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Single-mode or mode multiplexed free-space atmospheric optical channels have drawn increasingly more
attention in the past decade. The scope of their possible applications spans from the compatibility with the
telecom WDM technology, fiber amplifiers, and modal multiplexing for increasing the channel throughput
to various quantum communication related primitives such as entanglement distribution, high-dimensional
spatially encoded quantum key distribution, and relativistic quantum cryptography. Many research papers discuss
application of specific mode sets, such as optical angular momentum modes, for communication in the presence
of atmospheric turbulence. At the same time some basic properties and key relations for such channels exposed to
the atmospheric turbulence have not been derived yet. In the current paper we present simple analytic expressions
and a general framework for assessing probability density functions of channel transmittance as well as modal
cross-talk coefficients. Under some basic assumptions the presented results can be directly used for estimation
of the Fried parameter of the turbulent channel based on the measured statistics of the fundamental mode

transmittance coefficient.
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I. INTRODUCTION

Transmission of information along line-of-sight free-space
optical channels is an important communication technique,
which was used by humanity for centuries. Automation of
the originally manual information transfer and introduction
of high-speed electronics and lasers led to many important
practical applications in the 20th century. At the same time,
channel nonidealities, mainly, the atmospheric turbulence,
became apparent. Turbulence effects were extensively studied
in the 1970s under the assumption of a broad, plane-wave-
approximated light beam and a small pointlike photodetector
[1].

Later, the demand for power efficient free-space optical
communication led to a more advanced model, where a single-
mode Gaussian beam from the source propagates toward a
large aperture receiving telescope. In this model, turbulent
effects shift and distort the Gaussian beam, so it spreads
in space and partially misses the receiving aperture, thus
producing the channel loss. This single-mode transmitter and
multimode receiver model is studied extensively in the series
of more recent papers [2-5].

Following further technological advances, especially
breakthroughs in optical communications and quantum tech-
nologies, the actual single-mode channel performance has to
be studied. In this case the receiver collects only a particular
spatial mode, which is assumed to match the transmitted
mode if there is no turbulence. It is important, first, as a
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means of replacing conventional single-mode fibers while
keeping the infrastructure compatible with the WDM [6],
fiber amplifiers, coherent modulation techniques [7], existing
fiber-based quantum key distribution systems, etc. Second,
spatial mode-aware receivers allow for modal modulation, en-
abling data-efficient M-ary modulation formats, not available
in the fiber-based counterparts [8]. Third, many independent
data streams may be spatially multiplexed into a single free-
space channel, resulting in unprecedented data throughput
at a single wavelength [9]. Finally, emerging quantum tech-
nologies reaching higher-and-higher quantum dimensionality,
need corresponding communication channels for exchange of
such quantum states [10—12]. The spatial degree of freedom
may become the natural choice for quantum computers talking
to each other using high-dimensional spatial quantum states of
photons [13].

The formulated problem of single-mode channel perfor-
mance in the presence of atmospheric turbulence as well
as related questions of turbulence-induced modal cross-talk
constitute the central question in this paper. By a single
spatial mode we understand an eigensolution of the propaga-
tion equation, so the mode remains itself while propagating
through any distance. Throughout the text we assume that if
the atmosphere was perfectly homogeneous and uniform, our
optical system would be perfectly aligned without any optical
loss or cross-talk between the modes. The studied effects are
solely due to the varying refraction conditions in the turbulent
atmosphere that distort the propagating modes, causing them
to deviate significantly from the unperturbed solution. We will
introduce a framework that allows answering virtually any
question about loss of power in a particular mode or coupling
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of a particular mode into other modes, provided the turbulence
parameters are known. We show simple analytic solutions for
the first-order approximation as well as numerically obtained
results for higher-order approximations and compare them
with experimental results. In particular, we show a very simple
connection between the transmittance statistics of a trivial
single-mode fiber to single-mode fiber free-space link and
the net turbulence strength in this channel. This connection
may be used for an easy parameter estimation either from
the measured channel statistics or from the known Fried
parameter of turbulence.

