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Effectiveness of modern rational new drugs development is connected with accurate
modelling of binding between target-proteins responsible for the disease and small molecules
(ligands) candidates to become drugs. The main modeling tools are docking programs for
positioning of the ligands in the target proteins. Ligand positioning is realized in the frame of
the docking paradigm: the ligand binds to the protein in the pose corresponding to the global
energy minimum on the complicated multidimensional energy surface of the protein-ligand
system. Docking algorithm on the base of the novel method of tensor train global optimiza-
tion is presented. The respective novel docking program SOL-T is validated on the set of
30 protein-ligand complexes with known 3D structures. The energy of the protein-ligand
system is calculated in the frame of MMFF94 force field. SOL-T performance is compared
with the results of exhaustive low energy minima search carried out by parallel FLM dock-
ing program on the base of Monte Carlo method using large supercomputer resources. It
is shown that SOL-T docking program is about 100 times faster than FLM program, and
SOL-T is able to find the global minimum (found by FLM docking program) for 50% of
investigated protein-ligand complexes. Dependence of SOL-T performance on the rank of
tensor train decomposition is investigated, and it is shown that SOL-T with rank 16 has
almost the same performance as SOL-T with rank 64. It is shown that the docking paradigm
is true not for all investigated complexes in the frame of MMFF94 force field.

Keywords: docking; global optimization; tensor train; protein-ligand complex; drug de-
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Introduction

Protein-ligand binding free energy calculation is one of the key problems for molecu-
lar modelling in the computer-aided structural based drug design [1-4|. Though the most
accurate calculations of the protein-ligand binding free energy can be done with molecular
dynamics (MD) simulations [5], the more demanded approach to calculate the protein-
ligand binding energy is docking that is the molecular modelling method, based on the
search of the ligand binding pose in the target protein active site and subsequent calcu-
lation of the score, i.e. estimation of the protein- ligand binding free energy. Although
appreciable progress in improving accuracy of protein-ligand binding free energy calcula-
tions with docking is visible in recent years, e.g. see [6,7], the accuracy of such calculations
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better than 1 kcal/mol has not been reached yet for a randomly selected target protein |1].
Only with such high accuracy of the protein-ligand binding free energy calculations it is
possible to perform the rational inhibitor optimization on the basis of computer modelling.
Docking as well as MD simulation accuracy depends on many interrelated factors in a com-
plicated manner. Those factors are: the force field describing inter- and intra-molecular
interactions, the solvent (water) model, target protein and ligand models, method and
approximations of the free energy calculation, algorithms of calculations and computing
resources concentrated on solving of the docking problem for one protein-ligand pair, etc.

In the frame of the docking procedure the ligand binding pose is generally believed
to be the global minimum of the protein-ligand potential energy function. It is the dock-
ing paradigm. Thus, the ligand positioning is the global minimum search problem for the
energy target function, depending on the degrees of freedom of the given protein-ligand
system. Due to thermal motion in the thermodynamic equilibrium state the ligand con-
tinuously jumps from one binding pose to another and to estimate the binding energy we
have to find not only the global energy minimum but at least the low-energy part of the
whole local minima spectrum. Certainly, the more accurate description of the molecular
interactions and the more adequate models of the target protein and the ligand are used
for docking the larger computation resources are demanded. Therefore, development of
new effective algorithms for the global minimum search on the multidimensional energy
surface is needed for further improvement of docking accuracy. These algorithms must be
able to solve the global minimum search problem for the target function of many variables:
10 — 20 degrees of freedom for the rigid target protein and the flexible ligand, but much
more variables in the case of the flexible protein and the ligand both.

In this work, we present the novel docking algorithm based on Tensor Train (TT)
decomposition of multidimensional arrays (tensors) [8] applied to the global minimum
search problem and results of its validation for the protein-ligand energy calculated in the
frame of Merck molecular force field (MMFEF94) [9] on a set of 30 protein-ligand complexes.

1. Methods

For realization of the new docking algorithm we have to choose the target function de-
termining energy of the protein-ligand complex for its every conformation. For this purpose
we use MMFF94 force field [9] in vacuum, and during the energy minima search ligands
are considered to be fully flexible and target-proteins to be rigid. The latter approxima-
tion is needed to reduce dimension of the search space and it is common for many docking
programs. MMFF94 force field combines sufficiently good parameterization based on ab
initio quantum-chemical calculations of a broad spectrum of organic molecules, flexibility
allowing to apply this force field to a wide diversity of compounds, and the well-defined
easy-to-use procedure of atom typification. Certainly, this force field is not perfect and it
is not able to substitute quantum-chemical methods for description of molecular systems,
but MMFF94 is not worse than many other popular force fields such as: AMBER [10],
OPLS-AA [11], CHARMM [12] etc. Moreover, MMFF94 force field is implemented in dock-
ing SOL program which demonstrated good results in one of CSAR competitions [13]| and
it was used successfully for new inhibitors development [14,15].
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1.1. Tensor Train Global Optimization

