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Abstract We discuss possible scenarios of behaviour of the dual part of sequences
generated by primal-dual Newton-type methods when applied to optimization prob-
lems with nonunique multipliers associated to a solution. Those scenarios are: (a) fail-
ure of convergence of the dual sequence; (b) convergence to a so-called critical mul-
tiplier (which, in particular, violates some second-order sufficient conditions for op-
timality), the latter appearing to be a typical scenario when critical multipliers exist;
(c) convergence to a noncritical multiplier. The case of mathematical programs with
complementarity constraints is also discussed. We illustrate those scenarios with ex-
amples, and discuss consequences for the speed of convergence. We also put together
a collection of examples of optimization problems with constraints violating some
standard constraint qualifications, intended for preliminary testing of existing algo-
rithms on degenerate problems, or for developing special new algorithms designed to
deal with constraints degeneracy.
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1 Introduction

We consider the problem

minimize f (x)

subject to F(x) = 0, G(x) ≤ 0,
(1.1)

where f : Rn → R is a smooth function, F : Rn → Rl and G : Rn → Rm are smooth
mappings. Stationary points of problem (1.1) and the associated Lagrange multipliers
are characterized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x,λ,μ) = 0,

F (x) = 0,

G(x) ≤ 0, μ ≥ 0, 〈μ,G(x)〉 = 0,

(1.2)

where

L : Rn × Rl × Rm → R, L(x,λ,μ) = f (x) + 〈λ,F (x)〉 + 〈μ,G(x)〉,
is the Lagrangian function of problem (1.1).

Let x̄ ∈ Rn be a stationary point of (1.1), where we assume that the set M(x̄) of
Lagrange multipliers associated with x̄ is nonempty. As is well known, if x̄ is a local
solution of problem (1.1), then M(x̄) is nonempty if the Mangasarian–Fromovitz
constraint qualification (MFCQ) holds at x̄, that is,

rankF ′(x̄) = l and ∃ξ̄ ∈ kerF ′(x̄) such that G′
I (x̄)(x̄)ξ̄ < 0,

where I (x̄) = {i = 1, . . . ,m | Gi(x̄) = 0} is the set of indices of inequality constraints
active at x̄.

We are interested in behaviour of the dual part of sequences generated by primal-
dual Newton methods applied to solve (1.1). The case of interest in this work is
when M(x̄) is not a singleton. When the multiplier is unique, the dual sequence
has only one possible limit (if the method converges in any reasonable sense), which
makes such a case trivial from the point of view of dual behaviour. At issue, therefore,
are degenerate problems, where x̄ does not satisfy the so-called strict MFCQ (that
is, MFCQ combined with the requirement that the multiplier be unique). Hence, x̄

also does not satisfy the stronger linear independence constraint qualification (LICQ),
which can be expressed in the form

rank

(
F ′(x̄)

G′
I (x̄)(x̄)

)
= l + |I (x̄)|,

where |I | stands for the cardinality of a finite set I .
The case of violation of classical constraint qualifications has been a subject of

considerable interest in the past decade, both in the general case (e.g., [2, 6, 11, 13,
14, 20, 21, 24, 25, 39]) and in the special case of equilibrium or complementarity
constraints (e.g., [3, 4, 12, 22, 29, 33–35]).
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In addition to constraint qualifications (or lack of them), second-order conditions
are important for convergence and rate of convergence of Newton-type methods. Re-
call that the second-order sufficient condition for optimality (SOSC) holds at x̄ with
a multiplier (λ̄, μ̄) ∈M(x̄), if

〈
∂2L

∂x2
(x̄, λ̄, μ̄)ξ, ξ

〉
> 0 ∀ξ ∈ C(x̄) \ {0}, (1.3)