II. TURBULENCE MODEL

Turbulent phenomena in the atmosphere were first de-
scribed by Kolmogorov [14] in 1941, when he predicted the
scaling of a structure function proportional to 3. As we
deal with the integral effect of the turbulence on the whole
communication channel, and are not interested much in local
turbulent properties, we use the well-established result for an
extended channel and the von Karman model, which predicts
the following phase power spectrum [15,16]:

Wo(f)=0ry (2 + L2 exp (<272, (D)
where
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This shows the spectral density of optical phase ¢ fluctuations
with respect to the spatial frequency f. The von Karman
model is an empirical extrapolation of Kolmogorov’s results
for the whole range of spatial frequencies, as the original
theory was only applicable for the range between the inner
scale [y and the outer scale Lj. The parameter ry is the Fried
parameter of turbulence, which tells how strong the turbulence
is. One may consider it to be the approximate diameter of
the telescope, whose diffraction limit equals the turbulence-
induced resolution limit [16].

One reasonable approximation that we use in our analysis
is that passing through a turbulent channel is equivalent to
passing through a corresponding random phase mask, whose
spatial frequency spectrum is given by (1). Although it is
not true in general (the beam may substantially redistribute
its power profile after diffraction on the phase distortions
obtained at the very beginning of the channel), it holds true for
not extremely strong turbulence, where substantial fraction of
power remains in the same transverse mode. This regime is the
most interesting for us, because in the case of extremely strong
turbulence, one may just assume that all output modes will be
equally populated regardless of the way they were excited at
the input, which is trivial.

Phase distortion itself is a continuous function of the trans-
verse coordinates, so we can use the Taylor series expansion
to correctly represent it:

2 2

X
(P(X,y)=§0o+ax~|—by~|—g?~|—hy7+sxy+...’ (3)

where a and b are first-order phase distortions and g, 4, and s
are the second-order ones. They can be found as

dg dg ¢ I’ 3¢
a:—, b:—’ g:—, = —F, S = .
0x dy 0x2 dy? 9x0dy
4

As phase distortion is a random function, all the mentioned
distortion coefficients are random variables with zero mean
due to the apparent symmetry.

We are now ready to find the dispersion of the distortion
coefficients. First, using (4) we can find power spectra of the
distortion coefficients:

Wo = Q) fiW,, Wy = Qr) fIW,,
Wy = Qm)* fiW,. Wy =Qn)' [} W,,
W = Q) f217 W, (5)

where f; and f, are x and y components of the spatial
frequency f: f, = f cos(f) and f, = f sin(f), where 0 is
the polar angle. Second, we need to take into account that we
are interested not only in the point (0,0) where we take the
derivatives (4), but in the average phase slopes over the whole
beam area. That leads to the additional filtering function
|F(f)|* similar to the one that appears in the problem of
finding the angle of arrival fluctuations [15,17]. In our case
|F(f)|* is the spatial power spectrum of the particular mode
in question. Finally, we use the Wiener-Khinchin theorem to
find the autocorrelation of the distortion coefficients, which is
a Fourier transform of their power spectra. We may right away
ignore the x, y-dependent part of the autocorrelation function
and only find its value for x = y = 0, which is exactly the dis-
persion of the corresponding coefficients. Finding the required
zero coordinate Fourier coefficient and taking the integral over
6, we obtain

C,=Cp=4r’ /0 FPPWo(OIFHI*dS, (©6)
Cy=Cp = 127° /O PW,OIFHRAS, (D)

¢, = 4n° /0 FW,(DIFP S, ®)

where C; (r) = E[¢(r9)¢ (rg + )] is the autocorrelation func-
tion of ¢ and C; = C,(0) is effectively the dispersion of ¢.

Similar to [2], we assume that all the distortion coefficients
are normally distributed random variables, as they are the net
effect of many independent perturbations along the optical
path. Following the same procedure one can find statisti-
cal properties of higher-order distortion coefficients. In the
present paper we focus only on the first two orders because
most of the studied effects can be quite accurately described
in this approximation.