The Tensor Train (TT) decomposition [8,16] is a representation of multidimensional
array (tensor) A € R™*m2X X7 in the form

T1,esTd—1
A(ihiQ?"'aid) = Z Gl(ilval)GQ(ahZéaaQ)”'
=1, ag_1=1 (1)

o Gaor(0g—2,4-1, g—1)Galg_1,1q)

The numbers rq,...,ry_1 are called TT-ranks of the tensor. For convenience, dummy
ranks rg = r4 = 1 are also introduced. The 3-dimensional tensors G; € R"i-1*"i*"i gre
called carriages or cores of the tensor train.

If T'T-ranks are reasonably small, then the T'T' decomposition possesses several very
useful properties [8,16]:

e Logarithmic storage: only O(dnr?) memory cells are used, where r = maxr;.

Fast tensor element evaluation: O(dr?) operations are needed.

Operations on tensors in the TT format are reduced to standard matrix operations.

Fast TT-arithmetic: most of operations on tensors are performed in O(dnr?) arith-
metic operations or even faster.

Fast and robust rounding (recompression) procedure: O(dnr?®) operation are needed
and accuracy is guaranteed.

Robust method is available when a TT-approximation is sought for a full tensor
stored in memory (TT—SVD).

However, we cannot afford computing or storing all the elements for large tensors. It
becomes crucial to have a fast approximation method for them which uses only a small
number of their elements. Such a method was proposed in [17] and it was named the TT-
cross method. It finds a TT-interpolation of tensor evaluating only O(dnr?) elements and
performing just O(dnr?) arithmetic operations.

The TT-cross approximation method iteratively improves the sets of interpolation
points searching for submatrices of larger volume (determinant in modulus) and conse-
quently the elements of larger magnitude. This property allows one to take it as a base
for global optimization method [18,19].

Global optimization problem could be either global maximization or global minimiza-
tion:

r = arg minf(y) (2)
=
or
z = arg maxf(y) (3)

In both cases the problem could be easily transformed to an equivalent problem of the
magnitude maximization:

- 4
x = arg max|g(y)| (4)
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It could be done with the help of some monotonic function, like e™ or arcctg(x) for the
minimization problem, e.g. g(y) = arcctg(f(y)). Using the estimates of the range of the
function values, one can generally make a better choice.

In this paper €2 is a d-dimentional parallelepiped. We easily introduce a grid on €2, for
simplicity let it be a grid with n nodes in each direction. Thus, a discrete version of the
problem reads:

i =arg max |G(7)]. (5)

Jjk=1l.n
If the grid is fine enough then the solutions of continuous and discrete problems are
expected to be close.

The discrete problem consists in finding of the maximal in magnitude element of
a d-dimensional tensor G € R™**". To solve it, we suggest a technique based on the
TT-cross interpolation machinery. It heavily exploits the matrix cross interpolation [20—24]
algorithm applied cleverly, although heauristically, to selected submatrices in the unfolding
matrices of the given tensor.

The matrix Ay € R™ " Ap(iy .. igipey .. iq) = A(i1,da, . .., iq) is called the k-th
unfolding matrix of the tensor A. The TT-rank ry is just the rank of A;. The matrix cross
interpolation method [20-24] is a fast approximation method that interpolates B € R™*!
using only O((m + [)r) of its elements and performing only O((m + [)r?) operations.

The TT global optimization method iteratively performs the following steps:

e Previously inspected points P are used to generate submatrices of corresponding
unfolding matrices Ay, defined by rows I and columns Jj.

e These submatrices are approximated by the matrix cross approximation method
with rank bounded from above by 7yax.

e The interpolation points and local minima in their vicinity (projected to the grid)
are used to form new sets of "hopefully better" points F.

e The sets of points are extended by the points from "neighboring" unfolding matrices
and by rm.x points considered as the best of all inspected values.

A row of the k-th unfolding submatrix of the tensor can be described by the first £ tensor
indices, while a column is specified by the last (d — k) indices.
The row indices Iy are constructed from the points Py by taking the first (k — 1) indices
from each point and appending all possible values for the k-th index (so basically ng|Py|
row indices are obtained). The column indices J;, are constructed in a similar way: to every
possible value of (k + 1)-th index the last (d — k — 1) indices of each point from P are
appended (so we obtain ny1|P| indices). As soon as this is done, all duplicated rows and
columns are excluded.

