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Abstract—The Berlekamp–Massey algorithm (further, the BMA) is interpreted as an algo-
rithm for constructing Padé approximations to the Laurent series over an arbitrary field with
singularity at infinity. It is shown that the BMA is an iterative procedure for constructing the
sequence of polynomials orthogonal to the corresponding space of polynomials with respect to
the inner product determined by the given series. The BMA is used to expand the exponential
in continued fractions and calculate its Padé approximations.
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1. INTRODUCTION

Suppose we are given a sequence f0 , . . . , fn−1 , . . . of elements of an arbitrary field F . It is well
known (see [1, 2]) that such a sequence can be generated by a linear feedback shift register (LFSR),
given the initial conditions f0 , . . . , fm−1 and the linear recurrence relations

fkq0 + fk+1q1 + · · · + fk+mqm = 0, k = 0, 1, 2, . . . ,

where
Q(x) = qmxm + qm−1x

m−1 + · · · + q0 , qm = 1,

is the feedback polynomial of the LFSR. This definition differs from the standard one in that the
feedback polynomial is replaced by its reciprocal polynomial.

In the case of the field GF (2) , the LFSR with feedback polynomial Q(x) is a linear automaton
consisting of m + 1 registers, with the tap on the ith register multiplied by the coefficient qi ; all
these taps are summed modulo 2 and the result is input to the first register (see [2]).

Let Ln(f) be the least degree of the polynomial Λn generating the sequence f0 , . . . , fn−1 . It
is called (see [1]) the linear complexity of the sequence f0 , . . . , fn−1 , while the sequence {Ln(f)}
is called the profile of linear complexity of the sequence {fn} . Massey [3] interpreted Berlekamp’s
algorithm [4] as an algorithm for calculating the linear complexity of the sequence f0 , . . . , fn−1

and of the LFSR (generating it) with feedback polynomial of minimal degree (see also [1, 2]).
The BMA has various applications [1–4]. It is well known [5] that the BMA is equivalent, in a

certain sense, to the version of Euclid’s algorithm for BCH decoding proposed in [6] (see [2]). The
relation between the BMA and the continued fractions was studied in numerous works (see [7–10]).

In this paper, we propose an interpretation of the BMA based on theory of Padé approximations
and orthogonal polynomials.
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2. LAURENT SERIES, PADÉ APPROXIMATIONS,
AND CONTINUED FRACTIONS

An expression of the form

zn

(
c0 +

c1

z
+

c2

z2
+ · · ·

)
, c0 �= 0,

for any integer n , with coefficients ci belonging to F , is called a formal Laurent series. On the
set F ((1/z)) of all Laurent series, the operations of addition and multiplication are defined in the
standard way; under these operations, this set forms a field. (see [11]). Further, we shall only
consider Laurent series with zero integral part, i.e., series of the form f(z) = f0/z + f1/z2 + · · · .
Such series can be expanded (see [11]) in continued fractions

f(z) =
1

a1(z) +
1

a2(z) +
1

a3(z) + · · ·

.

The fraction formed by the first n levels of the continued fraction for f(z) is called the nth
convergent and denoted by τn .

It is easily verified that, for such an arbitrary series, the sequences of its coefficients satisfies the
linear recurrence relations

m∑
i=0

fi+kqi = 0, k = 0, . . . , n − 1, (1)

if and only if

f(z)Q(z) = P (z) +
c

zn+1
+

cn+2

zn+2
+ · · · , c ∈ F , deg P < deg Q. (2)

Condition (2) is equivalent to the condition

f(z) − P (z)
Q(z)

=
b

zn+1+deg Q
+ · · · , b ∈ F , deg P < deg Q. (3)

Therefore, the LFSR with feedback polynomial Q(z) generates the sequence f0 , . . . , fL−1 if
and only if (2) (or (3)) is satisfied for n = L − deg Q .

It is well known [11] that, for any n , there exists a regular fractions Pn/Gn of degree at most n
satisfying this condition. It is also well known [11] that all such fractions are uniquely defined up
to a common multiplier both of the numerator and the denominator, which can be canceled. The
fraction which is irreducible is called the nth (diagonal) Padé approximation πn of the series f .
Its numerator Pn and denominator Gn form the nth Padé pair. These polynomials are uniquely
defined up to a constant factor.