where

C(x̄) = {ξ ∈ kerF ′(x̄)|G′
I (x̄)(x̄)ξ ≤ 0, 〈f ′(x̄), ξ 〉 ≤ 0}

is the critical cone of (1.1) at x̄. If SOSC holds (with some multipliers) then the
point x̄ is a strict local minimizer of (1.1) and primal convergence to x̄ can be ex-
pected for (good implementations of) good algorithms, even in degenerate cases. The
speed of convergence, however, is often slow. It has been observed that, when pri-
mal convergence is slow, the reason for this is not so much degeneracy as such, but
some undesirable behaviour of the dual sequence. Among various scenarios of this
behaviour, one of the prominent ones is dual convergence to multipliers violating
SOSC (see, e.g., [38, Sect. 6], [25]). Understanding this phenomenon better is one
of the purposes for putting together a collection of examples presented in this paper.
The other reason is assessing the chances of applicability of various local stabiliza-
tion/regularization methods that have been proposed to tackle degeneracy [11, 13,
24, 28, 39] (see also [10, 36–38]). Some of those methods do achieve superlinear or
quadratic convergence despite degeneracy, if their primal-dual starting point is close
to a point satisfying SOSC. To get such a starting point, the issue of dual behaviour
of an “outer” (global) phase of the algorithm is again important.

The purpose of this paper, therefore, is to discuss possible scenarios of dual be-
haviour of Newton methods applied to degenerate optimization problems, and to put
together a representative library of small examples that illustrate the possibilities and
that can be used for future development of algorithms for degenerate problems. For
the case of equality constraints only (i.e., when there are no inequality constraints in
(1.1)), we believe that the overall picture is quite clear [25]. The case of mixed con-
straints, including complementarity constraints, is more complex and requires further
study. Examples investigated in the present paper is a step in this direction.

In what follows, the main attention will be paid to the standard linesearch se-
quential quadratic programming (SQP) algorithm, generating primal-dual trajectories
{(xk, λk,μk)} as follows: xk+1 = xk + αkξ

k , where αk ≥ 0 is the stepsize parameter,
ξk is a stationary point of the SQP subproblem

minimize 〈f ′(xk), ξ 〉 + 1

2

〈
∂2L

∂x2
(xk, λk,μk)ξ, ξ

〉

subject to F(xk) + F ′(xk)ξ = 0,

G(xk) + G′(xk)ξ ≤ 0,

(1.4)
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and (λk+1,μk+1) is a Lagrange multiplier associated to ξk . The rule we use for choos-
ing αk in our experiments is as follows: the initial trial value αk = 1 is halved until

ϕk(x
k + αkξ

k) ≤ ϕk(x
k) + εαk�k,

where ε ∈ (0,1),

ϕk : Rn → R, ϕk(x) = f (x) + ck

(
‖F(xk)‖1 +

m∑
i=1

max{0,Gi(x
k)}

)
,

is the l1-penalty function with the penalty parameter ck > 0, and

�k = 〈f ′(xk), ξk〉 − ck

(
‖F(xk)‖1 +

m∑
i=1

max{0,Gi(x
k)}

)

is an estimate of the directional derivative of ϕk at xk in the SQP direction ξk . In our
numerical experiments below we use ε = 0.1 and the following simple update rule
for penalty parameters: c0 = ‖(λ1,μ1)‖∞ + 1, and then for each k = 1,2, . . . , we
set ck = ck−1 if ck−1 ≥ ‖(λk+1,μk+1)‖∞, and ck = ‖(λk+1,μk+1)‖∞ + 1 otherwise.
The code is written in Matlab, and SQP subproblems (1.4) are solved by the built-in
Matlab solver quadprog.

Along with SQP, some other Newton-type methods for problem (1.1) (or, more
precisely, for KKT system (1.2)) will also be discussed, albeit briefly. Specifically,
we shall comment on the so-called semismooth Newton (SNM) method for refor-
mulations of the system (1.2), based on the natural residual complementarity func-
tion ψ(a, b) = min{a, b} and on the Fischer–Burmeister complementarity function
ψ(a, b) = √

a2 + b2 − a − b, a, b ∈ R. The corresponding versions of SNM will be
abbreviated as SNM-NR and SNM-FB, respectively. With these functions, (1.2) can
be re-written as the nonsmooth system of equations


(x,λ,μ) = 0,

where


 : Rn × Rl × Rm → Rn × Rl × Rm,


(x,λ,μ) =
(

∂L

∂x
(x,λ,μ),F (x),ψ(μ,−G(x))

)
,

with ψ applied component-wise. SNM-NR and SNM-FB generate primal-dual tra-
jectories {(xk, λk,μk)} as follows: (xk+1, λk+1,μk+1) = (xk, λk,μk) + αkd

k , where
αk ≥ 0 is again the stepsize parameter, and dk solves the linear system