The complexity of the TT global optimization method is O(dnr?,. ) functional eval-

max
uations, O(dry.y) local optimizations and O(dnr3 ) arithmetic operations. Tt is easy to
see that operations for different unfolding matrices could be performed independently, we
need synchronization only when constructing the new points at the end of every iteration.
Moreover, a parallel implementation of the matrix cross method is also available [25]. In
the result, we have a parallel version of the T'T global optimization algorithm with par-
allel complexity O(rp.y) functional evaluations, O(1) local optimizations and O(d + r2

HlaX)
arithmetic operations.
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The complexity of our method can be reduced via additional artificial tensorization:
we can transform a d-dimensional tensor with the mode size n = 2! into a dl-dimensional
tensor with the mode size 2. The complexity of the TT global optimization method is
reduced to O(dr? . log, n) functional evaluations, O(drpy., log, n) local optimizations and

O(dr3 .. log, n) arithmetic operations.
On the ouput we get the same result as one without additional tensorization. Although
we might need to increase 1., and the number of iterations, the practice manifests that

the number of evaluations of the functional becomes significantly smaller.

1.2. SOL-T Docking Program

Molecular docking is a problem of potential energy minimization. Thus, one can apply
TT global optimization method for solution of the docking problem: to find the low energy
local minima spectrum including the global minimum for the rigid protein and fully flexible
ligand. The respective novel docking program SOL-T was developed. The docking target
function was the protein-ligand energy calculated in the frame of MMFF94 force field.
For transformation into magnitude maximization problem the arcctg function was used.
Moreover, for better separation of values a shift by currently found minimum is performed.
This shift is updated after each iteration of T'T global optimization method.

So, TT magnitude maximization was applied to functional g(y) = arcctg(f(y) — f+),
where f(y) is a MMFF94 potential energy value for the ligand position defined by coordi-
nates y, f. is a currently found minimum.

The initial energy grid is generated for each position of the ligand in the conformation
space of the active site of the target protein. The conformation space of y coordinates
is formed by translations and rotations of the ligand as a whole and also by the ligand
torsions (see details in Section 1.3).

The initial grid size was n = 256 = 2% and the T'T global optimization with additional
tensorization was used. Program has different limitation of maximal rank: SOL-T16 with
Tmax = 16, SOL-T32 with 7.« = 32 and SOL-T64 with 7., = 64.

In order to compute not only a global minimum but also the nearest (by value) local
minima the simplest idea to save all obtained local optimization points was used. Fi-
nally, energy of each local minimum was additionally optimized with respect to Cartesian
coordinates of all ligand atoms (see Section 1.3).

1.3. Program FLM

How to perform validation of the new TT global energy minimum search algorithm
and respective docking program SOL-T? Obviously, the best approach to such valida-
tion is comparison of the low energy minima spectrum found by SOL-T with the known
low energy minima spectrum of a given energy surface. Certainly, this energy surface
must be complicated enough to reflect complicacy of real interactions in protein-ligand
systems. So, for our validation we decided to use MMFF94 energy surfaces of a set of
different protein-ligand complexes with 3D structures taken from Protein Data Bank [26]
(see Section 1.4). However, there is only one conformation for each protein-ligand complex
in this set, and in general case this conformation does not correspond to any local minimum
of the protein-ligand complex energy in the frame of either MMFF94 or any other force
field. The respective ligand conformation is usually called as "native" conformation, and
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after local optimization of the protein-ligand energy with respect to positions of all ligand
atoms starting from the ligand native conformation we obtain the locally optimized na-
tive ligand conformation. In compliance with the docking paradigm the locally optimized
native ligand conformation must correspond to the global minimum of the protein-ligand
energy or it must be near the global minimum. So, we have to find the global minimum of
the protein-ligand MMFF94 energy and to assure ourselves that it coincides or is close to
the locally optimized native ligand conformation. But how is it possible to find the global
energy minimum of a protein-ligand complex when the ligand is fully flexible and number
of dimensions of the energy surface is more than 10 — 20?7 The solution of this problem was
found in employment of large computing resources available at supercomputer Lomonosov
of Moscow State University [27].