Fractions P/Q of arbitrary degree satisfying condition (2) are not uniquely defined. If πn =
Pn/Gn and the polynomial Q = Gn is the polynomial of least degree m ≤ n satisfying the
condition

f(z)Q(z) = P (z) +
cn+1

zn+1
+ · · · ,

then relations (1) hold. Therefore, if the degree of the fraction πn is denoted by Πn and we
choose a polynomial of the same degree Gn so that πn = Pn/Gn , then the LFSR with feed-
back polynomial Gn and initial state of the registers f0 , . . . , fΠn−1 will generate the sequence
f0 , . . . , fΠn+n−1 , whence LΠn+n ≤ Πn . It is easy to verify that LΠn+n = Πn .
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If the degree of the denominator in the nth Padé pair is equal to n , i.e., the Padé pairs are
uniquely defined up to a constant factor, then the index n is called normal. It is well known [11]
that if n0 < n1 are adjacent normal indices, then

f(z) − πn0(z) = cn0+n1z
−n0−n1 + · · · , cn0+n1 �= 0,

i.e., the exact order of tangency of πn0(z) to the series f(z) is equal to n0 + n1 , and all the πk

for n1 > k > n0 are equal to πn0 . Hence, for n1 > k ≥ n0 ,

f(z)Gn0(z) − Pn0(z) = Gn0(z)(cn0+n1z
−n0−n1 + · · · ) = en1z

−n1 + · · · = bkz−k−1 + · · ·

for some bk , possibly zero. Therefore, the following assertion is valid.

Lemma 1. For n0 ≤ k < n1 , the following equalities hold :

Gk = Gn0 , n0 = Πn0 = Πk = Lk+Πk
= Lk+n0 .

Let us prove the following assertion.

Theorem 1. The profile of linear complexity and the sequence of normal indices sn , n = 1, 2, . . . ,
are related by

Lk+sn = sn , sn−1 ≤ k < sn.

Proof. It is well known [11] that the sequence of normal indices coincides with the sequence of
degrees s0 , s1 , s2 , . . . of the denominators of the convergents and

f(z) − τm(z) =
cm

zsm+sm+1
, cm �= 0, (4)

i.e., the Padé approximation is πsn = τn = Pn/Qn . For sn ≤ k < sn+1 , Lemma 1 implies πk = τn ,
Gk = Qn ; hence

sn∑
i=0

fi+kqn,i = 0, k = 0, . . . , sn+1 − 2,

sn∑
i=0

fi+kqn,i �= 0, k = sn+1 − 1,

where Qn(z) = qn,snzsn + · · ·+ qn,0 . In other words, the LFSR with polynomial Qn(z) generates
the sequence {f0 , . . . , fm} for m = sn +sn+1−2 , but does not generate it for m = sn +sn+1−1 .
Since, for sn+1 > k ≥ sn , we have sn = Lk+sn , it follows that, for any sequence {f0 , . . . , fsn+k} ,
k = sn −1, . . . , sn+1 −2 , its minimal LFSR has feedback polynomial equal to Qn . The definition
of a normal index implies the uniqueness (up to a constant factor) of a polynomial Gsn = Qn of
degree sn such that, for some regular fraction,

f(z) − Pn(z)
Qn(z)

=
cn

z2sn+1
.

Hence there exists a unique LFSR of complexity sn generating the sequence {f0 , . . . , f2sn−1} , and
its feedback polynomial is equal to the polynomial Qn up to a constant factor. Such a shift register
generates all the sequences {f0 , . . . , fsn+k} , k = sn , . . . , sn+1 − 2 . In particular, Lk+sn = sn ,
k = sn , . . . , sn+1 − 1 . The upper bounds in the theorem follow from the equalities proved above.

Let us prove the lower bounds by contradiction. Assume that, for some k , sn + sn−1 ≤ k <
2sn , the inequality Lk < sn holds. Then, for some polynomials P , Q , condition (2) holds for
n = k − deg Q , deg Q < sn . For m = n − 1 , it follows from relation (4) that

f(z)Qn−1(z) = Pn−1(z) +
d

zsn
+ · · · , d �= 0.
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Multiplying the first of the equalities by Qn−1 , the second by Q , and subtracting the second from
the first, we obtain

Qn−1P (z) − QPn−1(z) = Qn−1(z)
(

b

zk+1−deg Q−sn−1
+ · · ·

)
− Q(z)

(
d

zsn
+ · · ·

)

=
(

b

zk+1−sn−1−deg Q
+ · · ·

)
−

(
d

zsn−deg Q
+ · · ·

)

=
d

zsn−deg Q
+ · · · =

e

z1
+ · · · ,

because d �= 0 and sn − deg Q < k + 1 − sn−1 − deg Q . We have a polynomial on the left and a
nonzero Laurent series on the right; thus, we have obtained a contradiction. The theorem is now
proved. �

Combining the equalities proved above, we see that Lk = sn for sn−1 + sn ≤ k < sn+1 + sn .
To prove (in the standard way) that the BMA is well defined, we shall use the following theo-

rem [1, 2].