III. FIRST-ORDER APPROXIMATION—TRANSMITTANCE
DENSITY FUNCTION

Now we calculate the probability density function of
transmittance for the fundamental mode using the first-order
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perturbations only. We start with the Gaussian beam of the
form

1 [2 242

Eop= —y/—e v, )]

wV
where w is the beam waist. Here we assume that the channel
length is not much larger than the Rayleigh range so the beam
size remains roughly the same. Calculation of the overlap
integral

|/ |Eool? €% dx dyl?
(f |Eool? dx dy)’

between the original beam and the linearly distorted phase (3)
one yields the following power transmittance:

(10)

Too—00 =

w® 2
Too—00 = €xp _T(a +b7)|. (11)

Denote & = “T’z(a2 + b?), which is a dimensionless perturba-
tion. As a and b are normally distributed zero mean random
variables with the dispersion of C, = Cp, & has a probability
density function (PDF) of

2 2&
e ——). 12
w?C, xp( wZCa> (12)
To find the PDF of transmittance 7 = f (&) we use the
standard equation

p) =

p&)

P(T) = o
dg

Substituting (11) into (13) we obtain the final PDF for the
channel transmittance

p(T) =

where & = f1(T). (13)

1
T vca .

wiC. (14)
One can see that in the first approximation the obtained
PDF is a power function of T, and the higher the turbu-
lence the smaller the power. To compare the predicted PDFs
with the experiment we made a series of measurements with
a single-mode optical channel passing through a turbulent
chamber, where two streams of air with the specified temper-
ature difference are mixed together. The measured probability
distributions along with the fitted theoretical predictions are
plotted in Fig. 1. More details on the experimental part are
found in the Appendix. The experiment and the theory match
well, except at high transmittance values, where the first-order
approximation fails due to higher-order phase distortions.

IV. FIRST-ORDER APPROXIMATION—MODAL
CROSS-TALK

The next question that we address is how the power lost
from the fundamental mode is distributed among higher-order
modes. Here we first need to define the mode set that we
use for calculations. While math is somewhat simpler for
Hermite-Gaussian modes, we wanted to find a more universal
solution and succeeded by properly grouping modes together.

There is a direct correspondence between the optical mode
sets (Hermite or Laguerre Gaussian) and a 2D isotropic os-
cillator [18], where the Nth power level is (N + 1)-times

T
@3] |+ 20°C §
=1 °
= | |+-30°C 1
- 50 °C :
2 ——75°C 1
8 5 ]
271 |+ 150°C
n
c
[P]
‘U -4
21
3
o)
o
LR

0_.;;;# : :

T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Channel transmittance

FIG. 1. Experimentally measured channel transmittance prob-
ability distribution and first-order theoretical predictions (black
dashed lines). The experimental parameter governing the turbulence
strength is the airflow temperature difference shown in the legend.
Please note that for the better data representation probability distri-
butions are not properly normalized.

degenerate. From the modes perspective it means that one
can group all modes according to their “power level.” For
the Hermite-Gaussian mode HG,,, the corresponding power
level is N = m + n. For the Laguerre-Gaussian mode LG
N =2p +|l|. It is easy to show that Nth level consists of
N + 1 distinct modes.

For each particular mode we calculate the overlap integral

|[ EjyEoo @@ dx dy|*
J1Ewl*dxdy [ |Eu|*dxdy’

After finding the integrals and grouping them by the power
levels N, the cross-talk coefficients may be written in terms
of & defined earlier as they lose their individual a and b
dependence. Here we use the explicit mode numbering for the
HG set, while it will be just different mode indices for the LG
set. For completeness, we also added the previous result for
coupling back into the fundamental mode:

15)

T00—>mn =

To = Toosoo =e¢ 5, Ty = Tooo1001 =Ee",
2 53
T = Too-20,11,02 = 7€_é, T3 =Tp0-30,21,12,03 = Ee_é,
%-N
Ty = TOO—)mn:m-‘rn:N = me_§~ (16)

One can readily see that the total power is conserved as the
obtained series sums up to 1.
Using (12) and (13) we find corresponding PDFs. The

derivative is

d N—-1

ar _ 1—i E—e—f. (17)
d& N/J(N—-1)!