The special MPI (message passing interface) based docking program FLM (Find Local
Minima) has been developed to perform exhaustive search of low energy local minima
of protein-ligand complexes. The energy was calculated in the frame of MMFF94 force
field. During the minima search, the protein is considered to be rigid and the ligand is
fully flexible. The FLM program finds local energy minima by simple Monte Carlo search
algorithm: multiple local optimizations are performed starting from the random initial
ligand positions. A random ligand position is obtained by a random continuous ligand
deformation and rotation-translation:

e The ligand torsions are rotated by a random angle from [—m, 7] (torsion is a single
acyclic bond of the ligand).

e The ligand center is moved to a random point of the search area (we used a sphere
with the center at the ligand native position center and with the radius of 8A as the
search area).

e The ligand is rotated as a whole around a random axis passing through the ligand
center by a random angle from [—m, 7).

Not all random system conformations are further optimized. At first, atom-atom dis-
tances are checked: atoms from each ligand-ligand or protein-ligand atom pair must be
separated by more than 0,5A. Otherwise this random system conformation is rejected.
Local optimization is performed by L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-
Shanno) |28,29] algorithm without any restrictions on the positions of the ligand atoms.
All Cartesian coordinates of ligand atoms are moved during optimization. Each local opti-
mization stopped when the maximal component of the optimized target function gradient
decreased to the value 1077 keal/mol/A. A set of 1024 computed different local minima
with the lowest potential energies is being kept in operative memory during FLM calcu-
lations. A new computed local minimum is included into the set, if it differs from any
minimum of the set, and the minimum with the highest energy is excluded from this set.
Two minima are different if RMSD (root mean square deviation) between them exceeds
0,1A. The RMSD is calculated over the ligand heavy atoms without taking into account
possible chemical symmetry.

The local minima search is parallelized: independent local optimizations of differ-
ent initial ligand conformations are continuously performed in parallel by different MPI-
processes. The optimization results are collected in the master process to form the low-
energy minima set. The current collected minima set is repeatedly sent back from the
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master process to other processes, so other processes can select only promising minima to
send. FLM program performance scales linearly with the increasing number of working
processes. The minima search for each protein-ligand complex was conducted during the
given time interval of 3 hours. This way of the program halt was used due to some peculiar-
ities of our supercomputer queuing system. Calculations were done on the "Lomonosov"
supercomputer in parallel mode of FLM program: 1024 nodes (8192 cores) were utilized
for each run of FLM program. About 20 000 CPU*hours per a protein-ligand complex
were consumed during these calculations, overall for all 30 complexes it was consumed
more than 600 000 CPU*hours. Additional investigation have shown that almost all low
energy local minima (1024) have been found for all investigated protein-ligand complexes
at the expense of large supercomputer resources employed for these calculations.

1.4. Validation Set of Protein-Ligand Complexes

The set of 30 protein-ligand complexes with experimentally known structures was
chosen from Protein Data Bank (PDB) [26] for low-energy local minima search:

e 6 complexes of urokinase protein (PDB ID: 1C5Y, 1F5L, 103P, 1SQO, 1VJ9, 1VJA);

4 complexes of CHK1 (checkpoint kinase 1) protein (4FT0, 4FT9, 4dFSW, 4FTA);

2 complexes of ERK2 (extracellular signal-regulated kinase 2) protein (4FV5, 4FV6);

2 complexes of thrombin protein (IDWC, 1TOM);

4 complexes of factor Xa protein (1LQD, 1IMQ6, 2P94, 3CEN);

3 complexes of poly(ADP-ribose) polymerase protein (1EFY, 2PAX, 3PAX);

2 complexes of trypsin protein (1K1J, 1IPPC);

1 complex of neuraminidase protein (1B9V);

1 complex of ricin protein (1BR5);

1 complex of HIV-1 protease protein (1HPV);

1 complex of GNC92H2 antibody (1i7Z);

1 complex of beta-1,4-xylanase protein (1J01);

1 complex of hen egg-white lysozyme protein (1LZG);

1 complex of apolipoprotein protein (3KIV).

These protein-ligand complexes were chosen, because they are available in the PDB
with good resolution, and the ligands variety covers a wide range from small and rigid
ligands (e.g. 1C5Y ligand — 20 atoms including hydrogen atoms, 0 torsions) to big and
flexible ones (e.g. 1VJ9 ligand — 74 atoms including hydrogen atoms, 19 torsions). Also,
the locally optimized ligand native position has RMSD from the original native pose less
than 1.5A for all these complexes. Thus the locally optimized ligand native position still
can represent the native ligand pose.
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Protein structures were prepared by elimination of all the records corresponding to
atoms, ions and molecules which are not part of the protein structure from the PDB files of
the complexes, and then hydrogen atoms were added by the original APLITE program [13,
30] to the protein structures. The APLITE program adds hydrogen atoms according to
the standard amino acid protonation states at pH=7. Optimization of hydrogen atoms
positions is performed with MMFF94 force field after the hydrogen atoms pre-placement
keeping fixed all heavy atoms. During this optimization all rotation variants of torsionally
moveable hydrogen atoms (for example, hydroxyl hydrogen atom from tyrosine) are tested.