Theorem 2. For any k , either Lk+1(f) = Lk(f) , where fk is the next tap on the LFSR of
complexity Lk(f) generating the sequence f0 , . . . , fk−1 , or Lk+1(f) = max{Lk(f), k+1−Lk(f)} .

Proof. The proof is easily obtained from the equalities Lk = sn , sn−1 + sn ≤ k < sn+1 + sn .
Indeed, it suffices to verify that, for k = sn+1 + sn − 1 , we have

Lk+1 = sn+1 = k + 1 − sn = k + 1 − Lk > Lk ,

for sn−1 + sn ≤ k < 2sn , we have

Lk+1 = sn = Lk ≥ k + 1 − sn = k + 1 − Lk ,

and, for 2sn ≤ k < sn + sn+1 , for any sequence {f0 , . . . , fk−1} the minimal LFSR generating it
has feedback polynomial equal to Qn . �

3. THE BERLEKAMP–MASSEY ALGORITHM (BMA)

Let us show that the BMA simultaneously calculates both the elements an(z) of the continued
fraction in the case of an arbitrary series f(z) and the sequence Qn = anQn−1 + Qn−2 , Q1 = a1 ,
Q0 = 1 of the denominators of its convergents (the Padé fractions). It also calculates the sequence
of feedback polynomials Λn generating of the first n terms of the sequence f0 , . . . , fn−1 , . . . .

Let us present the standard description of the operation of the BMA (see [2]). By the induction
hypothesis, for i ≤ k there exists a LFSR with polynomial Λi generating the sequence f0 , . . . , fi−1

and such that if i < k and fi �= fi+1 , then Li+1(f) = max{Li(f), i + 1− Li(f)} , and, otherwise,
Λi+1 = Λi . The induction base is established by the equalities i = 1, L0(f) = 0, Λ1(x) = 1 + x .

Suppose that m is the largest index satisfying Lm(f) < Lm+1(f) ; then we put s = Lm+1(f) ,
r = Lm(f) . By the induction hypothesis, it follows from the relations

s = Lk(f) = · · · = Lm+1(f) > Lm(f) = r

that s = max(r, m + 1− r) = m + 1− r , because if s = r , then Lm+1(f) = Lm(f) , which cannot
be true. Suppose that

Λi = c
(i)
Li(f)x

Li(f) + · · · + c
(i)
1 x + c

(i)
0 , c

(i)
0 = 1, i = 1, . . . , k ;
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then, by definition,
s∑

i=1

c
(k)
i fj−i =

[
fj for j = s, . . . , k − 1,

ak for j = k

and, similarly,
r∑

i=1

c
(m)
i fj−i =

[
fj for j = r, . . . , m − 1,

tm for j = m

for some tm �= am , because fm+1 �= fm by the choice of m . Setting µm = tm − am �= 0, in
accordance with the BMA, we define the polynomial

Λk+1(x) = Λk(x) + bkµ−1
m xk−mΛm(x)

of degree

max(deg Λk , deg Λm + k − m) = max(s, r + k − m) = max(s, (k + 1) − (m + 1 − r))

= max(s, (k + 1) − s) = d.

This polynomial generates the sequence f0 , . . . , fk .
The description of the BMA is complete, but it was assumed in it that the LFSR generates

the sequence defined by the linear recurrence relations

fkq∗0 + fk−1q
∗
1 + · · · + f∗

k−mqm = 0, k = m, m + 1, . . . ,

where Q∗(x) = q∗mxm + q∗m−1x
m−1 + · · · + q∗0 , q∗m = 1, is the feedback polynomial of the LFSR

considered. We used another definition of the feedback polynomial, namely,

Q(x) = qmxm + qm−1x
m−1 + · · · + q0 , qm = 1,

in which the sequence generated by the LFSR, satisfies the linear recurrence relations

fkq0 + fk+1q1 + · · · + fk+mqm = 0, k = 0, 1, 2, . . . .

The two methods of the definition of the feedback polynomial are related by the equalities

q∗i = qm−i , i = 0, . . . , m,

which imply that the polynomials Q and Q∗ are mutually reciprocal, i.e., Q(x) = xmQ∗(1/x) .
Further, let {sn} be the sequence of normal indices; we do not require that the leading coefficient

of the polynomials Λi be equal to 1 . Then the following assertion is valid.

Theorem 3. For k = sn+1 + sn − 1 ,

Λk+1(x) = ckxdn+1Λk(x) + Qn−1(x), ck ∈ F ,

for k = sn + sn−1 , . . . , 2sn − 1 ,

Λk+1(x) = Λk(x) + ckx2sn−1−kQn−1(x),

and for k = 2sn , . . . , sn + sn+1 − 2
Λk+1 = Λk.
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Proof. We can rewrite the relation Λ∗
k+1(x) = Λ∗

k(x) + bkµ−1
m xk−mΛ∗

m(x) defining the step of
the BMA, using reciprocal polynomials:

Λk+1(x) = xLk+1Λ∗
k+1

( 1
x

)
= xLk+1Λ∗

k

( 1
x

)
+ bkµ−1

m xLk+1xm−kΛ∗
m

( 1
x

)

= xLk+1−LkΛk(x) + bkµ−1
m xLk+1−Lmxm−kΛm(x).