The solution of the equation xVe™/N!=a is x =

—N W(—%), where W (a) is the Lambert W function,
i.e., a solution of xe* = a.
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FIG. 2. Experimental results and theoretical predictions of the
fundamental mode coupling into the higher-order modes.

The final PDF of the power coupling coefficient for
N >1is

p(Ty) =

2 ( él eiu/zzsé” + Leu?;zﬂ),
w2C, T\ [N = &| IN — &

where

19)

gip=—-N W(_M)

N

The maximal power coupling for the particular mode family
1S Ty max = ’;/V—A,]e_N.

We performed experimental measurements in the turbulent
chamber with the temperature difference of 100 °C for N from
zero to 2 and show the results in Fig. 2. The value of C, was
obtained by fitting the 00 — 00 curve by the power law (14),
and the other two curves were calculated based on this value.
As in the previous case, the largest disagreement between
the theory and the experiment appears at small values of the
perturbation &, because this approximation does not take into
account higher-order phase perturbations.

V. SECOND- AND HIGHER-ORDER APPROXIMATIONS

Linear phase distortions studied earlier provide the first
nonvanishing term in the power coupling efficiency. However,
this effect alone poorly describes the predicted PDF at small
perturbations &, as higher-order terms start to dominate. In the
following section we include quadratic terms into the phase
distortion function and calculate the corrected probability
density of the fundamental mode transmittance.

With the quadratic terms included the overlap integral (10)

(18) yields
|
wt w’ —1/2

T {1+ 2 an?2122) 4 Y (32— oh)?

< ~|—16(g+ +s)+256(s gh)

% exp w? 4(a* + b*) + wTA(szaz + 52b% + a’h? + b?g* — 2absg — 2absh) 20)

X —_— .
16 1+ 22(g2 + h? + 25%) + 25:(s2 — gh)?

Unfortunately, analytic expressions for the transmittance
probability density are unlikely to be found, so we used
numerical simulation to find the desired distributions. Again
we compared the experimental data with the results of simula-
tions. Unlike the previous sections, where there was only one
turbulence parameter C,, here we need as well to calculate C,
and C;. For that we relied upon the independently measured
inner and outer turbulence scales Iy and Lo, and slightly
adjusted the known Fried parameter r( to match the power of
the PDFs (14). It was necessary because the precision of in-
dependently measured ry of around 10% was not high enough
to precisely match the expected power-law fits. Based on the
found turbulence parameters we calculated C, and C; and
performed the numerical simulation. The results are shown in
Fig. 3. There is a reasonably good agreement between the two,
so the presented theoretical model may be used for estimation
of various derived properties of the single-mode channel.

So far we only studied the transmittance of the
fundamental-mode-based free-space channel in the first- and
the second-order approximation as well as the cross-talk
between the fundamental and higher-order modes in the first
approximation. This was of the most interest because of the

(

obtained analytic expressions that may be used for rough pa-
rameter estimation. However, the presented framework allows
one to get results for any modes and precisions of phase
distortion approximation.

For the particular order of phase distortion approximation
one needs to find corresponding dispersions as shown in
Egs. (5)-(8). Then one can construct statistically correct phase
distortion functions (3) and calculate the overlap integral (15)
for the modes in question. Repeating this many times one
may get the desired probability distributions. Based on our
measurements in the turbulent chamber, the presented theory
gives reasonable results, matching well the experimentally
measured values.

