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The article focuses on the application of the Bayesian networks (BN) technique to problems of personal-
ized medicine. The simple (intuitive) algorithm of BN optimization with respect to the number of nodes
using naive network topology is developed. This algorithm allows to increase the BN prediction qual-
ity and to identify the most important variables of the network. The parallel program implementing the
algorithm has demonstrated good scalability with an increase in the computational cores number, and it
can be applied to the large patients database containing thousands of variables. This program is applied
for the prediction for the unfavorable outcome of coronary artery disease (CAD) for patients who sur-
vived the acute coronary syndrome (ACS). As a result, the quality of the predictions of the investigated
networks was significantly improved and the most important risk factors were detected. The significance
of the tumor necrosis factor-alpha gene polymorphism for the prediction of the unfavorable outcome of
CAD for patients survived after ACS was revealed for the first time.

Keywords: Bayesian networks; variable correlation; personalized medicine; naive network optimiza-
tion; acute coronary syndrome; TNF gene polymorphism

1. Introduction

Bayesian networks (BNs) are probabilistic models representing relationships within a set of given
variables via directed acyclic graphs with conditional probability tables (CPTs) in their nodes,
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72 E.D. Maslennikov et al.

containing conditional dependencies between neighbor variables. The BN technique has proved
to be efficient in many areas of science and applications [32]. Both interesting and extremely
important field of BN applications are expert systems of personalized medicine [10,28]. The
main idea of personalized medicine is to use the right treatment for every particular patient tak-
ing into account his medical status, personal genetics features, environment, lifestyle, medical
and family history. The BN technique is well suited to deal with cases containing uncertain-
ties [35]. The BN technique allows combining prior expert knowledge with experimental data,
working with different types of patient data and detecting the relationship between variables. BN
algorithms perform just as well on multi-core computing systems. There are numerous works
including specialized software that apply the BN technique for prophylaxis and treatment of
life-threatening diseases [1,2,5,7,8,23,26,37,40].

Apart from BN there are also Markov random field (MRF) probabilistic graphical models [4]
which are based on the undirected graphs. They are very similar to BN, but MRF models need
considerable computational resources for the calculations. MRF are used mainly in computer
vision tasks [41]. Common tasks of extracting information from data sets (data mining) are clas-
sification, clustering, and regression [15]. Classification identifies to which a set of categories a
new observation belongs on the basis of a training set of data. Clustering is the task of grouping
a set of objects in such a way that objects in the same group (called a cluster) are more similar
(in some sense or another) to each other than to those in other groups (clusters). Regression is
the task of searching the function which models training data with least error estimating the rela-
tionships among variables. For application in personalized medicine, the classification method is
the most important: there are two types of patients: diseased and healthy, our goal is to predict
class of a new patient, who has no diagnosis. Most popular classification techniques are: neural
networks, decision trees models, and support vector machines (SVM) [22]. The neural network
is the mathematical model represented by a set of interconnected elements (neurons) which can
compute output values from inputs. Their main disadvantages: it is impossible to give reasons
for the results (black box) and they need large computational resources. The former is disagree-
able for most medical scientists. The decision tree method is the graphical model represented
by a treelike graph with conditions of graph path choice in the nodes. They have limitations for
handling missing data, they are very sensitive to training data, and therefore this technique is
not optimal for working with patient databases. SVM [42] is based on the search of the hyper-
plane dividing examples of different classes in the examples space. Complexity of the optimal
hyperplane construction for the tasks with a large number of variables is the main problem of the
SVM method. This feature restricts usage of SVM for learning and prediction for patients with a
large number of clinical and genetic parameters contained in contemporary patient databases. So,
BN probabilistic models are most convenient to be used for purposes of personalized medicine
dealing as well with missing and erroneous data inherent in patient databases and be able to deal
with large numbers of variables.

For purposes of personalized medicine, both for a better understanding of the origins of the
disease and use of the most effective treatment, it is interesting to identify the subset of risk
factors that occasionally cannot be captured by traditional statistical testing (for example, by the
popular Pearson product–moment correlation coefficient [36] method, which cannot work prop-
erly with missing data or sensitivity analysis (SA) [6,24], which requires preliminary network
topology optimization, and the result depends strongly on the network topology and threshold
parameters). One technique solving this problem has been proposed in [3] and applied to the
epidemiology problem.