As proved above, for s = Lk(f) = · · · = Lm+1(f) > Lm(f) = r , we have

s = m+1− r, Lm(f)+k−m = r +k−m = (k +1)− (m+1− r), = k +1−s = k +1−Lk(f).

Hence, for Λk+1 �= Λk , it follows that

Lk+1(f) = k + 1 − Lk(f) = Lm(f) + k − m, Lk+1(f) − Lm(f) − k + m = 0.

For k = sn+1 + sn −1 , we obviously have Lk+1 = sn+1 , Lk = sn , Lk+1 −Lk = sn+1 − sn = dn+1 ,
m = sn + sn−1 − 1 , Lm = sn−1 , Λm = Qn−1 ; therefore,

Λk+1(x) = xLk+1−LkΛk(x) + bkµ−1
m xLk+1−Lmxm−kΛm(x)

= xdn+1Λk(x) + bkµ−1
m Qn−1(x), bk ∈ F.

As proved above, for k = sn + sn−1 , . . . , sn+1 + sn − 2 , we have

Lk+1 = sn = Lk , Lk+1 − Lm = sn − sn−1 = dn ,

Lk+1 − Lm + m − k = dn + sn + sn−1 − 1 − k = 2sn − 1 − k ;

then it follows that, for k = sn + sn−1 , . . . , 2sn − 1 , we can write

Λk+1(x) = xLk+1−LkΛk(x) + bkµ−1
m xLk+1−Lmxm−kΛm(x)

= Λk(x) + bkµ−1
m x2sn−1−kQn−1(x).

The sequence Λk can be defined up to a constant factor; therefore, the first two equalities in
the theorem are now proved. Earlier we proved that the LFSR with feedback polynomial cQn

generates an arbitrary sequence f0 , . . . , fk , where k = 2sn , . . . , sn + sn+1 − 1 . Hence, for any
k = 2sn , . . . , sn + sn+1 − 2 , we obtain Λk+1 = Λk . �

4. INTERPRETATION OF THE BMA
IN TERMS OF ORTHOGONAL POLYNOMIALS

In the preceding, we described a fragment of the theory of Padé approximations for Laurent
series over an arbitrary field. The classical theory (see [11, 12]) is developed further for the field of
complex numbers in close connection with the theory of orthogonal polynomials. In particular, in
it, it is proved that, for so-called positive sequences fn , the sequence of normal indices is sn = n
and the following explicit formulas are valid:

Qn+1(z) = (z + bn)Qn(z) + cnQn−1(z).

On the basis of these considerations, an approach to BCH decoding was developed in [13].
In the general case, another method must be used, which naturally leads to an algorithm equiv-

alent to the BMA. The remaining part of this paper does not assume knowledge of the BMA and
can be used for its alternative description and justification.
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Let Poln denote the n -dimensional space of polynomials of degree less than n over the field F
under consideration. For a given sequence {f0 , . . . , fn−1} over the field F , we define the linear
functional lf (P ) on the space Poln by the relation

lf (P ) =
n−1∑
i=0

fipi , P (z) =
n−1∑
i=0

piz
i.

On the space Poln , we define the inner product (P , Q) = (P , Q)f of the polynomials P , Q by
the equality (P , Q) = lf (PQ) . This inner product possesses the properties of bilinearity and
symmetry. Moreover, the identity (P , Q) = (PQ, 1) obviously holds.

4.1. Description of the sequence of denominators of Padé fractions
in terms of orthogonality to the spaces Poln

Following [11], we rewrite the equalities

fkq0 + fk+1q1 + · · · + fk+mqm = 0, k = 0, . . . , s − 1,

in the form
(Q(z), zk) = 0, k = 0, . . . , s − 1,

where Q(z) = qmzm + qm−1z
m−1 + · · ·+ q0 , qm = 1, and, by (P , Q) we denote the inner product

of the polynomials P , Q . The orthogonality of vectors (and of a vector to a subspace) is denoted
the symbol ⊥ .

Therefore, the system of equalities (Qn(z), zk) = 0, k = 0, . . . , sn − 1 , is equivalent to
Qn(z) ⊥ Polsn . Since deg Gn = sn > sn−1 = deg Gn−1 , this yields Qn ⊥ Qn−1 .