Ligands were also taken from the PDB files. Hydrogen atoms were added to the ligands
by Avogadro program [31]. The heavy atoms optimization is not performed for the initial
ligand conformation.

1.5. Evaluation

We compared local minima found by docking programs FLM, SOL-T16, SOL-T32 and
SOL-T64 using several criteria. Firstly, comparing energies of the minima including the
minima with the lowest energy found by different docking programs. Secondly, compar-
ing numbers of local minima in a given energy interval from the lowest energy. Thirdly,
comparing the ligand poses in the energy minima using RMSD between coordinates of re-
spective ligand heavy atoms. Finally, comparing energies and poses of the found minima
with the native and the locally optimized native ligand position. For the latter it is con-
venient to introduce the following notations. The minima set of the given protein-ligand
complex with energies calculated by a given target function can be sorted by their energy
in ascending order, i.e. every minimum gets its own index equal to its number in this sorted
list of minima. The lowest energy minimum has index equal to 1. When we include the
energy of the locally optimized native ligand in this sorted list, it also will get a certain
index and we will designate it as "Index of Native" or "IN". When we do not include
the optimized native ligand in this sorted minima list, some minima from the list might
be close in space to the native (non-optimized) ligand position. It is possible even that
one minimum found by the FLM program will coincide with the optimized native ligand
position. We designate the index of the minimum having RMSD from the non-optimized
native ligand position less than 2A as "Index of Near Native" or "INN". If there are several
such minima which are close to the native position, we will choose the minimum with the
lowest energy (with the lowest index) as "INN". The extreme values of these indices could
be interpreted as follows:

e IN =1 and INN = 1: the target function is valid for ligand positioning, and the min-
ima search is thorough; the docking paradigm is true;

e IN = 1 and INN > 1: the minima search is most likely to be incomplete. When
the optimized native position has the lowest energy, some near-native positions will
certainly have also low energies;

e IN > 1 and INN = 1: there are likely to be experimental inaccuracies in the native
ligand position. The target function is most likely valid for ligand positioning, and the
minima search is thorough; the docking paradigm is true;

e IN > 1 and INN > 1: the target function is invalid for ligand positioning, the docking
paradigm is not true for the energy function.
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2. Results and Discussion

Comparing spectra of low energy minima got by FLM and different variants
of SOL-T programs we conclude that the minimum with lowest energy, i.e. the energy
global minimum, was found by FLM program practically for all (for 29 out of 30) inves-
tigated complexes. Minima with the lowest energy found by SOL-T programs lie above
the energy of the global minimum found by FLM program, e.g. for IDWC complex the
minimum with the lowest energy found by SOL-T (rank 16) program is 36.905 kcal/mol
above the FLM global minimum as it can be seen in Tab. 1. Formally the only one ex-
ception occurs for 4FTO complex where the lowest FLM energy is 0,085 kcal/mol above
the SOL-T(rank 32) lowest energy. For approximately 50% complexes SOL-T also finds
the FLM global energy minimum, and for 9 complexes the FLM global energy minimum
was found by all three variants of SOL-T program (see Tab. 1). Numbers of local minima
being in the energy interval of 5 kcal /mol above the global minimum are presented in five
rightmost columns of Tab. 1. We can see that FLM program finds the largest number
of minima being in this energy interval, and as a rule the higher rank of SOL-T program
the more minima it can find in this interval. One can see from Tab. 1 that performance of
SOL-T64 is not much better than one of SOL-T16, however the latter is much faster (see
below).

This regularity takes place for most of the complexes and for an arbitrary energy
interval above the global minimum as it can be seen in Fig. 1 where the local minimum
energy is plotted as a function of the local minimum index. The complex 1VJA shown as
an example.

However, there are exceptions: sometimes SOL-T32 finds more local minima than SOL-
T64 in a given energy interval as in Fig. 2 a) or SOL-T16 finds more minima than FLM
as in Fig. 2 b). By the way, the latter shows that FLM program sometimes finds not all
low energy local minima. Most of the local minima found by SOL-T programs coincide
with minima found by FLM program. Nevertheless, there are rare occurrences when some
low energy minima found by SOL-T programs are quite different in their poses from ones
found by FLM program. These rare examples show that FLM program does not find all
low energy minima for some complexes, i.e. there are low energy minima that were missed
during performance of FLM program.

