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Relativistic and non-relativistic geodesic equations(x)
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Summary. - It is shown that any dynamic equation on a configuration space
of non-relativistic time-dependent mechanics is associated with connections on its
tangent bundle. As a consequence, every non-relativistic dynamic equation can be
seen as a geodesic equation with respect to a (non-linear) connection on this tangent
bundle. Using this fact, the relationship between relativistic and non-relativistic
equations of motion is studied.

PACS 02.40.Hw - Classical differential geometry.
PACS 03.30 - Special relativity.
PACS 03.50 - Classical field theories.
PACS 04.20.Cv - F\rndamental problems and general formalism.

1. - Introduction

In physical applications, one usually thinks of non-relativistic;nechanics as being an
approximation of small velocities of a relativistic theory. At the same time, the velocities
in mathematical formalism of non-relativistic mechanics are not bounded. It has long
been recognized that the relation between the mathematical schemes of relativistic and
non-relativistic mechanics is not trivial.

A configuration space of a non-relativistic time-dependent mechanics is a bundle Q -+

R with an rn-dimensional typical fibre M over a l-dimensional base R, treated as a
time axis. This configuration space is provided with bundle coordinates (t,qi). The
corresponding velocity phase space is the first-order jet manifold .rr Q of sections of the
bundle Q -+ R [1-6]. It is coordinated by (t,,qo,ql). As is well known, a second-order
dynamic equation on a bundle Q -+ R is defined as a first-order dynamic equation
on the jet manifold JLQ, given by a holonomic connection ( on JrQ -+ R. We show
that every dynamic equation on a configuration space Q defines a connection 76 on the
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affine jet bundle JrQ + Q, and ai,ce uersa. Then, every dynamic equation orl Q can be
associated with a (non-linear) connection K on the tangent bundle TQ + Q, and uice
nersa. Moreover, it gives rise to an equivalent geodesic equation on TQ with respect to
an above-mentioned connection K.

Let now X be a 4-dirnensional world manifold of a relativistic theory, coordinated by
(r^ ). By an equation of motion of a relativistic system is meant a geodesic equation on the
tangent bundle T X of relativistic velocities with respect to a connection K . It is supposed
additionally that there is a pseudo-Riemannian metric g of signature (+,- - -) inTX
such that a geodesic vector field does not leave the subbundle of relativistic hyperboloids

W s : { i ^ e  f X I  g x p r ^ h u  - 1 }

in TX.
Let now a world manifold X admit a projection X i R, where R is a time axis.

One can think of the bundle X -> R as being a configuration space of non-relativistic
mechanical system. There is the canonical imbeddin g of Jr X onto the affine subbundle

( 1 )

(2) f t o  - ! , r ' : r b

of the tangent bundle ?X (see (5) below). Then one can think of (2) as the 4-velocities
of a non-relativistic system. The relation (2) differs from the familiar relation between
4- and 3-velocities of a relativistic system. In particular, the temporal component r0 of
4-velocities of a non-relativistic system equals 1 (relative to the universal unit system).
It follows that the 4-velocities of relativistic and non-relativistic systems occupy different
subbundles of the tangent bundle ?X.

Thus, both relativis.tic and non-relativistic equations of motion can be seen on the
tangent bundle TX,but their solutions live in the different subbundles (1) and (2) of
T X . We make use of this fact in order to study the relationship between relativistic and
non-relativistic equations of motion.

Note that relativistic equations, expressed into the 3-velocities it' lso of a relativistic
system, tend exactly to the non-relativistic equations on the subbundle (2) when ro + L,
goo ) l, i.e. where non-relativistic mechanics and the non-relativistic approximation of
a relativistic theory coincide only.

Throughout the article, the notation 0l0q^ - 0r ,AlAd^ - 6r is used.

2. - Geometric interlude

We point out several important peculiarities of bundles over R. The base R of Q + R
is parameterized by a Cartesian coordinate t with the transition functions tt = t * const.
Hence, R is provided with the standard vector field 0r and the standard l-form dt. The
symbol dt also stands for a pull-back of dt onto Q.

Any fibre bundle over R is obviously trivial. Every trivialization

, b t Q e R x M

yields the corresponding trivialization of the jet bundle

J t Q = H x T M ,  d i : q l .

(3)

(4)
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There is the canonical imbedding

r - d t s (a ,+ r , 0 )

on a fibre bundle Q -> R is identified with a nowhere vanishing horizontal vector field

75r

(5)  A:  JLe + Te,
) :  ( t ,  q i , q l )  +  ( r ,  q d , i : L , q n  _ q l ) ,  ) , : d , t  _ 0 t + q l } t ,

where d6 denotes the total derivative. Fhom now on, we will identify the jet manifold
Jr g with its image in Te.