Moreover, the polynomial Qn(z) = qn,snzsn + · · · + qn,0 is uniquely defined (up to a constant
factor) by the orthogonality condition indicated above, while the conditions

sn∑
i=0

fi+kqn,i = 0, k = 0, . . . , sn+1 − 2,

sn∑
i=0

fi+kqn,i �= 0, k = sn+1 − 1,

given in the previous section, are equivalent to the conditions

(Qn(z), zk) = 0, k = 0, . . . , sn+1 − 2, (Qn(z), zk) �= 0, k = sn+1 − 1,

which, in turn, are equivalent to Qn ⊥ Polsn+1−1 and to the nonorthogonality of Qn to the space
Polsn+1 .

4.2. Algorithm for calculating the sequence of denominators of Padé fractions

Theorem 4. The polynomial sequence Qn defined above satisfies the recurrence relation

Qn+1 = an+1Qn + Qn−1 , where deg an+1 = sn+1 − sn.

The relation Λ2sn = cQn holds; here c is a suitable constant. If we choose Q0 = 1 and Q1 equal
to the denominator of the first convergent to the continued fraction

f(z) =
1

a1(z) +
1

a2(z) +
1

a3(z) + · · ·

,
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then the sequence Qn coincides with the sequence of denominators of the convergents to the con-
tinued fraction given above, while the sequence an coincides with the sequence of elements of this
continued fraction.

We describe the algorithm and prove the theorem by induction. Assume that we have already
calculated the polynomial Qn from the given sequence f0 , . . . , f2sn−1 . As noted above, it can
thus be calculated uniquely up to a constant factor. Since this polynomial is of minimal degree
among the polynomials generating the sequence f0 , . . . , f2sn−1 by means of the LFSR, it obviously
follows that Λ2sn = cQn , where c is a suitable constant. Let us calculate

(Qn(z), zk) =
m∑

i=0

fi+kqn,i , m = sn , k = m, m + 1, . . . ,

until, for some k , we first obtain a nonzero element of the field F . After that, we find sn+1 ,
because we have k = sn+1 − 1 by the theory expounded above. Since the polynomial Qn satisfies
the conditions

sn∑
i=0

fi+kqn,i = 0, k = 0, . . . , sn+1 − 2,

it follows that the LFSR with feedback polynomial Qn generates an arbitrary sequence f0 , . . . , fk ,
where k = 2sn , . . . , sn + sn+1 − 2 . Therefore, we have Λk = Qn , k = 2sn , . . . , sn + sn+1 − 1 .
Further, we obtain dn+1 = sn+1 − sn .

The polynomial Qn+1(z) can be expressed as an+1(z)Qn(z)+Qn−1(z) , where deg an+1 = dn+1 .
As pointed out above, it is defined up to a constant factor by the condition Qn+1 ⊥ Polsn+1 . In fact,
given Qn(z) and Qn−1(z) , the polynomials an+1 , Qn+1 are uniquely defined, because, otherwise,
for different an+1 �= bn+1 , for nonzero constants λ1 �= λ2 , we have

λ1

(
an+1(z)Qn(z) + Qn−1(z)

)
= λ2

(
bn+1(z)Qn(z) + Qn−1(z)

)
;

hence
(λ1 − λ2)Qn−1(z) = Qn(z)(λ2bn+1 − λ1an+1)

and, comparing the degrees, we arrive at a contradiction. Therefore, for fixed Q0 , Q1 , all the
subsequent polynomials Qn are uniquely defined.

Since, by the induction hypothesis, Qn ⊥ Polsn+1−1 , but Qn is not orthogonal to Polsn+1 , it
follows that (Qn(z), zsn+1−1) = ∆sn+sn+1−1 �= 0. For any polynomial an+1 of degree dn+1 and
k ≤ sn − 2 , we have

(an+1(z)Qn(z) + Qn−1(z), zk) = (Qn(z), an+1(z)zk) + (Qn−1(z), zk) = 0,

because an+1(z)zk ∈ Polsn+1−1 , zk ∈ Polsn−1 , i.e., an+1(z)Qn(z) + Qn−1(z) ⊥ Polsn−1 .
To choose an+1 so that the polynomial an+1(z)Qn(z) + Qn−1(z) is orthogonal to the space

generated by the polynomials zsn−1 , . . . , zsn+1−1 , we must choose it so that the projections of
the polynomials an+1(z)Qn(z) and Qn−1(z) on this space are opposite in sign, i.e., the following
equalities are valid:

(an+1(z)Qn(z), zk) = −(Qn−1(z), zk), k = sn − 1, . . . , sn+1 − 1.