Comparison of low energy minima found by FLM and SOL-T programs with the native
and the locally optimized native ligand poses and energies results in values of indices IN
and INN (see Section 1.5) presented in Tab. 2.

First of all, we can see in Tab. 2 that the protein-ligand MMFF94 energy in vacuo is
the valid docking target function for ligand positioning strictly speaking only for several
protein-ligand complexes (column FLM): 1C5Y, 1F5L, 1177, 1J01, 1LQD, and 1PPC. Only
for these six complexes (20% out of 30 complexes) the docking paradigm is true: the opti-
mized native ligand position has the lowest energy among all energy minima found by the
FLM program (IN=1), and the position of the minimum with the lowest energy (the global
minimum of the energy function) found by the FLM program is close to the ligand native
pose (INN=1).

Generally speaking one can say that the docking paradigm is true for many other
complexes where numbers of IN and INN are small as for the complex 1MQ6 (IN=7,
INN=3). Practically the same pattern is found for low energy minima by all three versions
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Table 1

Relative energies of respective global energy minima found by FLLM program
and by three different versions of SOL-T program for 30 tested protein-ligand complexes.
Four rightmost columns contain numbers of low energy local minima found by different
docking programs in the range of 5 kcal/mol from the respective global minimum. Ny, is
the number of complexes for which the global energy minimum have been found
by the respective docking program

Difference between lowest minima
found by different docking pro-

The number of local minima in
the range of 5 kcal/mol from

gb

Complex id grams, kcal /mol the global minimum
SOL-T | SOL-T | SOL-T SOL-T | SOL-T | SOL-T
FLM rank 16 | rank 32 | rank 64 FLM rank 16 | rank 32 | rank 64

1B9V 0 2,326 1,267 1,212 212 7 18 40
1BR5 0 3,687 2,726 2,726 11 2 3 3
1C5Y 0 0 0 0 2 2 2 2
1DWC 0 36,905 | 26,053 5,734 11 0 0 0
1EFY 0 3,547 0 0 30 8 14 28
1F5L 0 0 0 1,467 1 1 1 1
1HPV 0 7,108 6,465 2,912 4 0 0 1
1177 0 0 0 0 1 1 1 1
1J01 0 0 10,074 8,342 4 1 0 0
1K1J 0 0 0,056 0 9 3 1 1
1LQD 0 0 0 0 11 9 13 17
1LZG 0 19,460 9,946 13.594 3 0 0 0
1MQ6 0 7,007 0,968 2,701 19 0 1 1
103P 0 1,513 0,349 0 12 5 6 9
1PPC 0 0 0 0 12 9 6 11
1SQO 0 0 0 0 1 1 1 1
1TOM 0 2,202 2,202 2,202 22 8 10 9
1VJ9 0 0 0 0,173 17 7 11 15
1VJA 0 1,888 0 1,888 46 1 6 7
2P9%4 0 0,915 3,204 1,897 7 5 1 3
2PAX 0 0 0 0 2 2 2 2
3CEN 0 12,940 2,433 2,433 7 0 1 1
3KIV 0 0 0 0 7 7 7 7
3PAX 0 0 0 0 3 2 3 3
4FSW 0 0 0 0 1 1 1 1
4FT0 0,085 | 26,523 0 18,248 1 0 1 0
4FT9 0 14,482 0 0 5 0 3 5)
4FTA 0 15,872 | 15,872 6,304 2 0 0 0
4FV5H 0 15.871 | 17.214 0 2 0 0 1
4FV6 0 11,117 | 16,004 | 10,310 4 0 0 0

N, 29 13 15 14
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Fig 1. Local minimum energy (E) as a function of its index for the complex 1VJA
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Fig 2. Local minimum energy (Fp,) as a function of its index: a) for the complex 1K1J
and b) for the complex 1LQD

of SOL-T. It is also worth to note that FLM and SOL-T programs demonstrate cases IN~1
and INN~1 almost for the same complexes, and for them the energy global minimum is
found by all these programs (see Tab. 1). Indices IN and INN for SOL-T program are
smaller or equal than indices for FLM program, as it can be seen in Tab. 2. This means
that SOL-T program as a rule finds less minima in a given energy interval than FLM
program, and it is also demonstrated in Tab. 1, Fig. 1 and Fig. 2 a). There are some
exceptions. For example for 4FV6 complex SOL-T works better than FLM: FLM did not
find the energy minimum corresponding to the native ligand pose (INN=inf) and the
energy of the optimized native ligand position is higher than energies of all found by
FLM 1024 low energy minima (IN=inf). On the other hand, the minima indices found by
SOL-T16 for this complex are IN=7, INN=13.
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Table 2
IN/INN values for all tested 30 protein-ligand complexes for FLM program and three
different versions of SOL-T program. "Inf" for IN means that all found low-energy
minima have energy below the energy of the optimized native ligand. "Inf" for INN
means that all found low-energy minima have RMSD from the native position above 2A