In the given work we present an intuitive and simple algorithm of revealing most signifi-
cant BN variables, which, in terms of personalized medicine, act as the most crucial factors
determining the course of the target disease. This algorithm results in the BN optimization and
improvement of the prediction quality within the naive network topology. We also consider
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parallel implementation of the algorithm on multi-core computer systems, which makes it pos-
sible to perform the optimization of the very large BN including many thousand parameters per
patient. We apply the developed method for solving one of the most critical problems of person-
alized medicine – prediction of an outcome of coronary artery disease (CAD) which is the most
common cardiovascular disease and one of the main causes of death in the world [33]. Contempo-
rary treatment of patients with ACS is based on the risk estimation strategy. There are numerous
stratification scales including GRACE, PURSUIT, TIMI, etc. [19]. The main problem is that all
of them estimate a patient’s individual prognosis using only several risk factors and ignoring a lot
of other important features. As distinct from traditional statistical methods, the application of the
BN algorithm can improve the situation. In the present work the proposed algorithm was applied
for the prediction for the outcome of CAD among patients who had already suffered acute coro-
nary syndrome (ACS). Considerable improvement of the prediction quality was demonstrated
and the significance of the tumor necrosis factor (TNF)-alpha gene polymorphism was revealed
for the first time. Results have been compared with ones obtained using SA.

2. Material and methods

2.1 Network’s performance measure

We compare the predictive quality of different BNs to identify the most significant variables.
For this purpose we use the receiver operating characteristic (ROC) curves method [14,21,34].
The area under such curves (AUC) is used as the numerical measure of the predictive quality
of a BN for a given training database. Here, we must specify that such a method measures
predictive quality for the root variable which is responsible for the identification of the core
of the problem under consideration; in the case of personalized medicine, for example, it is the
variable responsible for the course of the considered disease. Also we assume that there are no
missing data about the root variable in the given training database.

The application of AUC takes more computational resources in comparison with other scor-
ing methods, such as the belief scoring function [9] or minimal description length method [30].
However, it is the only method we can use to compare networks with different number of vari-
ables adequately in as much as the other methods were primarily designed for network learning
[9,30] or topology optimizing [17]. The results of scoring two networks with different number
of variables using those methods depend strictly on the accepted coefficients.

In the present work we used the ‘excluding-by-one’ method (Appendix 1). In the table for
building the ROC-curve (ROC-table) each line corresponds to a single line in a given database,
and the first column of the table contains real values of the root variable in respective lines
of the database, whereas other columns contain probabilities that the root variable could have
one or another value. Every line in the ROC-table is obtained by the exclusion of a single line
from the entire training database, learning the network on the database without the excluded
line and calculating the probability for the root variable of the excluded line. That probability
value is added to the ROC-table together with the real evidence that the root variable has. The
‘excluding-by-one’ method is slow (perhaps, the slowest AUC calculating method), but we use
it for the sake of high accuracy and to minimize influence of randomness on the results of our
calculations.

2.2 Network optimization algorithm

We propose the algorithm of the BN optimization with respect to its variables. For this purpose
we include all given variables to the so-called naive network which has the simplest topology –
the root variable is the parent one with respect to others, which are not interlinked, see Figure 1
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74 E.D. Maslennikov et al.

Figure 1. Example of the naive BN. A is the root variable.

(in some papers such a network is called ‘native’). In spite of its simplicity, the naive BN topology
is widely used for a broad spectrum of problems [27,32,38,39]. The use of naive topology appears
to be one of the best options compared to more complex topologies [13,16]. Also, most of basic
BN’ algorithms (such as network learning or evidence collection [25,29] which are necessary
for AUC calculation) perform faster with the naive topology than with any other one (brief
description of those algorithms are presented in Appendix 1). Moreover, learning the naive BN,
besides its simplicity, is precise, non-iterative and has no randomness (Appendix 1).

The naive topology suits well our goal – the network optimization with respect to its vari-
ables: elimination of any variable from the network (except the root one) does not change
the network topology. For any other topology except the naive one, elimination of a variable
from the network can change its topology, and the BN optimization with respect to its variables
must involve the topology optimization, so the results will depend on the topology optimization
algorithm used.

The presented algorithm is iterative (Algorithm 1). A description of the used functions can
be found in Appendix 1, Table A1. At every iteration we calculate AUC of the entire network
(line 3), then calculate AUC of every network that can be obtained by excluding (line 6) one vari-
able from the entire network (except for the root variable, line 7), storing them in the previously
allocated array (line 4). From the obtained networks we choose the one having the maximal value
of AUC (line 8). If this value is larger than one of the entire network, we begin the new iteration
of the algorithm with this newly obtained network (line 10). We stop the algorithm execution as
soon there is no possibility to improve the AUC value by excluding a variable from the network
(line 12).