These equalities for the coefficients of the polynomial an+1 define a linear system of equations
with triangular matrix which can be solved by the following iterative algorithm.
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4.3. Algorithm for calculating the next polynomial Qn+1

4.3.1. First step. At the first step, we construct the polynomial

Q
(1)
n+1 = czdn+1Qn + Qn−1 , deg Q

(1)
n+1 = deg Qn+1 , Q

(1)
n+1 ⊥ zsn−1.

To do this, we choose c so that the projections of czdn+1Qn and Qn−1 on the vector zsn−1 are
opposite in sign, i.e.,

c(zdn+1Qn , zsn−1) = −(zsn−1 , Qn−1).

Since
(zdn+1Qn , zsn−1) = (Qn , zdn+1+sn−1) = (Qn , zsn+1−1) �= 0,

it follows that, for k = sn+1 − 1 , given the sequence f0 , . . . , fsn+sn+1−1 , calculating the residual

∆sn+sn+1−1 = (Qn(z), zk) =
sn∑
i=0

fi+kqn,i

and the inner product

(Qn−1(z), zsn−1) =
sn−1∑
i=0

fi+sn−1qn−1,i

we can set c = −(zsn−1 , Qn−1)/∆sn+sn+1−1 . Since Q
(1)
n+1 ⊥ Polsn , the LFSR with this feedback

polynomial generates the sequence f0 , . . . , fsn+sn+1−1 ; hence Λsn+sn+1 = Q
(1)
n+1 .

4.3.2. Step with an arbitrary number. In the general case, at the ith step, we correct Q
(i−1)
n+1

if
∆sn+sn+1+i−2 = (Q(i−1)

n+1 , zsn+i−2) �= 0,

and search for Q
(i)
n+1 as Q

(i−1)
n+1 +cQnzdn+1−i+1 such that Q

(i)
n+1 ⊥ zsn+i−2 . To do this, we choose c

so that the projections of Q
(i−1)
n+1 and cQnzdn+1−i+1 on the vector zsn+i−2 are opposite in sign,

i.e.,

−∆sn+sn+1+i−2 = −(Q(i−1)
n+1 , zsn+i−2) = c(Qnzdn+1−i+1 , zsn+i−2)

= c(Qn , zsn+dn+1−1) = c(Qn , zsn+1−1) = c∆sn+sn+1−1 ;

hence c = −∆sn+sn+1+i−2/∆sn+sn+1−1 . Note that, by the induction assumption, we must have
Q

(i−1)
n+1 ⊥ zsn+k for −1 ≤ k ≤ i − 3 , because Q

(i−1)
n+1 ⊥ Polsn+i−2 ; therefore,

(Q(i)
n+1 , zsn+k) = (Q(i−1)

n+1 , zsn+k) + (cQnzdn+1−i+1 , zsn+k) = c(Qn , zsn+1+k+1−i) = 0,

because Qn ⊥ Polsn+1−2 . Since Q
(i)
n+1 ⊥ Polsn+i−1 , it follows that the LFSR with this feedback

polynomial generates the sequence f0 , . . . , fsn+sn+1+i−2 ; hence Λsn+sn+1+i−2 = Q
(i)
n+1 . Next,

given the sequence f0 , . . . , fsn+sn+1+i−1 , we obtain the residual

∆sn+sn+1+i−1 = (Q(i)
n+1 , zsn+1) =

sn+1∑
i=0

fi+sn+i−1qn+1,i

and take the (i + 1)th step.
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4.3.3. Termination of the operation of the algorithm. At the end of the operation of the
algorithm at the (dn+1 + 1)th step, we obtain the polynomial

Q
(dn+1+1)
n+1 = Qnan+1 + Qn−1 , deg Q

(dn+1+1)
n+1 = sn+1 ,

Q
(dn+1+1)
n+1 ⊥ Polsn+dn+1 = Polsn+1 .

By the foregoing, it coincides with the polynomial Qn+1 . Since the LFSR with this feedback
polynomial generates the sequence f0 , . . . , f2sn+1−1 , it follows that Λ2sn+1 coincides with cQn+1 .

The complexity of the algorithm can be estimated by(
3 − 1

n

)
s2

n + 3
(
(n − 1)sn−1 + dn − d1

)
+ 5(n − 1) − 2d2

1 <
(
3 − 1

n

)
s2

n + 3nsn.

4.3.4. Comparison with Euclid’s algorithm. If the finite Laurent series f0/z + · · ·+ fk−1/zk

is written as the fraction f(z)/zk , where f(z) = f0z
k−1 + · · · + fk−1 , then it can be expanded in

a continued fraction, using the ordinary Euclid algorithm, which, obviously, can also be applied to
an arbitrary fraction f(z)/g(z) . But, in that case, the convergents to this continued fraction will
not be calculated. To calculate them, one can apply the extended Euclid algorithm in which the
numerators and the denominators of the convergents appear as Bezout coefficients in the linear
representations qi = uif +vig of the intermediate polynomials qi calculated in the ordinary Euclid
algorithm

(f , g) = (g, q1) = (q1 , q2) = · · · .