The affine jet bundle JrQ -> Q 'is modelled over the vertical tangent bundle Ve of
Q -> R. As a consequence, we have the canonical splitting

a : VsJLe = JLe 
6ve, "(q) 

:  0i. ,

of the vertical tangent bundle VeJtQ of the a,ffine jet bundl e Jre + e. Then the exact
sequence of vector bundles or'"t ih. composite bundle J'Q + d - R (see (16) below)
reads

o _ 1  _ l

o -r veJ'e 4v t'e ) tre 
6ve 

-+ o.

Hence, we obtain the linear endomorphism

6  - i , o a - L  o T t v  i V J r e  
, i V l r e ,  6 o 0 : 0 ,

of the vertical tangent bundle vJrQ of the jet bundle Jre + R. This endomorphism
can be extended to the tangent bundle TJte as follows:

(6) 6(0t) - -q\al, O@,) _ 0;, 6(0!) _ s.

Due to the monomorphism ,\ (5), any connection

(7)

. (8) |  :  0t  +l i0t

on 8. This is the horizontal lift of the standard vector field 0t on R by means of the
connection (7). Conversely any vector field I on Q such that dtJl - 1 defines a connec-
tion on I -+ R. Accordingly, the covariant differential associa[ed with a connection f
on Q + R takes its values into the vertical tangent bundle of e + R:

Dr :  JLe 
dVe, 

qi  o Dr _ ql  - to.

Proposi,tion 1[4,5]. Each connection f on a bundle Q + R defines an atlas of local
constant trivializations of Q + R such that | - Et with respect to the proper coordinates,
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and u'ice uersa. In particular, there is one-to-one correspondence between the complete
connections I on Q -+ R and the trivializations of this bundle.

Let Jr Jr Q be the repeated jet manifold of a bundle Q -+ R. It is coordinated by
(t,,qo,o1,uU),qi). There are two affine fibrations

11 : Jr J'Q -+ Jr Q,, ql o nn : Ql,

Jtnt : Jt JLQ -+ JrQ,, qi " Jrrl : a?D.

They are isomorphic by the automorphism k of. Jt"IlQ such that

( 9 )  q i o k : a i D , ,  a ? , i l o k : q l ,  q l r " k : q i t .

The underlying vector bundle of the affine bundle Jt JtQ -+ JlQ ts V JrQ = JLVQ.
ny l$lrQ is meant the first-order jet manifold of the affine jet bundle JrQ -+ Q.

The adapted coordinates on J$JrQ arc (q^,ql,,gir), where we use the compact notation

(q^:o - t, Qi).
The second-order jet manifold J2Q of a bundle Q -+ R is coordinated by (t, qi , qi, ql).

The affine bundle J'Q + JrQ rs modelled over the vector bundle

J t Q  , v Q  +  J t Q .
a

There are the imbeddings

fi e l) r J1e l\ vqrg = T'e c TTe ,,
( 1 1 )  \ 2  :  ( t , , q i , , q l , , q l )  , +  ( t , q o , q i , , i  -  l , q i  :  q l , q \ :  Q l ) ,

( r 2 )  T \ o  \ 2 :  ( t , q i , q l , , q l )  +  ( t , , q o , i  - " t  -  r , d u  : & i  :  q l , I  - 0 , , i 0  :  q \ , r ) ,

where ( t ,qo, i ,qo,Z,Ai , [ ,Qi)  arcthe holonomic coordinates on TTQ,V7TQ is the vert ical
tangent bundle of TQ + Q, andT2Q is a subbundle of TTQ, given by the coordinate

relation i -7.

Due to the morphism (11), a connection { on the jet bundle J'Q + R is represented
by a horizontal vector field on "/1Q such that (l d,t: L A connection { on ,/1Q -+ R is
said to be holonomic if it takes its values into J2 Q.

Any connection f (8) on a bundle Q -+ R gives rise to the section Jlf of the affine
bundle J'nt and, by virtue of the isomorphism k (9), to the connection

J1f - ot + ti o.i + dfi al

on the jet bundle JrQ -+ R.
Here, we also summarize the relevant material on composite bundles (see 14,,71 for

details). Let us consider the composite bundle

Y - + E - + X ,

(13)

(14)
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where Y -+ E and E -) X are bundles. It is equipped with bundle coordinates
(n\,o*,yi) where (rp,,o*) are bundle coordinates on the bundle X -+ X such that
the transition functions o^ -+ o'*(r\,ok) are independent of the coordinates gri.