Because our main purpose is not only to optimize the network but also to find out the most
significant variables influencing the problem under consideration, we can continue to exclude
variables from the optimized network as follows. Any variable can be removed from the network
if the respective AUC decreases less than a specified small quantity. The least crucial variables
are excluded first – their removal results in the smallest AUC decrease. In the present work, the
specified small value has been taken equal to 0.003 (Section 3).

2.3 Performing optimization on parallel computers

The presented network optimization algorithm may be easily launched on several parallel cores
to increase its performance. The most expedient way is to calculate AUC of a single network at
every iteration of the optimization algorithm (Algorithm 1) at a single core. The most obvious
advantage of such a method is the absence of numerous time-consuming data transfers between
cores. Applying this method, we can obtain linear acceleration with an increase in the number of
computational cores.

However, the above-mentioned parallelization method has several disadvantages. First, it is
pointless to use more cores than the number of variables in the network under consideration.
Second, if we perform a lot of iterations of the algorithm and the number of cores is comparable
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Algorithm 1 Optimization algorithm for naive network

Function: OptimizeNaiveNetwork

Input: B naive Bayesian network with variables X = {X0, .., XN },
X0 is root variable

D database with M data lines, first line has index 0
Output: B optimized naive Bayesian network

1: loop← true
2: while loop do
3: a← AUC(B,D)

4: Allocate(b) {{Array of real numbers}}
5: for i← 1 to N do
6: B′ ← ExcludeVariable(B, i)
7: bi ← AUC(B′,D)

8: {b, j} ← Max(b) {{b - maximum value, j - index of this value in array b}}
9: if b > a then

10: B← ExcludeVariable(B, j)
11: else
12: loop← false

with the number of variables, many cores may become idle when variables are excluded. This
leads to a significant efficiency decrease rather than acceleration.

In the case of the large training database and a network with a small number of variables, it
is reasonable to parallelize the AUC calculating procedure (Appendix 1). This suggests learning
network and calculating target probabilities after temporarily excluding every single data line at
a single core. Thus, efficiency would not drop with the increase in the number of iterations of the
optimization algorithm, but it needs a lot of data transfers between cores which may adversely
affect the performance.

3. Example: prediction of the CAD outcome after the ACS

In this section we apply the developed method of the network optimization, revealing the most
significant variables, for the problem of prediction of the outcome of CAD. We used the database
related to patients who had already suffered ACS in the past, so they have an increased risk of
the unfavorable outcome.

3.1 Database, networks, and program

In our research we used the database from the multicenter prospective observational Russian
study performed from December 2004 until June 2009 in 16 medical centers of seven Rus-
sian cities: Moscow, Kazan, Perm, Chelyabinsk, Stavropol, Rostov-on-Don, and St. Petersburg.
It involved 1193 patients hospitalized due to acute CAD (no more than 10 days before acute
myocardial infarction (MI) with ST-segment elevation and no more 3 days before for Non ST
MI and unstable angina) and survived for 10 days after the index event. The database containing
more than 400 variables described the patient’s status, demographic parameters, routine biomark-
ers’ level, electrocardiographic and echocardiographic data, medical and family history, genetic
data, and the follow-up results. In this work we did not use variables that were presented for less
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76 E.D. Maslennikov et al.

than 40% patients in order to decrease statistical noise, so 204 variables only were included into
naive BNs (Appendix 2, Table A2).

The study end points were: fatal and non-fatal MI, fatal and non-fatal stroke, unstable angina
with hospitalization, sudden cardiac death, and non-vascular death.

We compare the results obtained from two different networks: the first one was designed for
the prediction of the unfavorable outcome after ACS within the next half-year period (hereinafter
called net-06) and the second one – for prediction of the unfavorable outcome after ACS within
the next one and a half-year period (net-18). Initially, they have identical sets of variables, apart
from the root variables. In our research we used only data for patients including men under the
age of 74 and women under the age of 82, as there is a strictly different mechanism of disease
for aged patients. The patients lost for follow-up between baseline and a six-month visit were
excluded from the six-month analysis. So this analysis was performed for 980 patients. Similarly,
by the 18th month the analysis of the data for 722 patients was available.