Although the extended Euclid algorithm and the interpretation (given above) of the BMA
are equivalent in the sense that they both calculate the sequences of denominators Qn of the
convergents and the elements an of the continued fraction, the order of calculations in them is
different. For example, to calculate the polynomials a0 , a1 , . . . with small indices in the BMA,
only the initial segment of the given sequence f0 , f1 , . . . is required, while, in Euclid’s algorithm,
one must know the whole sequence f0 , . . . , fk−1 .

5. APPLICATION OF THE BMA TO THE EXPANSION
OF THE EXPONENTIAL IN A CONTINUED FRACTION

Let us apply the BMA to the sequence fn = 1/(n+1)! , n = 0, 1, . . . , over the field of rational
numbers. Then the function f(z) = f0 + f1/z + f2/z2 + · · · coincides with e1/z − 1 and the
first element of its continued fraction is equal to a1(z) = [f−1] = z − 1/2 . If we set Q0 = 1,
Q1 = z − 1/2 , then the algorithm calculates all the elements an of the continued fraction and
all the denominators Qn of the convergent by the recurrence formula Qn+1 = an+1Qn + Qn−1 .
However, it is convenient to choose Q1 = 2z − 1 ; then also (Q1 , 1) = 0. By the induction
assumption, assume that sm = m ,

Qm =
m∑

k=0

(−1)m−k (m + k)!
k!(m − k)!

zk =
m∑

k=0

qm,kzk , m ≤ n, Qm ⊥ Polsm+1−1 = Polm .

At the first step, we construct the polynomial

Q
(1)
n+1 = czdn+1Qn + Qn−1 , Q

(1)
n+1 ⊥ zsn−1 = zn−1.

To this end, we choose c = −(zsn−1 , Qn−1)/∆sn+sn+1−1 , where

∆sn+sn+1−1 = (Qn(z), zk) =
sn∑
i=0

fi+kqn,i �= 0, k = sn+1 − 1,

∆sn+sn+1−2 = (Qn(z), zk) =
sn∑
i=0

fi+kqn,i = 0, k = sn+1 − 2.
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Since Qn ⊥ Poln , it follows that (Qn(z), zn−1) = 0. Therefore, to prove the equality sn+1 = n+1,
it suffices to verify that

∆2n = (Qn(z), zn) =
n∑

i=0

fi+nqn,i �= 0.

Since
n∑

i=0

fi+nqn,i =
n∑

i=0

(−1)n−i (n + i)!
(n + i + 1)! i!(n − i)!

=
n∑

i=0

(−1)n−i 1
(n + i + 1) i!(n − i)!

=
1
n!

n∑
i=0

(−1)n−i

(
n
i

)
n + i + 1

=
1
n!

∆n
( 1

x

)∣∣∣
x=n+1

,

where

∆n(f(x)) =
n∑

i=0

(−1)n−i

(
n

i

)
f(x + i), ∆n(f(x)) = ∆

(
∆n−1(f(x))

)

is the nth difference operator, it follows from the well-known identity [14, Sec. 5.3] (which can
easily be verified by induction)

1
n!

∆n
( 1

x

)
=

(−1)n

x(x + 1) · · · (x + n)

that

∆2n =
n∑

i=0

fi+nqn,i =
(−1)n

(n + 1) · · · (2n)(2n + 1)
.

Therefore,

c = − (zsn−1 , Qn−1)
∆sn+sn+1−1

= − (zn−1 , Qn−1)
∆2n

= −∆2n−2

∆2n
=

2n(2n + 1)
n

= 2(2n + 1).

Further, let us calculate dn+1 = sn+1 − sn = 1,

∆2n+1 = ∆sn+sn+1 = (Q(1)
n+1 , zsn) = (Q(1)

n+1 , zn) = (czQn + Qn−1 , zn)

= c(Qn , zn+1) + (Qn−1 , zn) = 2(2n + 1)(Qn , zn+1) + (Qn−1 , zn)

using the fact that

(Qn−1 , zn) =
n−1∑
i=0

fi+nqn−1,i =
n−1∑
i=0

(−1)n−1−i (n + i − 1)!
(n + i + 1)! i!(n − 1 − i)!

=
1

(n − 1)!

n−1∑
i=0

(−1)n−1−i

(
n−1

i

)
(n + i + 1)(n + i)

=
1

(n − 1)!
∆n−1

(
1

x(x + 1)

)∣∣∣∣
x=n

=
1

(n − 1)!
∆n−1

(
−∆

( 1
x

))∣∣∣∣
x=n

= − 1
(n − 1)!