Let us consider the jet manifolds JtE, $Y and JLY ofthe bundles ! ) X,Y +E
and Y ) X, respectively. They are coordinated by

( r \ , , o ^ , o T ) ,  ( r \ , o ^ , a i , m , y x m ) ,  ( r \ , o * , u i , o T , a \ ) .

We have the following canonical map [8]:

( 1 5 )  p : J r ' i x $ Y ? J ' Y ,  a \ " p - a ' ^ o T + m .

Given a composite bundle Y Q\, we have the exact sequence

(16) 0  + V > Y  - + V Y  + Y  x V E  4  0 ,
sr

&^ :  q^, ,  , i^  :  E^(qr,d\ .

where V>Y is the vertical tangent bundle of Y -+ X. Every connection

(LT) /2 - dr^ I (d.r + fr^a; * d,o* I (a- + A'*Ai)

on Y -+ X determines the splitting

v Y  - v z Y @ A > ( Y  x I / X ) ,
Y D

iu\o + o*0* - (ti - A'*a\\t. * b* (0* + A',,00),

of the exact sequence (16). Using this splitting, one can construct the first-order differ-
ential operator, called the vertical covariant differential,

(18) f i :  Jry -+T*x?vry,, f i  -d,r^ e(yi - fr^- A'*of)\ i ,

on the composite bundle Y + X.

3. - Geodesic and second-order equations on a manifold

Let l[ be a manifold, coordinated by (q]). W. recall some notions.

Defini,tion 2. A second-order equation on a manifold N is said to be an image E("N) of
a holonomic vector field

E - d l d r  + u ^ 0 7

on the tangent bundle 7l'I. It is a closed imbedded subbundle of TT N -+ T IV , given by
the coordinate conditions

(1e)
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By a solution of a second-order equation on l/ is meant a curve c : 0 -+ l/ whose
second-order tangent prolongation c lives in the subbundle (19).

Given a connection

(20) K - d,q^ I (d.r + K|dj,.)

on the tangent bundle ?l[ + l[, let

(2r) k : T I Y  x T l /  + T T I Y
l{

be the corresponding linear bundle morphism over 7l/ which splits the exact sequence

0 --+ VNT N ,-+ TT N ---+ T IV x T N ---+ 0.
N

Definiti,on 3. A geodesic equation on 7l[ with respect to the connection K is defined as
the image

&, _ qr,, dt' _ Klq^

of the morphism (21) restricted to the diagonal TI{ CTI{ x TI{.

By a solution of a geodesic equation on 7l[ is meant a geodesic curve c : 0 J N,
whose tangent prolongation c is an integral section (a geodesic vector field) over c C ly'
for the connection K. The geodesic equation (22) can be written in the form

q^oxq' - KKd^,

where by qp(q') is meant a geodesic vector field (which exists at least on a geodesic
curve), while ,ird.l is a formal operator of differentiation (along a curve).

It is readily observed that the morphism k lr* is a holonomic vector field on ?l/.
It follows that any geodesic equation (21) on 7l/ is a second-order equation on I/. The
converse is not true in general. Nevertheless, we have the following theorem.

Theorem f [9]. Every second-order equation (19) on a manifold l[ defines a connection
Ks on the tangent bundle T N + l[ whose components are

(22)

(23) KK : t a^=,

However, the second-order equation (19) fails to be a geodesic equation with respect
to the connection (23) in general. In particular, the geodesic equation (22) with respect
to a connection K determines the connection (23) on 7l/ -+ l[ which does not neces-
sarily coincide with K. A second-order equation E on I/ is a geodesic equation for the
connection (23) if and only if E is a spray, i,.e. lu,,E] : E, where u - q^A^ is the Liouville
vector field on ?l[. In sect. 5, we will improve Theorem 4.
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4. - Dynamic equations

Let Q -+ R be a bundle coordinated by (t,qi).

755

Definition 5. A second-order differential equation on Q J R, called a dynamic equation,
is defined as the image eQtq C J2Q of a holonomic connection

(24) t : ot + qio, + ei (t,qj ,qrol

on ,/1Q -+ R. This is a closed subbundle of. JzQ J R, given by the coordinate relations

(25) q\,t : €i (t,, qi , qi).