The program SiMBA (‘Simple Multi-core Bayesian Analyzer’) implementing the presented
network optimization algorithm (Algorithm 1) applicable on several computing cores was devel-
oped with the use of C++ programming language with MPI library. We used GNU Compiler
version 4.6.3 and OpenMPI version 1.5. SiMBA can optimize network by maximal AUC or by
the minimal size of network with restricted AUC decrease value (that is useful to reveal most
important variables as it has been shown in Section 2.2). Because we deal with networks with a
relatively large number of variables (comparable to the database size) we perform parallelization
as calculation of AUC of a single network at a single core (as described above).

3.2 Results and discussion

After applying the optimization procedure to investigated networks we significantly increased the
prediction quality of both of them. Thus, AUC increased from 0.6080 (for the initial network)
to 0.8031 (for the optimized one) for net-06 and from 0.6479 to 0.7614 for net-18. Numbers of
variables have decreased significantly after optimization: from 204 (for both initial networks) to
48 and 54 for net-06 and net-18, respectively. The optimized networks have only 19 common
variables (Appendix 3, Table A3). This can be interpreted as follows: essentially different sets
of factors affect the progress of CAD within the next half-year period after ACS and within the
next 1.5-year period.

To reveal the most important factors determining the course of CAD after ACS, we proceeded
to remove variables from the optimized networks further, excluding every variable that decreased
AUC by less than 0.003. We used SA to choose the best threshold. From Figure 2 it is possible to
calculate derivatives. The second derivative has the minimum value at the point with the thresh-
old equal to 0.003. The process was stopped after an attempt to exclude any variable leading to a
significant (larger than 0.003) decrease of AUC. As a result, we obtained 17 and 16 variables for
minimal networks net-06 and net-18, respectively. Comparing variables in the resulting minimal
networks we concluded that the most important factors are the TNF-alpha gene polymorphism,
history of MI and usage of spironolactone within 10 days of hospitalization. These were the
only variables common for both networks after the post-optimization variables removal. The
exclusion of these variables causes a significant AUC decrease (for both networks). The most
intriguing of these factors is the TNF gene polymorphism. Importance of the TNF gene poly-
morphism for determining the course of CAD after ACS is revealed for the first time. This is a
very interesting result as far as this protein plays a significant role as a promoter of inflammation
[31]. Meanwhile, it is obvious that the history of MI also influences the risk of the unfavorable
outcome of CAD. The need for diuretics (spironolactone) is one of rough characteristics of sever-
ity of the disease. So, the obtained results are not only useful in terms of personalized medicine,
but also they comply with common sense considerations.
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Figure 2. The dependence of AUC on the number of variables.

We applied the SA to our networks in order to verify these results. For this purpose we intro-
duced a special type score for each variable of the network. This score reflects sensitivity of the
root variable probability to the evidence of the given variable. This score is calculated as follows.
First, we learn the given naive network using our entire database. Second, the root variable prob-
ability Zi

j is calculated with evidence of value j of Xi variable with evidences of other variables
stay missing. Then the score Ci of Xi variable is calculated as follows:

Ci =
∑

j

|Zi
j − P0| × Ei

j,

where the reference root probability P0 (first value of two for definiteness) is calculated for
the data line with all missing values, Ei

j is the number of evidences of value j of variable Xi.
Actually, P0 is a priori probability of the root variable to possess the first value (index ‘0’).
Finally, all network variables are ranked with respect to their scores. The variables in the top
have the largest score, and the root variable probability is the most sensitive to the top variables.
This analysis was applied to our initial networks net-06 and net-18 with 204 variables.

As a result the significance of MI history was confirmed (the top score for both networks) and
the TNF gene polymorphism (in top 10 for both networks). Significance of spironolactone usage
was revealed only in net-06. Tables with the best SA results for both networks net-06 and net-18
are presented in Appendix 3, Tables A4 and A5.

We calculated also AUC values for every naive network that could be constructed using the
ranking sequence of variables obtained by the SA presented above. The results are shown in
Figure 3, where the x-axis represents the naive networks with the respective number of variables
(except the root variable): from the top variables with the highest SA score to our initial networks
net-06 and net-18 with 204 variables. One can see that maximal AUC values 0.6389 (net-06) and
0.6442 (net-18) obtained by this method are much lower than ones, 0.8031 and 0.7614, obtained
by our network optimization method, respectively.

To illustrate how the outcome is distributed across different variables we presented lists of
variables of the minimal optimized networks, net-06 and net-18, together with their SA scores in
Tables A6 and A7, respectively (Appendix 3).
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(a) (b)

Figure 3. AUC values for naive networks constructed using the variable sequence obtained by SA for net-06
(a) and net-18 (b), where the x-axisrepresents the naive networks with the respective number of variables
(except the root variable): from the top variables with the highest SA score to our initial networks net-06
and net-18 with 204 variables.