(xk,λk,μk) + �kd = 0, (1.5)

where �k ∈ ∂B
(xk,λk,μk), and ∂B
(xk,λk,μk) stands for the so-called B-
subdifferential of 
 at (xk, λk,μk) (see [30, 31]).
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Even though SNM methods applied to reformulations of the KKT system are not
among common tools to solve optimization problems, we feel that paying some atten-
tion to them is justified here, having in mind the issues in consideration. For example,
if it were to be discovered that SNM methods exhibit better dual behaviour on some
classes of degenerate problems than SQP, this could be useful for obtaining better
multiplier estimates. However, in our experience, dual behaviour of SNM is usually
quite similar to SQP. For this reason, we shall be commenting on SNM only briefly.

The linesearch procedure we used for SNM-FB is essentially the same as in “Gen-
eral Line Search Algorithm” stated in [8]. Specifically, fix q ∈ (0,1), ε ∈ (0,1). For
each k, let dk be defined according to (1.5). We accept αk = 1 if

ϕ((xk, λk,μk) + αkd
k) ≤ qϕ(xk, λk,μk),

where

ϕ : Rn → R, ϕ(x,λ,μ) = 1

2
‖
(x,λ,μ)‖2.

Otherwise, if dk satisfies the descent direction condition

〈ϕ′(xk, λk,μk), dk〉 ≤ −γ ‖dk‖δ,

the initial trial value αk = 1 is halved until

ϕ((xk, λk,μk) + αkd
k) ≤ ϕk(x

k) + εαk〈ϕ′(xk, λk,μk), dk〉.
If dk does not satisfy the descent direction condition, we re-define dk =
−ϕ′(xk, λk,μk) and decrease the initial trial value αk = 1 according to the same rule.
In our experiments, we used the following values of parameters: q = 0.9, δ = 2.1,
γ = 10−9, ε = 10−4.

For SNM-NR, we use αk = 1 for all k, because this method does not admit a
natural and fully satisfactory linesearch procedure.

The stopping criterion for all runs was ‖xk − x̄‖ < 10−7. Since we deal with
degenerate problems, it is natural that many runs of our simple implementations end
up in a failure (because of inconsistent or unbounded SQP subproblems (1.4), or
inconsistent SNM linear systems (1.5), because of extremely slow convergence, or
simply because of the lack of globalization device in the case of SNM-NR). We are
not concerned with robustness, but rather with convergence properties, when there is
convergence.

2 Critical multipliers

We next recall the notion of critical multipliers, which plays a central role in under-
standing dual behaviour of Newton-type schemes on degenerate problems, see [25].
It is convenient to do this for the case of equality-constrained problems first. For the
moment, let the problem be

minimize f (x)

subject to F(x) = 0
(2.1)
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(i.e., in the setting of the definition that follows, there are no G-constraints in (1.1)
and no μ-component of a multiplier). Note that for this problem, MFCQ, strict MFCQ
and LICQ at x̄, all reduce to the following classical regularity condition:

rankF ′(x̄) = l. (2.2)

Furthermore, in this case the KKT system (1.2) reduces to the Lagrange optimality
system

∂L

∂x
(x,λ) = 0,

F (x) = 0.

(2.3)

Moreover, SQP, SNM-NR and SNM-FB, all reduce to the (damped) Newton–
Lagrange method, i.e., the standard Newton method for the system of equations (2.3),
with the only possible differences in choosing the stepsize parameters (in the exam-
ples presented below, we employ the Newton–Lagrange method with the same line-
search procedure as for SQP). Specifically, the system for defining stationary points
and multipliers of SQP in (1.4), and the equation of SNM in (1.5), both reduce to the
system

∂L

∂x
(xk, λk) + ∂2L

∂x2
(xk, λk)ξ + (F ′(xk))Tη = 0,

F (xk) + F ′(xk)ξ = 0,

with respect to (ξ, η) ∈ Rn × Rl .
The following definition was introduced in [19]; see [25] for detailed treatment.

Definition 2.1 A multiplier λ̄ ∈ M(x̄) associated with a stationary point x̄ of prob-
lem (2.1) is referred to as critical if

∃ξ ∈ kerF ′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(F ′(x̄))

T
,

and noncritical otherwise.