A solution of the dynamic equation (25), called amotion, is acurve c: 0 -+ Q whose
second-order jet prolongation J2c ' 0 -+ JrQ Iives in (25).

One can easily find the transformation law

(26) qloi : €'' , €'o : (€i 0i + qltq! 0i0n + 2q!r0i0t + 01')q'o (t, qi )

of a dynamic equation under coordinate transformations qi + q'i'(t,qi).
A dynamic equation { on a bundle Q + R is said to be conservative if there exists

a trivialization (3) of Q and the corresponding trivialization (4) of JLQ such that the
vector field { (24) on JrQ is projectable onto M. Then this projection

E{ -  q iot  + €i@j ,q j )oo

is a second-order equation on the typical fibre M of Q. Conversely, every second-order
equation E on a manifold M can be seen as a conservative dynamic equation

(27) €= - 0t + qi\,i + ui\i

on the bundle R x M -+ R in accordance with the isomorphism (4).

Proposi,tion 6. Any dynamic equation on a bundle Q -+ R is equivalent to a second-order
equation on a manifold Q.

Proof. Given a dynamic equation { on a bundle Q -+ R, let us consider the diagram

J'Q ---+ T'Q

( 2 8 )  € 1  1 =
ie 4 rlq

where E is a holonomic vector field on TQ, and we use the morphism (12). A glance at the
expression (12) shows that the diagram (28) can be commutative only if the component
E0 of a vector field E vanishes. Since the transition functions t -+ tt are independent of
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q', such a vector field may exist on TQ. Now the diagram (28) becomes commutative if
the dynamic equation { and a vector field E fulfill the relation

It is easily seen that this relation holds globally because the substitution of qi - qt inro
the transformation law of a vector field E restates the transformation law (26) of the
holonomic connection {. In accordance with the relation (29), a desired vector field E
is an extension of the section T),o )z o € of the bundle ffQ -+ TQ over the closed
submanifold JrQ CTQ to a global section. Such an extension always exists, but is not
unique. Then, the dynamic equation (25) can be written in the form

(30) ^ i  - = i  Iq f i  -  -  l i : l ,q j :q l

It is equivalent to the second-order equation on Q

(2e)

(31)

(32)

€ i  :  z i ( t ,q j  , i  -  l ,q j  -  q ! r ) .

f  : 0 ,  t : L ,  d ' : E '

^y : JLQ -+ JbltQ, 'y : d,q^ I (E.r + $0|),

Being a solution of (31), a curve cin Q also fulfills (30), and ai,ce uersa.

It should be emphasized that, written in the bundle coordinates (f,qi), the second-
order equation (31) is well defined with respect to any coordinates on Q.

5. - Dynamic connections

To say more than Proposition 6, we turn to the relationship between the dynamic
equations onQ and the connections on the affine jet bundle JrQ -+ Q. Let

be such a connection. Its coordinate transformation law is

(33) l l :  ( l iq, i fr+ trqlr i)#

Propos'iti,on 7. Any connection ^y (32) on the affine jet bundle J1Q + Q defines the
holonomic connection

(34) €z : ot * qlor + 03 + qrtf)at

on the jet bundle JrQ -+ R.

Proof . Let us consider the composite bundle J'Q -+ Q -+ R and the canonical morphism
p (15) which reads '

(35) p:  J$J|Q > @^,qi ,q\r)  '+ (qr,u\ ,oiq:  e\ , ,qfu:  q| t+ qlr$i  e J2Q.

A connection 7 (32) and the morphism p (35) combine into the desired holonomic con-
nection €., (34) on the jet bundle JrQ -+ R.
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It follows that each connection 7 (32) on the affine jet bundle JLQ + Q yields the

dynamic equation

(36) Qiit : (r3 + qltf)

on the bundle e -+ R. This is exactly the restriction to J2 Q of the kernel Ker fi', of the

vertical covariant differentia! D., (18) defined by the connection 7:

, 0., , Jt JtQ -+ vqJtQ, q\" fi., : ql,t - "Y3 - qiil'

r. Therefore, connections on JLQ + Q arc also called dynamic connections (one should

distinguish this terminology from that of [2]). of course, different dynamic connections

may lead to the same dynamic equation (36)'

proposi,ti,on 8. Any holonomic connection { (24) on the jet bundle JtQ -+ R yields the

dynamic connection

|  /  1  : . . \  , l  . i  f ^  r  I

(37) 'vc : dt e lat* (€' - )olaie') ut)+ dqi * L', 
+ ,aie'all

on the affine jet bundte JLQ -+ Q'