(a) (b)

Figure 4. Acceleration (a) and efficiency (b) dependencies on number of computational cores on supercom-
puters ‘Lomonosov’ [12] and ‘Chebyshev’ [11].

We also examined efficiency of multi-core parallel performance of the developed program.
We use two values for parallel performance characterization: acceleration

A(N) = t(N = 1)

t(N)
, (1)

where t is working time, N is the number of computational cores, and efficiency

E(N) = A(N)

N
. (2)

Both functions’ dependencies on the number of computational cores were calculated for two
supercomputers of Research Computing Center of Moscow State University: ‘Lomonosov’ [12]
and ‘Chebyshev’ [11]. Results are presented in Figure 4. As we see, SiMBA shows good effi-
ciency and very well acceleration with the number of cores comparable with the number of
variables in the investigated networks.
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4. Conclusion and further work

In the present paper we proposed the algorithm of naive BNs optimization with respect to the
number of their variables. This optimization increases prediction quality of these networks and
reveals the most important variables. The algorithm has been implemented in the parallel pro-
gram able to operate in multiple computational cores mode at supercomputers. The program has
been successfully applied to the problem of predicting risk of unfavorable outcome after an ACS.

The networks optimization results in a considerable decrease in the number of network vari-
ables from more than two hundred to several dozens in the optimal networks and to less than 20
in the minimal ones. The prediction quality demonstrates a sizable increase in AUC from 0.6 up
to 0.8 after the optimization. This effect possibly is connected with a decrease in statistical noise
provided by the large number of variables and inherent fluctuations in the patients databases. The
networks optimization reveals the most important variables in the problem under consideration,
and among them the important role of the TNF-alpha gene polymorphism is discovered for the
first time. The results were verified with the SA method. The presented method allows to obtain
networks with much larger AUC values than with SA.

The proposed optimization algorithm has been implemented in the parallel program SiMBA
that has demonstrated good scalability with the increase in the number of computational cores,
and it can be applied to the large patients database containing thousands of variables.

The presented results confirmed the effectiveness of BNs technique application for personal-
ized medicine expert systems.

Further work will be mainly aimed at network topology change in the course of the optimiza-
tion process. This idea was inspired by results of tree augmented naive networks researches [18].
The application of topology optimization may be done in the following way: as we try to exclude
any single variable we calculate AUC not for the resulting naive network but for network with
the most optimal topology. This can be obtained by learning network with topology optimiza-
tion, for example, via Structural expectation-maximization algorithm [17]. Other possible way
is to combine our method with the recently presented approach [20]. Perhaps it will help not
only to detect most significant variables, but also to reveal links between them. We are planning
to validate and implement the proposed method for other important problems of personalized
medicine.
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Appendix 1. Basic network algorithms

Here, we briefly describe algorithms of network learning and evidence collection which are necessary for AUC calcu-
lation. In our case of the naive topology, these algorithms are much simpler than in general one (for general case, see
[25,29]).

In the following algorithms we denote all variables by integer numbers, and the root variable marked as zero. We also
assume that all our variables are discrete; values of any continuous variable can be split into several intervals and each
interval can be indexed by an integer. So, the ith variable possesses values from 0 to (Si − 1), where Si is the number of
values the ith variable can take.

The database used for network learning is represented by a matrix, each column corresponds to a given variable
denoted with the same integer, each row is one data unit, e.g. the data for a given patient. Integers in cells of that matrix
correspond to values of respective variables (‘−1’ stands for missing data). Also, we assume that zero column (responsi-
ble for the root variable) has no missing data (if there is any we just ignore the corresponding row in the database). The
latter assumption was made because we need learning procedure in order to calculate AUC (Algorithm A1).

Algorithm A1 An ‘excluding-by-one’ algorithm of AUC calculation

Function: AUC

Input: B Bayesian network
D database with M data lines, first line has index 0

Output: A AUC value

1: Allocate(T) {ROC table}
2: for i← 0 to (M − 1) do
3: {D′, l} ← ExcludeLine(D, i) {Exclude ith line from database and store it in l}
4: B← LearnNetwork(B,D′) {Learn network on database with excluded line}
5: x← RealRootEvidence(l)
6: y← CalcRootProbability(B, l)
7: AddLine(T, x, y)
8: Sort(T)

9: A← CalcAUC(T)

But row without evidence on the root variable cannot contribute to AUC value (because missing root value cannot
be included to ROC table). However, we would like to emphasize that all other missing data are taken into account
and participate in BN learning. It is absolutely irrelevant to ignore it as far as the patient database in the present work
(Section 3) has a lot of missing data: for some variables up to 40% patients have no data.