For problem (2.1), SOSC (1.3) takes the form

〈
∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
> 0 ∀ξ ∈ kerF ′(x̄) \ {0}. (2.4)

Since im(F ′(x̄))
T = (kerF ′(x̄))⊥, it is immediate that criticality implies that

∃ξ ∈ kerF ′(x̄) \ {0} such that

〈
∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
= 0,

and in particular, SOSC (2.4) is violated for any critical multiplier λ̄. If F ′(x̄) = 0,

criticality of λ̄ reduces to saying that the matrix ∂2L

∂x2 (x̄, λ̄) is singular. In the general
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case, criticality can be interpreted as singularity of the so-called reduced Hessian of
the Lagrangian; see [25].

Evidently, critical multipliers form a special subclass within the multipliers vio-
lating SOSC. As shown in [25], critical multipliers serve as attractors for the dual
sequence of Newton-type methods: convergence to such multipliers is typical in a
certain sense. In particular, it is something that should be expected to happen when
the dual sequence converges and critical multipliers exist. This is quite remarkable,
considering that the set of critical multipliers is normally “thin” in M(x̄) (as usual,
we are talking about situations where the regularity condition (2.2) does not hold
but M(x̄) is nonempty). Moreover, the reason for slow primal convergence is either
non-convergence of the dual sequence, or its convergence to critical multipliers, as
shown in [25]. If dual sequence were to converge to a noncritical multiplier, primal
convergence rate would have been superlinear.

We illustrate the effect of attraction to critical multipliers for equality-constrained
problems by the following examples. In those examples, we deal with the pure
Newton–Lagrange method (i.e., αk = 1).

Example 2.1 ([6]) The equality-constrained problem

minimize −x2
1 − x2

2

subject to x2
1 − x2

2 = 0, x1x2 = 0,

has the unique feasible point (hence, unique solution) x̄ = 0, with M(x̄) = R2. This
solution violates both, the regularity condition (2.2) (since F ′(x̄) = 0), and SOSC
(2.4) for any λ̄ ∈ R2. Critical multipliers are those λ̄ that satisfy 4λ̄2

1 + λ̄2
2 = 4.

In Fig. 1, critical multipliers are represented by the thick line (in the form
of an oval). Some Newton–Lagrange dual trajectories from primal starting points
x0 = (1,2) and x0 = (2,1) are represented by thin lines, with dots for the dual iter-
ates. It can be shown analytically that for this problem, the dual limit point depends
exclusively on x0 and not on λ0. Specifically, for any k the primal-dual Newton–
Lagrange step is given by

xk+1 = 1

2
xk, λk+1 = 1

2
λk +

(
− (x0

2)2 − (x0
1)2

2((x0
1)2 + (x0

2)2)
,

2x0
1x0

2

(x0
1)2 + (x0

2)2

)
,

and the dual trajectory converges to

λ̄ =
(

− (x0
2)2 − (x0

1)2

((x0
1)2 + (x0

2)2)
,

4x0
1x0

2

(x0
1)2 + (x0

2)2

)
.

Note that the latter is a critical multiplier for any choice of x0, and that convergence
is slow (only linear).

Example 2.2 ([19, Example 7]) The equality-constrained problem

minimize x2
1 − x2

2 + x2
3

subject to x2
1 + x2

2 − x2
3 = 0, x1x3 = 0,
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Fig. 1 Dual trajectories for
Example 2.1

(a) x0 = (1,2)

(b) x0 = (2,1)

has a (non-isolated) solution x̄ = 0, with M(x̄) = R2. This solution violates both, the
regularity condition (2.2) (since F ′(x̄) = 0), and SOSC (2.4) for any λ̄ ∈ R2. Critical
multipliers are those λ̄ that satisfy λ̄1 = 1 or 4λ̄2

1 + λ̄2
2 = 4.

In Figs. 2 and 3, critical multipliers are represented by the thick line (they form
an oval and a vertical line). Some Newton–Lagrange dual trajectories from primal
starting points x0 = (1,2,3) and x0 = (3,2,1) are shown in Fig. 2. Figure 3 shows
distribution of dual iterates at the time of termination of the method according to the
stopping criterion, for dual trajectories generated starting from the points on the grid
in the domain [−3,3] × [−3,3] (step of the grid is 1/4).