P r o o f . G i v e n a n a r b i t r a r y v e c t o r f i e l d u _ a i \ t + b i a t o n t h e j e t b u n d l e J l Q + R , I e t
us put

/c(r) - [f ,0(")] - A([€, u]) : -ai\t + (bi' - oi ati€u)at,

where 0 is the endomorphism (6). we come to the endomorphism

I s :VJLA  r1vJ 'Q ,
14 : Qio,i + d\o! + -qio'i + @i - di a'i€\al,

which obeys the condition Ig o Iq - IC.Then there is the projection

L -  - . - - - 1  a r

J€ : |0, 
* rd,v JL Q) : v Jt A r7vq 

J'Q ,

lq: Qioi + dloi * (al -f,araie') u,

Recall that a holonomic connection { on J1Q + R defines the projection

€:rJrQ ) i}t+ qi}'i+ dtrAtc + Qi - iqi)at + @'t -i1.-\\'u e vJrQ'

Then the comPosition

J e  o € : T J | Q  + V J L Q  + V s J r Q ,
f  '  ' /  ' - lo {a ld)  - lq ia ienfa 'u ,i 1 t+q i i l +A laX->  
l n l - ,  ( € ' -  r q i d ;e " ) -  r -  J - l
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corresponds to the connection "ye GT) on the affine jet bundle JlQ -> Q.

The dynamic connection 7€ (37) possesses the property

t f :a l*+qlal t

which implies 0j$ - alt Such a dynamic connection is called symmetric.
Let 1be a dynamic connection (32) and {.y the corresponding dynamic equation (34).

Then the dynamic connection associated with (", takes the form

f : ;0! + al,i" + qlralth, ie.,8 : €k - qhe.,f .

It is readily observed that 'y -'y€', if and only if 7 is symmetric.
Since the jet bundle J'Q + Q is affine, it admits an affine connection

1: dq^ I lor + (rio(q') + t\ik")d)ail.

This connection is symmetric if and only it l\p : 'yL^. An affine dynamic connection
generates a quadratic dynamic equation, and uice uersa.

We use a dynamic connection in order to modify Theorem 4. Let E be a second-order
equation on a manifold N and {s (27) the corresponding conservative dynamic equation
on the bundle R x N + R. The latter yields the dynamic connection 1 (37) on the
bundle

R x ? N + R x l [ .

Its components 1l arc exactly those of the connection (23) on 7-l[ + N from Theorem
4, while 7f, make up a vertical vector field

(88) ": tt6, - (=, - *A^a^er) 6,
\ z /

- on TN + l/. Thus, we have proved the following.

Proposition 9. Every second-order equation E (19) on a manifold N admits the decom-
position

= r - K K d ^ * e F , ,

where K is the connection (23) on ?N J N, and e is the vertical vector field (38).

With a dynamic connection 76 (37), one can also restate the linear connection on
TJLQ + JtQ, associated with a dynamic equation on Q [2] (see [6] for details).
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6. - Non-relativistic geodesic equations

To improve Proposition 6, we aim to show that every dynamic equation on a bundle

Q -+R is equiuut"nt to a geodesic equation on the tangent bundle TQ -+ Q'

Let us consider the diagram

(3e)

rb{'a '3 tbTa
' 1  1 "

Jre I re

where JLTQ is the first-order jet manifold of the tangent bundle TQ -+ Q' coordinated

o, fr, qoii,di,,( i)r,@u)r), while^ K is a connection (20) onT.Q -+ Q'
" 

iir; j.i proro"s;tiJn ou.. Q of the morphism I (5) reads

J l )  :  ( t , q u , , q l , q L t )  +  ( ' ,  q i , i :  l , q i  =  q i ' ' ( i ) r '  -  0 ' ( q i ) ' :  q L ) '

We have

J1,\  o 'y  ,  ( t ,q i ,q i )  F+ ( , ,  q i ' , i :  L,qi  :  q l , ( i ) ,  -  0 ' (q i ) '  -  lL) '

K  o  \ :  ( t , q i , q 1 )  +  ( t , q " i  -  l , q o  -  q " , ( i ) ,  -  K o r ' ' ( q ' ) '  -  K L ) '

It foilows that the diagram (3g) can be commutative only if the comp.onents Kfl of the

connection K vanish. since the coordinate transition functions t -+ tt are independent

of qi, a connection

fr - d,q^ I (o.r + K\6)

with K! - 0 may exist on TQ -+ Q. It obeys the transformation law

(41) K'n^: (Liq'u K', + Lru'l#

Now the diagram (39) becomes commutative if the connections 1 and fr rnmu the relation

lL :  Kho X:  KL( t , ,q i  , i  -  L ,q i  -  q ! r ) '