. SOL-T | SOL-T | SOL-T
Complex id | FLM rank 16 | rank 32 | rank 64
1B9V inf/inf | 216/308 | 467/242 | 872/872
1BR5 inf/121 76/25 155/24 258/149
1C5Y 1/1 1/1 1/1 1/1
1DWC inf/629 2/inf 56/7 70/18
1EFY 192/88 33/27 84 /inf 140/127
1F5L 1/1 1/1 1/1 1/1
1HPV 97/1 4/1 9/1 10/1
1177 1/1 1/1 1/1 1/1
1J01 1/1 1/1 1/inf 1/inf
1K1J 5/1 3/1 2/1 2/1
1LQD 1/1 1/1 1/1 1/1
1LZG inf/inf 196/inf | 480/inf | 999/1111
1MQ6 7/3 1/1 2/1 1/1
103P 15/13 6/6 9/7 12/10
1PPC 1/1 1/1 1/1 1/1
1SQO 2/1 2/1 2/1 2/1
1TOM inf/inf 115/inf | 296/284 | 480/471
1VJ9 32/1 13/1 23/1 34/1
1VJA 40/4 2/inf 6/5 8/5
2P9%4 36/2 8/1 5/inf 7/inf
2PAX 2/1 2/1 2/1 2/1
3CEN 92/1 2/inf 7/inf 15/inf
3KIV 12/1 11/1 12/1 12/1
3PAX 2/1 2/1 2/1 2/1
4FSW 8/7 3/3 4/4 6/6
4FT0 26/12 3/10 8/4 6/inf
4FT9 43/27 2/inf 19/inf 31/31
4FTA inf/inf 12/inf 35/35 73/73
4FV5 186/120 11/11 14/12 25 /inf
4FV6 inf/inf 7/13 3/inf 14/261

The obtained results show that there are two different types of protein-ligand com-
plexes with different complexities of their MMFF94 energy surfaces among our validation
set of 30 complexes. First, "simple" complexes for which the docking paradigm is true
for MMFF94 energy as the docking target function (IN~1, INN&1), the global energy
minimum is found by FLM and SOL-T programs both. Second, complexes with "com-
plicated" MMFF94 protein-ligand energy surfaces for which the docking paradigm is not
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true (IN>1 or INN>1), the lowest energy minima found by FLM and SOL-T programs
are different.

Overall, one can conclude that FLM program finds low energy local minima much
better than any variant of SOL-T program. However, this better behavior of FLM pro-
gram is at the expense of employment of much larger computational resources: FLM
uses ~ 10® s-cores (about 5 x 10° local optimizations), but SOL-T16 use only 10° — 10°
s-cores. Relative performance of SOL-T with ranks 16, 32 and 64 is 1:3:9 for many com-
plexes. However sometimes there are exceptions when performance of SOL-T32 and SOL-
T64 programs is almost the same. The latter can be connected with non-optimized SOL-T

code for Lomonosov supercomputer [27].

Conclusions

Novel docking algorithm on the base of the Tensor Train global optimization method
is described. The performance of the respective docking program SOL-T is investigated
for a set of different protein-ligand complexes with experimentally defined atomic struc-
tures and having flexible ligand of different sizes. The protein-ligand energy (the docking
target function) is calculated in the frame of MMFF94 force field. Dimension of the global
minimum search space is up to several dozen depending on the ligand size and flexibility.
Performance of SOL-T program is compared with one of FLM docking program devel-
oped on the base of Monte Carlo local minima search algorithm covering almost whole
search space at the expense of large supercomputer resources employed. The conclusions
of the present investigation are as follows.

1. FLM docking program finds the lowest energy minimum of each protein-ligand sys-
tem. SOL-T docking program finds the global energy minimum (found by FLM
program) only for 50% of the investigated protein-ligand complexes.

2. Ability to find low energy minima is almost the same for different investigated vari-
ants of SOL-T programs on the base of rank 16, rank 32 and rank 64 tensor train
representations, but SOL-T rank 16 program is much faster.

3. As a rule the number of low energy local minima in a given energy interval from
the global minimum, say 5 kcal/mol, found by FLM program is larger than one
found by SOL-T programs, and the higher rank of SOL-T program the more low
energy minima are found in the given energy interval. Nevertheless, SOL-T finds
little number of minima which are different in their conformations from ones found
by FLM program for about 30% of complexes.