In the case of naive topology network, learning is reduced to direct usage of definition of conditional probability. The
learning algorithm is presented in Algorithm A2. We use the structure Ê that appears to be an array of arrays of integers,
as a ‘storage’ for statistics of given evidences. Every element of this structure is needed for further calculation of value
of corresponding cell in the CPTs, so every E i (for i ≥ 1) has (Si · S0) cells as it corresponds to the future CPT of the ith
variable, E0 has S0 cells. At first we allocate memory for this structure (line 1) and make all its elements equal to zero
(line 4). Then, we analyze evidence in every data line and store the total sum in the corresponding cells of Ê (line 6 – for
the root variable, line 9 – for others). After that we allocate memory for array of CPTs (line 14), every element of which
appears to be a matrix with real number elements, every P i (for i ≥ 1) is Si × S0 matrices, P0 is 1× S0 matrix. We
assume that for every 0 ≤ i < S0, 0 ≤ j < Sk , 1 ≤ k ≤ N Pk

ji corresponds to conditional probability P(Xk = j | X0 = i),
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P0
i corresponds to P(X0 = i) for every 0 ≤ i < S0. We obtain values of conditional probabilities by dividing values in

cells E i by the sum of values of element corresponding to a single row of CPT (normalization probability to 1, lines 16,
19). Finally, we create naive BN using obtained CPTs (line 20). Presented algorithm is precise – it has no any random
factors. So, the result of learning is the same for the given network and database for any independent run.

Algorithm A2 Naive network learning algorithm

Function: LearnNetwork

Input: B naive Bayesian network, which contains X and S:
X = {X0, .., XN } list of network variables, X0 is root one
S = {S0, .., SN } list of number of values for every variable from X
D database: M × (N + 1) integer matrix, M – number

of data lines, N + 1 – number of variables
Output: B learned naive Bayesian network

1: Allocate(Ê) {an array of integer arrays}
2: for i← 0 to N do
3: for j← 0 to SizeOf(E i) do
4: Ei

j ← 0 {Ei
j is a jth element of E i}

5: for i← 0 to (M − 1) do
6: E0

Di0
← (E0

Di0
+ 1)

7: for j← 1 to N do
8: if Dij > (−1) then
9: Ej

(Sj·Di0+Dij)
← (Ej

(Sj·Di0+Dij)
+ 1)

10: else
11: if Dij = (−1) then
12: for l← 0 to Sj − 1 do
13: Ej

(Sj·Di0+l)← (Ej
(Sj·Di0+l) + 1/Sj)

14: Allocate(P̂) {an array of CPTs}
15: for i← 0 to S0 − 1 do
16: P0

i = E0
i /M {P(X0 = i)}

17: for k← 0 to N do
18: for all i, j : 0 ≤ i < S0, 0 ≤ j < Sk do

19: Pk
ji = Ek

(i·Sk+j) ·
(

(i+1)·Sk+j∑
l=(i·Sk)

Ek
l

)−1

{P(Xk = j|X0 = i)}

20: B← CreateNaiveNetwork(X, P̂)

Considering collect evidence procedure (for the root variable – the only one we need for AUC calculation) with
naive network (Algorithm A3), we use CPT representation in potential form (see, for example, [25]). So, due to native
topology, the presented algorithm is simplified to merging (multiplying) all potentials (those allocated in line 1) of the
network (lines 4, 5) (with taking given evidence into account – line 3) with further normalization to 1 (line 6).

Description of used functions can be found in Table A1. The function SetEvidence (line 3) needs some explanation:
any single evidence is taken into account while calculating probability of the root variable. Within the framework of the
language of potentials it means merging of potential Pi of CPT corresponding to the considered variable Xi with potential
Zi of variable Xi of the form

∀j, 0 ≤ j < Si : Zi
j =

{
0, j 	= di

1, j = di,
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Algorithm A3 Collect evidence for root variable in naive network

Function: CalcRootProbability

Input: B learned naive Bayesian network with variables
X = {X0, .., XN }

d data line with evidences (may contain missing values)
Output: P0 Probabilities (for different values) of root variable