(40)

(42)

(43)

It is easily seen that this reration holds globaily because the substitution of qi - el

into (41) restates the transformation U* lef; oi u .o,,,,ection on the:'ffine jet bundle

J, Q -+ Q . Inaccordance with the relati on (42), a desired connection K is an extension

of the section J1,\ o 7 of the ,ffi;; u""ar"'Jbre -+ Te over the closed submanifold

J, Q c TQ roa global section. such an extension always exists, but is not unique' Thus'

it is stated the following'

propositi,on 10. In accordance with the relation (42), every dynamic equation (25) on

the configuration space Q can be written in the form

e l , t : K 3 " x + q l t K ] " ) , ,
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where k tt u connection (40). Conversely, each connectio 
" 

k 1+Ol on the tangent bundle

TQ + Q defines a dynamic connection 7 on the affine jet bundle JLQ + Q and the

dynamic equation (43) on the configuration space Q.

Then we come to the following theorem.

Theorem 11. Every dynamic equation (25) on the configuration space Q is equivalent to

the geodesic equation

f : 0 ,  t : L , ,ii : K\q^,

on the tangent bundle TQ relative to a connection k with the components Ko, - 0 and

KL @2). Its solution is a geodesic curve in Q which also obeys the dynamic equation (43),

and aice aersl^

In accordance with this theorem, the second-order equation (31) in Proposition 6 can

be chosen as a geodesic equation. It should be emphasized that,-written in the bundle

coordinates (t, qi), the geodesic equation (44) and the connection K (42) are well defined

with respect to any coordinates on Q.
Fbom the physical viewpoint, the most interesting dynamic equations are the quadratic

ones

(44)

(45)

(46)

(47)

€o : o' in@')qiq! +b'1@\u!, + fu(q').

This property is global due to the transformation law (26). Then one can use the following

two facts.

Proposi,tion 12. There i's one-to-one correspondence between the affine connections ? on

JtQ -+ Q and the linear connections K (40) on TQ -+ Q. This correspondence is given

by the relation (42) which takes the form

- Krio(q)i  + Kroi(q)qi l i : r ,4n:n1 - Krio(q) + Kroi(q)q!r,

If 7 is a symmetric connection, so is K.

Corollary /3. Every quadratic dynamic equation (45) gives rise to the geodesic equation

tL: 'r !o+tLiqlt
^tLx: Kru^.

on TQ with respect to the symmetric linear connection

q o : 0 ,  q o : r ,

, i i  :  a' in@\qjqu +b](u\ujqo + fo(q')qoqo

K^o, : 0, Koio : fi, xoi, - 
f,ui, Kni j - a|,j.

The geodesic equation (46) however is not unique for the dynamic equation (45).
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proposi,tion 11. Any quadratic dynamic equation (45), being equivalent to the geodesic

equation with respect to the linear connection N 1+21, is also equivalent to the geodesic

equation with respect to an affine connection Kt on TQ -+ Q which differs from K (47)

in a soldering form o on TQ -+ Q with the components

-  0 ,  oL:  h 'k  + @ -  L)h i i :o , o3:  -sh ink -  h 'oho + hb,

where s and h\ arc local functions on 8.

7. - Reference frames

Fhom the physical viewpoint, a reference frame in non-relativistic mechanics sets a

tangent vector at each point of a configuration space Q which characterizes the velocity

of an ,,observer" at this point. Thus, we come to the following geometric definition of a

reference frame.

Defini,tion 15. In non-relativistic mechanics, a reference frame is said to be a connection

f on the bundle Q + R.

In accordance with this definition, the corresponding covariant differential

n r @ | ) : q 3 - l i : q l

determines the relative velocities with respect to the reference frame f. In particular,

given a motion c in Q, the covariant derivative Yrc is the velocity of this motion relative

io the reference frame f. 'For instance, if c is an integral section of the connection f,

the relative velocity of c with respect to the reference frame I is equal to 0. Conversely,

every motion 1 R + Q, defines a proper reference frame f" such that the velocity of

c reiative to f" equals 0. This reference frame f" is an extension of the local section

Jrc: c(R) - ite of the affine jet bundle JLQ + Q to a global section. Such a global

section always exists.
By virtue of Proposition 1, any reference frame f on the configuration space I -+ R

is associated with an atlas of local constant trivializations such that | : 0t with respect

to the corresponding coordinates (t,,qo) whose transition functions are independent of

time. Such an atlas is also called a reference frame. A reference frame is said to be

complete if the associated connection f is complete. In accordance with Proposition 1

.rr"ry complete reference frame provides a trivialization of a bundle Q + R,, and u'ice

uersa.
Using the notion of a reference frame, we obtain a converse of Theorem 11.