It is interesting to observe that even though the solution x̄ = 0 is non-isolated,
the Newton–Lagrange primal trajectories are attracted specifically by this (irregular)
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Fig. 2 Dual trajectories for
Example 2.2

(a) x0 = (1,2,3)

(b) x0 = (3,2,1)

solution, while dual trajectories are attracted by associated critical multipliers. Again,
convergence is slow.

Example 2.3 The equality-constrained problem

minimize x2
1 − x2

2 + 2x2
3

subject to −1

2
x2

1 + x2
2 − 1

2
x2

3 = 0, x1x3 = 0,

has the unique solution x̄ = 0, with M(x̄) = R2. This solution violates the regularity
condition (2.2) (since F ′(x̄) = 0) but satisfies SOSC with any λ̄ such that λ̄1 ∈ (0,1),
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Fig. 3 Distribution of dual
iterates at the time of
termination for Example 2.2

(a) x0 = (1,2,3)

(b) x0 = (3,2,1)

(λ̄1 − 3)2 − λ̄2
2 > 1. Critical multipliers are those λ̄ that satisfy λ̄1 = 1 or (λ̄1 − 3)2 −

λ̄2
2 = 1.

Figures 4 and 5 show the same kind of information for this example as Figs. 2
and 3 for Example 2.2. In particular, thick line represents critical multipliers (they
form two branches of a hyperbola and a vertical line). Note that in Fig. 5 (b), there is
one dual iterate, which is not close to any critical multiplier at the time of termination.
This is a result of non-convergence of the dual trajectory. Figure 6 presents the run
that produces this point. Just as an aside, we observe that, even in this case, the set
of critical multipliers seems to play an important role for the behaviour of the dual
trajectory, as it appears to be moving along this set.
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Fig. 4 Dual trajectories for
Example 2.3

(a) x0 = (1,2,3)

(b) x0 = (3,2,1)

Example 2.4 The equality-constrained problem

minimize x2
1 + x2

2 + x2
3

subject to x1 + x2 + x3 + x2
1 + x2

2 + x2
3 = 0, x1 + x2 + x3 + x1x3 = 0,

has the unique solution x̄ = 0, with M(x̄) = {λ̄ ∈ R2 | λ̄1 + λ̄2 = 0}. This solution
violates the regularity condition (2.2) (since F ′(x̄) = 0), but satisfies SOSC with any
λ̄ ∈ M(x̄) such that λ̄1 > −2/3. Critical multipliers are λ̄ = (−6/5,6/5) and λ̄ =
(−2/3,2/3).

Figure 7 shows the set of multipliers (thick line) and some Newton–Lagrange
dual trajectories for x0 = (1,2,3). Critical multipliers λ̄ = (−6/5,6/5) and λ̄ =
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Fig. 5 Distribution of dual
iterates at the time of
termination for Example 2.3

(a) x0 = (1,2,3)

(b) x0 = (3,2,1)

(−2/3,2/3) can be barely seen in the figure, because of dual iterates accumulating
around those points. As expected, convergence is slow.

Note that for λ0 = (−1,0), the Newton–Lagrange method fails to make a step.

We next explain how the notion of critical multipliers extends to the case of mixed
constraints (1.1).

Let the primal-dual trajectory {(xk, λk,μk)} be generated by SQP algorithm. Sup-
pose that the primal trajectory {xk} converges to a solution x̄ of (1.1). It is quite
natural to assume that the set

Ik = {i = 1, . . . ,m | Gi(x
k) + 〈G′

i (x
k), ξk〉 = 0}
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Fig. 6 Dual trajectory for
Example 2.3, x0 = (3,2,1),
λ0 = (3.75,−0.25)

Fig. 7 Dual trajectories for
Example 2.4, x0 = (1,2,3)

of indices of inequality constraints active at the computed stationary points ξk of
SQP subproblems remains unchanged for k sufficiently large. This is actually auto-
matic when {(λk,μk)} tends to a multiplier (λ̄, μ̄) ∈ M(x̄) satisfying strict comple-
mentarity, i.e., such that μ̄I (x̄) > 0. In other cases, the assumption that the set Ik is
asymptotically unchanged may not hold, but this still seems to be reasonable numer-
ical behaviour, which should not be unusual. This is also confirmed by our examples,
where we never encountered a situation of Ik changing infinitely often (but, of course,
we do not claim that this should be the case always). Note also that if this stabilization
property does not hold, one should hardly expect convergence of the dual trajectory,
in general. Therefore, it is reasonable to put the case when Ik does not stabilize in the
scenario of non-convergence of the dual sequence, while convergence of the latter
can be analyzed under the assumption that Ik is stable from some iteration on.