1: Allocate(P, Z) {Temporary potentials}
2: for i← 1 to N do
3: Z← SetEvidence(Xi, di) {Set evidence form data line d to variable Xi and store it in

temporary potential Z}
4: P← Merge(P, Z)

5: P← Merge(P, CPT(X0)) {Merge temporary potential with CPT of root variable}
6: P← Normalize(P)

7: P0 ← Probability(P) {Take desired probabilities from temporary potential}

where di is the value of the ith element of given data line d. With such definition of the Zi procedure SetEvidence(Xi, di)

is equal to Merge(CPT(Xi), Zi), where CPT(Xi) returns potential from CPT of variable Xi. After merging temporary
potential P with potential of the root variable CPT(X0) we obtain a potential of one variable X0. After normalization to
1, this potential contains desired probabilities of the root variable, so we only need to extract them (line 7).

Table A1. Description of functions used in algorithms for the naive network topology.

List of used functions Description of used functions

AddLine(T, x, y) Add line to ROC-table T containing from known evidence x and calculated
probability y

Allocate(T) Allocate memory for structure T
AUC(B,D) Calculate AUC for network B using network D. Returns a real number
CalcAUC(T) Calculate AUC from sorted table T. Returns real number
CalcRootProbability(B, l) Calculate probability of root variable (of 0th value, for definiteness) of network B

using evidences form data line l (ignoring evidence for root variable). Returns a
real number. Discussed in detail in present article for naive networks

CPT(X ) Returns potential of CPT of variable X
CreateNaiveNetwork(X, P̂) Create naive network from list of variables X, where X0 is root variable, with

CPTs P̂ . Returns naive network
EvNum(D, Xi, j) Calculate number of evidences of value j of variable Xi in database D
ExcludeLine(D, i) Exclude ith line from database D. Returns new database and excluded line
ExcludeVariable(B, i) Exclude ith variable from network B. Returns new network
LearnNetwork(B,D) Learn network B using database D. Returns learned network. Discussed in detail

in present article for naive networks
Max(b) Find maximum element of array b. Returns the value of that element and its index
Merge(X, Y) Merge potential X with potential Y
Normalize(P) Normalize potential P so sum of its value becomes 1
OptimizeNaiveNetwork(B,D) Optimize naive network B by the number of variables using database D. Returns

an optimized naive network
Probability(P) Extract probabilities from normalized potential P. Returns an array of real

numbers

(Continued)
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Table A1. Continued

List of used functions Description of used functions

RealRootEvidence(l) Extract known evidence of root variable from data line l. Returns an integer
number

SensitivityAnalysis(B,D) Provide a ‘weighted’ SA for naive network B, using database D. Returns an array
of real numbers – scores for every variable.

SetEvidence(X , x) Set evidence with index x for variable X . Returns corresponding potential for
variable X

SizeOf(X) Returns size of array X
Sort(T) Sort table T for AUC calculating by column with calculated probabilities
ValNumber(X ) Returns number of values for variable X

Appendix 2. List of clinical characteristics

Table A2. Clinical characteristics of the involved patients.

Index N of case

Sex (male/female) 755/438
Age, yearsa 61.4±11.72
Smokers 458
Unstable angina/Non ST MI 767
Acute MI with ST-segment elevation 426
History of MI 384
History of CAD 806
Heart failure 651
History of stroke 108
Diabetes mellitus 156

aMean age±Standard Error of mean.
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Appendix 3. List of the network variables

Table A3. List of common variables for net-06 and net-18 after optimization by maximal AUC.

Percentage of presence
Variable Possible values in database (%)

Age Intervals 28..53..61..71..82 100
History of MI Yes/no 100
Increase of angina attacks severity at the time of

admission to the hospital
Yes/no 55

Systolic blood pressure Intervals 85..120..140..180 67
Prior hypolipidemic therapy Yes/no 100
Use of angiotensin II receptor blocker within 10

days of hospitalization
Yes/no 100

Use of non-cardiovascular drugs within 10 days
of hospitalization

Yes/no 100

Use of nitrates within 10 days of hospitalization Yes/no 100
Use of spironolactone within 10 days of

hospitalization
Yes/no 100

Daily consumption of fruits or vegetables Yes/no 100
Uric acid level Intervals 39..420..934 75
Atherogenic index Intervals 0.2..4.5..6..36.9 74
Sinoatrial or atrioventricular conduction

disorders
Yes/no 100

ST segment elevation at the time of admission to
the hospital

Yes/no 45

E/A ratio Intervals 0.1..1..1.5..5 41
Ejection fraction (%) Intervals 16..30..45..55..85 54
End diastolic volume Intervals 1.8..2.2..3.2..3.5..3.7..4.2

(male), 1.8..2.4..3.3..3.5..3.8..4.9
(female)

70

Polymorphism gene PROC C(-1654)T CC/CT/TT 96
Polymorphism TNF gene A(-308)G AA/AG/GG 91

Table A4. Variables with the best SA results for net-06.