Theorem 16. Given a reference frame l, any connection K (20) on the tangent bundle

TQ -+ Q defines a dynamic equation

to : (K\ _ lo x\)d^ l4o:1,4i:n1 .

The proof follows at once from Proposition 10 and the following lemma.

o!
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Lemma 17 16l. Given a connection f on the bundle Q + R and a connection .I( on the

tangent bundle TQ -+ Q, there is the connection k onTQ -+ Q with the components

frl - o, k\ - K\ - r'l4.

8. - Relativistic and non-relativistic dynamic equations

In order to compare relativistic and non-relativistic dynamics, one should consider
pseudo-Riemannian metric on TX, compatible with the fibration X + R. Note that R

is a time of non-relativistic mechanics. It is one for all non-relativistic observers. In the
framework of a relativistic theory, this time can be seen as a cosmological time. Given
a fibration X -+ R, & pseudo-Riemannian metric on the tangent bundle 7X is said
to be admissible if it is defined by a pair (gn, f) of a Riemannian metric on X and a
non-relativistic reference frame l, i,.e.

(48)

(4e)

2 1  8 f  R
9 :  t t  t z  

- 9 " ,
l r  I

|  |  l ' :  of, lut" - gr,lqt ',

in accordance with the well-known theorem [10]. The vector field I is a time-like vector
relative to the pseudo-Riemannian metric g (48), but not with respect to other admissible
pseudo-Riemannian metrics in general.

In physical applications, one usually thinks of non-relativistic mechanics as being an

approximation of small velocities of a relativistic theory. At the same time, the velocities
in mathematical formalism of non-relativistic mechanics are not bounded. It has long
been recognized that the relation between the mathematical schemes of relativistic and
non-relativistic mechanics is not trivial.

Let X be a 4-dimensional world manifold of a relativistic theory, coordinated by
(r^). Then the tangent bundle TX of X plays the role of a space of its 4-velocities. A

relativistic equation of motion is said to be a geodesic equation

r^a^iu -  KK(n",b")b^

with respect to a (non-linear) connection K on T X -+ X such that there exists a pseudo-

Riemannian metric g of signature (+,- - -) inTX such that a geodesic vector field

does not leave the subbundle of relativistic hyperboloids (1) in T X . If suffices to require
that the condition

(Tsgp,bp * 2g*Kl)i^r" - 0

holds for all tangent vectors which belong to Wn (1). Obviously, the Levi-Civita connec-
tion {,rp,} of the metric A fulfills the condition (49). Any connection K onTX -+ X

can be written as

KK : {xr,}i:" + "K(*^, 
h^),,
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where the soldering form o - oKdr^ O d^ plays the role of an external force. Then the
condition (49) takes the form

(50) gp,o[k^h'  :0.

Given a coordinate systems (ro,ri), compatible with the fibration X + R, let us
consider a non-degenerate quadratic Lagrangian

(51)  n  - i *6 ,@p)r [ r io*k6( rp) r 'o+ f  @,) ,

where m6i is a Riemannian rnass tensor. Similarly to Proposition L2, one can show that
any quadratic polynomial in JLX cTX is extended to a bilinear form onTX. Then
the Lagrangia^n , (51) can be written as

(52) L-- f ,1. ,**g*5, r3:1,

where g is the metric

(53) goo: -2f , got: -lot,, gtj : -vnij.

The corresponding Lagrange equation takes the form

(54) nbo : -(m-t\t'x {xn,}r},r(, rB : t,

where

{xr,} : -+(Lxgr", * 0,9r,^ - Lr"gx,)

are the Christoffel symbols of the metric (53). Let us assume that this metric is non-
degenerate. By virtue of Corollary 13, the dynarnic equation (5a) gives rise to the geodesic
equation on T X

h^01ko -  o,  ro :  l ,

(55) *^}xhi  = {x i , }h\h '  -  9 io{xo,}n^i" .