Assuming that Ik = I for all k large enough, we have that μk
i = 0 ∀i ∈ {1, . . . ,m}\

I , for each such k. Then, as is readily seen from (1.4), (ξk, λk+1,μk+1) satisfies the
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equations

f ′(xk) + ∂2LI

∂x2
(xk, λk,μk

I )ξ
k + (F ′(xk))

T
λk+1 + (G′

I (x
k))

T
μk+1

I = 0,

F (xk) + F ′(xk)ξk = 0, GI (x
k) + G′

I (x
k)ξk = 0,

(2.5)

where we have defined

LI : Rn × Rl × R|I | → R, LI (x,λ,μI ) = f (x) + 〈λ,F (x)〉 + 〈μI ,GI (x)〉.
Note that the latter is the Lagrangian of the following equality-constrained optimiza-
tion problem:

minimize f (x)

subject to F(x) = 0, GI (x) = 0.
(2.6)

Assuming that {ξk} converges to 0 (which is an immediate consequence of the
convergence of {xk} if the stepsize αk stays bounded away from zero), and assum-
ing that {(λk,μk)} is bounded, by passing to the limit in (2.5) (along an appropriate
subsequence) we conclude that x̄ is a stationary point of (2.6). And, in particular,
I ⊂ I (x̄). Moreover, any (λ̄, μ̄) ∈ M(x̄) satisfying μ̄i = 0 ∀i ∈ {1, . . . ,m} \ I cor-
responds to the multiplier (λ̄, μ̄I ) of (2.6) associated with x̄, and according to (2.5),
{(xk, λk,μk

I )} can be thought as generated by the Newton–Lagrange method for (2.6).
This motivates the following

Definition 2.2 A multiplier (λ̄, μ̄) ∈ M(x̄) associated with a stationary point x̄ of
problem (1.1) is referred to as critical with respect to a given index set I ⊂ I (x̄), if
μ̄i = 0 ∀i ∈ {1, . . . ,m} \ I , and the multiplier (λ̄, μ̄I ) associated with stationary point
x̄ of the equality-constrained problem (2.6) is critical for this problem in the sense of
Definition 2.1.

Note that if {(λk,μk)} converges to some (λ̄, μ̄) ∈M(x̄) then

I+(x̄, μ̄) ⊂ I ⊂ I (x̄), (2.7)

where I+(x̄, μ̄) = {i ∈ I (x̄) | μ̄i > 0}. Observe that if strong second-order sufficient
condition for optimality (SSOSC)

〈
∂2L

∂x2
(x̄, λ̄, μ̄)ξ, ξ

〉
> 0 ∀ξ ∈ (kerF ′(x̄) ∩ kerG′

I+(x̄,μ̄)(x̄)) \ {0}

holds with this (λ̄, μ̄), then SOSC holds with (λ̄, μ̄I ) for (2.6) at x̄. Hence, in the case
of SSOSC, (λ̄, μ̄) cannot be a critical multiplier.

3 Scenarios of dual behaviour

We next discuss possible scenarios for dual SQP trajectories {(λk,μk)}, assuming
that the set Ik of active constraints of SQP subproblems (1.4) stabilizes: Ik = I for
all k large enough. Let us discuss separately three possibilities.
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Scenario 1: Dual trajectory does not converge. According to our numerical expe-
rience, and as expected, this usually leads to slow primal convergence. How likely is
this scenario? In our experience convergence of the dual sequence is far more typical
than non-convergence. However, for equality-constrained problems, when the regu-
larity condition (2.2) does not hold and there are no critical multipliers associated
with x̄ (i.e., no “natural” attractors), this behaviour is at least possible (if not to say
typical). Example 2.3 demonstrates that this behaviour is also possible when critical
multipliers do exist (see Fig. 6), although in this case it is definitely not typical (see
[25]).