VI. DISCUSSION

The presented framework for calculations is based solely
on the well respected von Karman turbulence model, which
found many applications in predicting the results of many
free-space optical communication experiments and astronom-
ical observations [19]. So regardless of the particular experi-
mental realization, the obtained results are one more step to-
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FIG. 3. Transmittance probability density for the fundamental
mode: a comparison between the experimentally measured data (top)
and the second-order theory predictions (bottom).

wards understanding turbulent effects in single-mode optical
channels and mode-multiplexed systems.

One related practical example is implementation of an ac-
tive tracking system in a single-mode free-space channel. It is
well known that the major turbulent effect is beam wandering
[2], i.e., the first-order phase distortion, while higher-order ef-
fects that change the beam profile may be much weaker. At the
same time, a simple feedback loop with a fast steering mirror
that controls the beam direction solves the problem of pointing
error, provided the round trip time is much shorter than the
characteristic time scale of the turbulent process. As this is
almost always the case, active tracking systems substantially
improve the quality of free-space optical channels, especially
those delivering radiation into a single-mode fiber [20,21].

Using the developed calculation framework, one can easily
estimate the channel performance provided an ideal tracking
system is implemented. To do this, the numerical simulation
from the previous section is modified such that the first-
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FIG. 4. Simulated transmittance probability density for a free-
space channel from Fig. 3 with an ideal channel tracking imple-
mented. The average transmittance becomes better than 95%, which
is much superior to that without the active tracking system.

order errors a and b are always equal to zero. Results of
such simulations are shown in Fig. 4, where a substantial
improvement of channel performance is observed.

Another example is estimation of the Fried parameter
based on the transmittance statistics for a static single-mode
channel. Measured transmittance statistics is fitted with the
power function and the value C, is obtained. To estimate
the Fried parameter one uses (6) and a priori knowledge of
the inner and outer scales of turbulence. In real atmosphere
there are more or less known values of [/, and Ly [16],
while for turbulent chambers L is often the same as the
size of the chamber, and [y is 2-6 mm [22]. In any case, C,
weakly depends on [y and Ly, and the major contribution is
from the Fried parameter ry. The resulting value of the Fried
parameter in our experiments was always within 10% of the
independently measured one, so the described method gives
reliable results.

VII. CONCLUSION

We presented a calculation framework that allows one to
answer most questions regarding the performance of free-
space single-mode or mode-multiplexed channels in turbulent
air. Many first-order approximations give simple analytic re-
sults that are convenient to use for quick parameter estimation.
Analytic expressions are obtained for the fundamental mode
power loss and for cross-coupling between the fundamental
and higher-order modes. Numerical calculations are required
for more precise channel modeling that include second- and
higher-order phase distortions. Many of the obtained theoreti-
cal results are supported by the experimental measurements in
a turbulent chamber. Overall, there is a good match between
the experiment and calculations, which is expected provided
that the von Karman turbulence model matches the real-life
environment.
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APPENDIX: EXPERIMENTAL DETAILS

Here we briefly describe the experimental tools used for
the measurements. Our turbulent chamber is based on two
5x5 cm? aluminum nozzle arrays that create jets of air in
the opposite directions. The distance between the arrays is
5 cm, and one of them may be heated up to create the desired
temperature difference. To calibrate the system we measured

turbulence parameters using a Shack-Hartmann wavefront
sensor. We found that the inner and outer scales of turbulence
are roughly constant regardless of the temperature difference
and the speed of the airflow. Their values are [y = 2.7 &+ 1 mm
and Ly = 51 £ 11 mm, respectively. The Fried parameter de-
pends almost exclusively on the temperature difference, get-
ting little influence from changing the speed of airflow. This
behavior seems to be common for turbulent chambers [16].

In the optical part the 780-HP single-mode fiber was used
for mode filtering with F = 11 mm collimators for beam
forming. As a mode converter we used a liquid-crystal-based
spatial light modulator (SLM) with sawtoothlike computer
generated patterns [23]. The fiber-coupled optical power was
converted to the electrical signal with an amplified photodiode
and then digitized at a sample rate of 1000 Hz with a universal
data acquisition board.
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