality charge distribution centered at
zero. Although 3D homochirality is only the chance
aided by luck, an individual domain can in principle
be arbitrarily long, so that in formal sense we can
regard it as a macroscopically homochiral quasi-one-
dimensional object: a tendency to the confinement-
induced twist at the molecular scale of rigid chain seg-
ments reshapes the structure and symmetry of the
ordered state on much larger length scales.

4. We have discussed a model of pseudo-dynamical
structural evolution aimed at understanding of how
chirality arises from the initial achiral state and how it
evolves far from equilibrium. In contrast to the stan-
dard scenario of spontaneous symmetry breaking,
which assumes that the “sign of chiral purity” is the
result of remembering a random selection of the sign
of the small f luctuations occurring in the initial state
with the subsequent amplification of this selection,
our data indicate that not all small symmetry viola-
tions are amplified over a nonequilibrium evolution to
reach the final chirality state. Instead, at the initial
stage of the evolutionary process, there exists some
waiting time for the onset of irreversible changes in
chirality; during this time the system flips between the
two chirality states.
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