Recall, however, that for equality-constrained problems LICQ and MFCQ are the
same, and so the latter cannot hold in the case of non-unique multipliers. Thus, the
following question arises: Can the dual trajectory be non-convergent when MFCQ
holds (in the case of mixed constraints)? The positive answer to this question is ac-
tually very obvious if one would either allow for completely artificial examples (e.g.,
with duplicated constraints) or consider very specially structured problems (such as
MPCC, see below), and assume further that the QP solver being used can pick up
any multiplier of SQP subproblem when there are many. Indeed, consider the prob-
lem with two identical inequality constraints. These constraints can satisfy or violate
MFCQ but, in any case, the two constraints of SQP subproblem will also be identical.
Hence, the multipliers associated with a solution of this subproblem will normally
not be unique. Then, by picking up appropriate multipliers, one can enforce any kind
of limiting behaviour. This is one reason why, in this discussion, we should proba-
bly restrict ourselves to the case when QP multipliers are uniquely defined, so that
we could say that the trajectory {(xk, λk,μk

I )} is uniquely defined by the Newton–
Lagrange steps for (2.6). In addition, in practice, QP solvers pick up the multipliers
(when they are not unique) not arbitrarily but according to some prescribed rules.
Thus, when dealing with the case of nonunique QP multipliers one should take these
rules into account (as it happens in the case of MPCC; see below).

For these reasons, we feel that the answer to the question above should probably
result not from consideration of artificial examples but from computational practice,
and be restricted to specific implementations of algorithms (rather than algorithms
themselves).

We next discuss the case when {(λk,μk)} converges to some (λ̄, μ̄) ∈ M(x̄).
Scenario 2: Dual trajectory converges to a noncritical (with respect to the given I )

multiplier. According to existing theoretical and numerical evidence for equality-
constrained problems (see [25]), in this case the primal convergence rate is super-
linear. This situation is typical if the constraints of (2.6) are regular at x̄, which, in
turn, may happen when the set I is strictly smaller than I (x̄). Note that the latter
assumes that the limiting multiplier (λ̄, μ̄) violates strict complementarity. Note also
that when I is strictly smaller than I (x̄), the constraints of (2.6) can be regular at
x̄ even when standard constraint qualifications do not hold for the original problem
(1.1). In this case, the multiplier (λ̄, μ̄I ) associated with stationary point x̄ of (2.6) is
unique, and this unique multiplier has no special reason to be critical. Note, finally,
that in this case, dual convergence is also superlinear.
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Example 3.1 ([36]) The inequality-constrained problem

minimize x1

subject to (x1 − 2)2 + x2
2 ≤ 4, (x1 − 4)2 + x2

2 ≤ 16,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R2 | μ̄1 + 2μ̄2 = 1/4,0 ≤ μ̄2 ≤
1/8}. This solution satisfies MFCQ (but not LICQ) and SSOSC holds with any μ̄ ∈
M(x̄).

In [36], it was demonstrated that for this problem, the full SQP step (with αk =
1) may not provide a superlinear decrease of the distance to x̄, even from a point
arbitrarily close to x̄. However, for the next step, this will no longer be the case.
Numerical experiments show that here I = {2}, {xk} converges to x̄ (apart from a few
cases of failure for some starting points), {μk} converges to μ̄ = (0,1/8), and the
rate of primal and dual convergence is superlinear. Moreover, the unique constraint
of the corresponding problem (2.6) is regular at x̄, μ̄2 = 1/8 is the unique associated
multiplier, and SOSC holds for (2.6) at x̄ (with this multiplier). Hence, μ̄ = (0,1/8) is
a non-strictly complementary and non-critical (with respect to the given I ) multiplier
of (1.1). (Actually, it can be checked that there are no critical multipliers with respect
to any I ⊂ I (x̄) = {1,2}.)

SNM-FB also usually converges superlinearly for this example. For SNM-NR, on
the other hand, the dual trajectory does not converge (it has two distinct accumulation
points; the reason for this will be explained below), and the primal trajectory either
converges slowly or there is no convergence at all.

The above considerations show that the case when the set I is strictly smaller than
I (x̄) is possible, in which case the constraints of the associated equality-constrained
problem (2.6) can be regular, we may have convergence to a non-critical multiplier,
and fast primal-dual convergence as well. However, if the constraints of (2.6) are
degenerate at x̄ (in particular, if I = I (x̄) and standard constraint qualifications do
not hold for the original problem (1.1)), convergence to a non-critical multiplier is
highly unlikely to occur. The expected behaviour in this case is the following: either
{(λk,μk)} does not converge (see Scenario 1) or it converges to a critical multiplier
and, in both situations, primal convergence is slow.