Let us now bring the Lagrangian (51) into the form

(56) r - 
|*n1@\@b- 

f,) @3 -fi) + f 
'(*r),

where I is a Lagrangian frame connection on X -) R. This connection f defines an atlas
of local constant trivializations of the bundle X + R and the corresponding coordinates
(*o,,nu) on X. In this coordinates, the Lagrangian L (56) reads

( 5 7 )  L  
1  ' :

: 
imnitonto+ f'(nr).
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One can think of its first term as the kinetic energy of a non-relativistic system with

the mass tensor fr4i relalive to the reference frame f , while (- f 
') is a potential. Let us

assume that f 
I is a nowhere vanishing function on X. Then the Lagrange equation (54)

takes the form

(58) T 'oo:{^0"}Z iZ 'o,  /o-1,

where {xo r} are the Christoffel symbols of the metric

(5e) 9t j  =  - rn t j ,  7o i :0 ,  9oo:  -2 f ' .

This metric is Riemannian if f' > 0 and pseudo-Riemannian if f' < 0. Then the spatial
part of the corresponding geodesic equation

is exactly the spatial part of the geodesic equation with respect to the Levi-Civita connec-
tion of the metric (59) on T X . It follows that the non-relativistic dynamic equation (58)

describes the non-relativistic approximation of the geodesic motion in a curved space
with the metric (59). Note that the spatial part of this metric is the mass tensor which
may be treated as a variable [11].

Conversely, let us consider a geodesic motion

(60)

(61)

i^ a.io - o, ro : L,

i^ a^io - {^i,}i^i"

b^a^iu - {xp,}h^h'

-:l ^ -:-0 n :-0 I
f r  O y f  : U ,  f  - I ,

i^ a^if - 1si,yi^i"

r -l^oi@\@6 - r,)@fi- rr).

in the presence of a pdeudo-Riemannian metric g on a world manifold X. Let (ro,,ai)

be local hyperbolic coordinates such that gss : 1., go,i, - 0. These coordinates set a

non-relativistic reference frame for a local fibration X -+ R. Then eq. (61) has the
non-relativistic limit

(62)

which is the Lagrange equation for the Lagrangian

1
f - -rmojT'oE|,

describing a free non-relativistic mechanical system with the mass tensor *U : -gtj.

Relative to another frame (ro , ri (*o , *i)) associated with the same local projection X -+

R, the non-relativistic limit of eq. (61) keeps the form (62), whereas the non-relativistic
equation (62) is brought into the Lagrange equation (55) for the Lagrangian ,

(63)

This Lagrangian describes a mechanical system in the presence of the inertial force as-

sociated with the reference frame f. The difference between (55) and (62) shows that
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a gravitational force cannot model an inertial force in general; that depends on both a
frame and a system. For example, if the mass tensor in the Lagrangian L (63) is inde-
pendent of time, the corresponding Lagrange equation is a spatial part of the geodesic
equation in a pseudo-Riemannian space.

In view of Proposition 14, the "relativization" (52) of an arbitrary non-relativistic
quadratic Lagrangian (51) may lead to a confusion. In particular, it can be applied
to a gravitational Lagrangian (56) where /' is a gravitational potential. An arbitrary
quadratic dynamic equation can be written in the form

r 'oo: -(*- ' )or{^rr}" !* t  +bi@")r[ ,  13 :  1,

where {rrr} are the Christoffel symbols of some pseudo-Riemannian metric a, whose
spatial part is the mass tensor (-^l,o), while

(64)

is an external force. With
the relativistic equation

(65)

where the soldering form o

bi@P)r$ + b 's( rq)

respect to the coordinates where got :0, one may construct

'i.e. the external force (64)
have

i^o^iu - {xp,}h^h" + of i^,

must fulfill the condition (50). It takes place only if

s ikb i  - r  g i ib l , :0 ,

is the Lorentz-type force plus some potential one. Then, we

o3 : 0, oon : -Soo Onibro, oi - brk.

The "relativization" (65) exhausts almost all familiar examples. It means that a wide
class of mechanical system can be represented as a geodesic motion with respect to some
affine connection in the spirit of Cartan's idea.

To complete our exposition, point out also another "relativization" procedure. Let a
force €o(*r) in the non-relativistic dynamic equation (25) be a spatial part of a 4-vector

€I it the Minkowski space (X,ri. Then one can write the relativistic equation

r^a^ iu  -€^  -qop€Ph"h^(66)

This is the case, e.9.,, for a relativistic hydrodynamics that we meet usually in the lit-
erature on a gravitation theory. However, the non-relativistic limit ro - 1 of (66) does
not coincide with the initial non-relativistic equation. There are also other variants of
relativistic hydrodynamic equations [12].
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