Percentage of presence
Variable Possible values in database (%) SA score

History of MI Yes/no 100 47.10
Life style Sedentary/moderately/ active 100 40.04
Use of spironolactone within 10 days of

hospitalization
Yes/no 100 35.79

Heart failure Yes/no 100 32.35
Use of spironolactone Yes/no 100 30.66
Certified disability 1th degree/2th degree/ 3th

degree/no
100 29.35

Age Intervals 28..53..61..71..82 100 27.42
Polymorphism TNF gene A(-308)G AA/AG/GG 91 27.25
Coronary artery disease Yes/no 100 26.30
Education Higher/specialized secondary/

secondary
100 23.29
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Table A5. Variables with the best SA results for net-18.

Percentage of presence
Variable Possible values in database (%) SA score

History of MI Yes/no 100 65.35

Baseline diagnosis Unstable angina/non ST
MI/acute MI with ST-segment
elevation

100 60.58

Sleeplessness Yes/no 100 47.37

Polymorphism TNF gene A(-308)G AA/AG/GG 91 46.41

Diabetes mellitus Mild type 2 diabetes/moderate/
severe/no

100 44.86

Heart failure Yes/no 100 44.30

Weakness Yes/no 100 40.09

Use of nitrates within 10 days of
hospitalization

Yes/no 100 38.17

Manifestation of CAD Angina/MI 67 34.94

Certified disability 1th degree/2th degree/3th
degree/no

100 34.55

Table A6. List of variables for net-06 after minimization.

Percentage of presence
Variable Possible values in database (%) SA score

History of MI Yes/no 100 47.10

Life style Sedentary/moderately/active 100 40.04

Use of spironolactone within 10 days of
hospitalization

Yes/no 100 35.79

Polymorphism TNF gene A(-308)G AA/AG/GG 91 27.25

Rest angina at the time of admission to
the hospital

Yes/no 55 18.12

Ejection fraction (%) Intervals 16..30..45..55..85 54 17.86

Smoking experience (years) Intervals 0..25..35..60 54 17.17

Base infero-lateral segment Normal/hypokinesis/dyskinesis/akinesis 48 13.94

Daily consumption of fruits or
vegetables

Yes/no 100 11.86

ST segment elevation at the time of
admission to the hospital

Yes/no 45 11.31

New ischemic ECG sign within
hospitalization

Yes/no 100 10.24

Weight changes Yes/no 100 9.92

Weakness Yes/no 100 9.23

Necessity of insulin Yes/no 100 8.55

Mid antero-lateral segment Normal/hypokinesis/dyskinesis/akinesis 48 4.95

Apex lateral segment Normal/hypokinesis/dyskinesis/akinesis 48 4.84

Use of angiotensin II receptor blocker
within 10 days of hospitalization

Yes/no 100 0.91
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Table A7. List of variables for net-18 after minimization.

Percentage of presence
Variable Possible values in database (%) SA score

History of MI Yes/no 100 65.35
Baseline diagnosis Unstable angina/Non ST

MI/Acute MI with ST-segment
elevation

100 60.58

Sleeplessness Yes/no 100 47.37
Polymorphism TNF gene A(-308)G AA/AG/GG 91 46.41
Diabetes mellitus Mild type 2 diabetes/moderate/

severe/no
100 44.86

Use of spironolactone within 10 days of
hospitalization

Yes/no 100 31.39

Thigh circumference Intervals 66..95..101..107..163 98 30.85
Parent’s alcohol abuse Yes/no 75 30.39
Prior hypolipidemic therapy Yes/no 100 28.46
Ventricular septal thickness Intervals 5..10..12..17 72 27.55
Increase of angina attacks severity at the

time of admission to the hospital
Yes/no 100 26.30

Thiazides Yes/no 100 25.97
Age Intervals 28..53..61..71..82 100 24.47
Base infero-septum segment Normal/Hypokinesis/Dyskinesis/

Akinesis
54 18.13

History of stroke Yes/no 100 17.11
Recurrence of MI within hospitalization Yes/no 100 8.55
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