4. SOL-T16 program is faster about 100 times than FLM program and about 10 times
than SOL-T64.

5. FLM and SOL-T performance demonstrates that the docking paradigm is true for en-
ergy calculated in the frame of MMFF94 force field for many of investigated protein-
ligand complexes. As a rule the energy global minimum for such complexes is found
by FLM and SOL-T programs both.

The Tensor Train global optimization method is perspective for application to
the docking problem with up to several dozen degrees of freedom of flexible ligand —
dimension of the search space.
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NCCIIEAJOBAHUE AJITOPUTMA JJOKNHI'A HA OCHOBE
METOJA TJIOBAJIBHON OIITUMM3AIINN C IIOMOIIILIO
TEH3OPHDBIX IIOE3/10B

U.B. Ogeprun, /1.A. 2Keamxos, E.E. Tuupmoviuwnuros, A.B. Cyaumos,

.

K. Kymos, B.b. Cyaumos

DPDEKTUBHOCTL COBPEMEHHOI PAIMOHAILHON pa3pabOTKM HOBBIX JIEKAPCTB 3aBUCHUT
OT TOYHOrO MOJEJUPOBAHUS CBS3bIBAHUS OeJIKA-MWIIEHH, OTBETCTBEHHOTO 33 OOJIE3HB,
C  MaJbIMU MOJIEKyJaMu (JIUCAHAAMHU) — KaHIUJATAMH B JIEKAPCTBa. LJIaBHBIN
HHCTPYMEHT TAaKOr0 MOJEJMPOBAHMSA 3TO IIPOrPaMMBI  JIOKHUHIA, OCYIIECTBIISIOIIAE
[O3KIMOHUPOBAHUE JIUTAHI0B B OeJIKaX-MUIIEHAX. DTO IO3UIMOHUPOBAHNE OCY IIECTBISETCS
B pPaMKaX MMapaJurMbl JOKWHTA, 3aKIOYAMENHCs B TOM, UYTO JINTAHI CBSA3bIBAETCS
B Oe/lke B TIOJIOXKEHUH, COOTBETCTBYIOIIEM TJI00ATBHOMY MUHUMYMY SHEPIHU CHUCTEMBbI
Gemok-yimrana. llpercraBied HOBBI aJrOpUTM JOKWHTA HA OCHOBE HOBOTO METOIA
r7100aIbHOM ONTHMM3aIMK C IOMOIIBI0 TEH30PHBIX [0e310B. [IpoBemeHo TecTHpoBaHHE
COOTBETCTBYIOIIEH HOBON MPOrpaMMbl JOKHHTa Ha Habope 30 KOMILIEKCOB OEIOK-THTaH
C W3BECTHOH TPEXMEPHON CIPYKTYpPOH. DHeprusi CUCTeMbl OEJIOK-JIUIaH[ BbIYUC/ISETCH
¢ mnomorpio cupooro moss MMFEFF94. Pabora mporpammer SOL-T cpaBHuBaercs c
PEe3YIbTATAMY UCUEPITBIBAOIIETO TOUCKA, HU3KOIHEPTETHIECKUX MUHUMYMOB, BBITIOJTHEHHOTO
nporpammoit mokuura FLM ma ocaoBe metoma Monre Kapso u ¢ ucmosb3oBafHneM OOIBITHX
CYNEePKOMIIBIOTEPHBIX pecypcoB. [lokazano, uro mporpamma SOL-T B 100 pa3 ObicTpee
uporpammbl FLM u waxoaur riobGasbHblii MUHUMYM SHepruu (HAfJEHHBIH HPOrpamMMoi
FLM) mna 50% wccnemoBaublx KOMILIEKCOB. MccmenoBana pabora mporpammbl SOL-T
B 3aBHCHMOCTH OT WCITOJB30BAHHOTO DAHTa, PA3JIOKEHUs C MOMOIILI0 TEH30PHBIX TOE3/0B
¥ TIOKa3aHOo, 4TO Ipu pamnre 16 sadpdekTuBHOCTL MoKuHra ¢ momoInsio SOL-T takas ke,
kKak u mpu panre 64. Tlokazano, 9To mapagurmMa JOKHHTA BBLITOJIHIETCS HE [JIA BCEX
HCCJIEIOBAHHBIX KOMILTEKCOB OEJIOK-JUTaH I IPYU UCIOIB30BaHuN CHI0BOTO moJist MMFEFF94.

Karuesve caosa: dokuHz; 2A000AbHAA ONMUMUSAUUSL;, MEHIOPHOIT N0€30; KOMNAEKC

beaok-auzand; pa3pabomra AEKAPCME.
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