∆n
( 1

x

)∣∣∣
x=n

= − n(−1)n

x(x + 1) · · · (x + n)

∣∣∣∣
x=n

=
(−1)n−1

(n + 1) · · · 2n
;

this yields

(Qn , zn+1) =
(−1)n

(n + 2) · · · (2n + 2)
,
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and hence

∆sn+sn+1 = ∆2n+1 = 2(2n + 1)(Qn , zn+1) + (Qn−1 , zn)

=
(−1)n2(2n + 1)

(n + 2) · · · (2n + 2)
+

(−1)n−1

(n + 1) · · · 2n
= 0.

Therefore, it is not necessary to correct Q
(1)
n+1 and we immediately have

Qn+1(z) = Q
(1)
n+1(z) = an+1(z)Qn(z) + Qn−1(z), an+1(z) = 2(2n + 1)z.

It remains to to verify that

Qn+1(z) = an+1(z)Qn(z) + Qn−1(z) = 2(2n + 1)zQn(z) + Qn−1(z)

=
n+1∑
k=0

(−1)n+1−k (n + 1 + k)!
k!(n + 1 − k)!

zk.

To do this, it suffices to verify that

(−1)n−(k−1)2(2n + 1)
(n + k − 1)!

(k − 1)!(n − (k − 1))!
+ (−1)n−1−k (n − 1 + k)!

k!(n − 1 − k)!

= (−1)n−1−k (n + k − 1)!((n − k)(n − k + 1) + 2(2n + 1)k)
k!(n + 1 − k)!

= (−1)n+1−k (n + k + 1)!
k!(n + 1 − k)!

,

because
(n − k)(n − k + 1) + 2(2n + 1)k = (n + k + 1)(n + k).

If the algorithm is initiated by the values of Q0 = 1, Q1 = z−1/2 , then, repeating the calculations
already carried out, we can easily see that, for an even n , Qn does not change and an is divisible
by 2 , while, for an odd n , Qn is divisible by 2 and an is multiplied by 2 . Since Q0 = 1 and the
Q1 coincide with the denominators of the convergents to the continued fraction for f(z) , it follows
that, as noted above, the resulting polynomial Qn coincides for any n with the denominator of
the nth convergent and the sequence an(z) = 2(−1)n+1

2(2n + 1)z for n > 1 coincides with the
sequence of elements of the continued fraction for f(z) = e1/z − 1 . Hence we have the following
regular continued fraction for e1/z:

e1/z = 1 +
1

z − 1/2 +
1

12z +
1

5z +
1

28z + · · ·

,

which, on making the change of variable x = 1/z , becomes the Euler continued fraction for ex .
Returning to the continued fraction for f(z) = e1/z−1 , we note, following [11], that to find explicit
expressions for the numerators of its convergents Pn/Qn or, equivalently, for the diagonal Padé
approximations, we can use the relation for the Padé approximations

f(z)Qn(z) = Pn(z) +
c

zn+1
+ · · · , c ∈ F , deg Pn < deg Qn = n,

MATHEMATICAL NOTES Vol. 79 No. 1 2006



BERLEKAMP–MASSEY ALGORITHM 53

and note that Pn(z) = (−1)nQn(−z) − Qn(z) . Indeed, multiplying both sides of the equality

e1/zQn(z) = (Pn + Qn)(z) +
c

zn+1
+ · · ·

by e−1/z , we find that

Qn(z) = (Pn + Qn)(z)e−1/z +
c

zn+1
+ · · · ;

hence, after the substitution x = −z , we obtain the relation

−Pn(−x) = (Pn + Qn)(−x)(e1/x − 1) +
c(−1)n+1

xn+1
+ · · · , deg Qn + Pn = n > deg Pn ,

from which, by the definition of Padé approximations, we have

(Pn + Qn)(−x) = (−1)nQn(x).

Further, note that, after the polynomials Qn(z) have been guessed, to prove that they are the
denominators of the Padé approximations, it suffices to verify that sn = n , Qn ⊥ Poln , i.e.,
(Qn(z), zk) = 0, k < n . But this readily follows from the relations

∆2n = (Qn(z), zn) =
n∑

i=0

fi+nqn,i �= 0,

(Qn(z), zk) =
n∑

i=0

fi+kqn,i =
n∑

i=0

(−1)n−i (n + i)!
(k + i + 1)! i!(n − i)!

=
1
n!

n∑
i=0

(−1)n−i

(
n

i

)
(n + i) · · · (k + i + 1) =

1
n!

∆n
(
(x + n) · · · (x + k + 2)

)∣∣
x=0

= 0,

because the polynomial (x + n) · · · (x + k + 2) is of degree n − k − 1 < n and, after applying the
difference operator ∆ n times, it becomes zero.
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