Scenario 3: Dual trajectory converges to a critical multiplier. As mentioned above,
for purely equality-constrained problems this scenario appears to be typical, unless
critical multipliers do not exist [25]. More generally, if the limiting multiplier (λ̄, μ̄)

satisfies the strict complementarity condition then, by (2.7), I = I (x̄). Thus, accord-
ing to the discussion above, if standard constraint qualifications do not hold for prob-
lem (1.1), it is natural to expect the multiplier (λ̄, μ̄) to be critical and convergence
to be slow. Note that in this case, μ̄i = 0 ∀i ∈ {1, . . . ,m} \ I and ∀(λ̄, μ̄) ∈ M(x̄),
which means that the corresponding condition in Definition 2.2 holds automatically
with this I . Furthermore, in this case, if SOSC holds with (λ̄, μ̄) for (1.1) then SOSC
holds with (λ̄, μ̄I ) for (2.6), and in particular, such (λ̄, μ̄) cannot be critical.
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Example 3.2 The inequality-constrained problem

minimize −x2

subject to x2 ≤ 0

has the unique feasible point (hence, unique solution) x̄ = 0, with M(x̄) = R+. This
solution violates MFCQ but satisfies SOSC for any μ̄ > 1.

It is easy to check that the SQP step (with αk = 1) is given by xk+1 = xk/2,
μk+1 = 1 − (1 − μk)/2, and {μk} converges to the strictly complementary multi-
plier μ̄ = 1, which is the unique critical (with respect to I = I (x̄) = {1}) multiplier.
Convergence rate is only linear.

SNM-NR and SNM-FB demonstrate similar behaviour for this example.

The next example demonstrates that this scenario is possible also when MFCQ
holds at the solution x̄.

Example 3.3 ([25, Example 4]) The inequality-constrained problem

minimize −x1

subject to x1 − x2
2 ≤ 0, x1 + x2

2 ≤ 0

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R2+ | μ̄1 + μ̄2 = 1}. This solution
satisfies MFCQ (but not LICQ) and SOSC holds for any μ̄ ∈ M(x̄) such that μ̄1 <

μ̄2.
The SQP subproblem (1.4) takes the form

minimize −ξ1 − (μk
1 − μk

2)ξ
2
2

subject to xk
1 − (xk

2 )2 + ξ1 − 2xk
2ξ2 ≤ 0, xk

1 + (xk
2 )2 + ξ1 + 2xk

2ξ2 ≤ 0.

Let, for simplicity, xk
1 = 0, xk

2 �= 0. Suppose that μk is close enough to M(x̄). Then
the point ξk+1 = (0,−xk

2/2) is stationary in this subproblem, with both constraints
being active. Hence, the primal SQP step (with αk = 1) is given by xk+1 = xk/2 =
(0, xk

2/2). In particular, both QP constraints remain active along the primal trajectory,
and hence, I = I (x̄) = {1,2}.

The multiplier of SQP subproblem is given by

μk+1 =
(

1

2
+ 1

4
(μk

1 − μk
2),

1

2
− 1

4
(μk

1 − μk
2)

)
.

It follows that μk+1
1 −μk+1

2 = 1
2 (μk

1 −μk
2), and hence, (μk

1 −μk
2) → 0, which implies

that {μk} → (1/2,1/2), which is a strictly complementary multiplier, and the unique
critical multiplier (with respect to I = {1,2}). Again, convergence rate is only linear.

In our numerical experiments with this problem, SQP either converges slowly to
the critical multiplier or fails. SNM-FB usually behaves similarly to SQP, but it is
more robust and sometimes converges superlinearly to a noncritical multiplier. SNM-
NR either converges slowly to the critical multiplier, or fails (�k becomes almost
singular), or sometimes terminates finitely (but still at the critical multiplier!).
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Our next example demonstrates how this scenario (convergence to a critical mul-
tiplier) can take place with limiting multiplier violating strict complementarity. Note
that in the latter case, a multiplier satisfying SOSC but not SSOSC can be critical
(see Example 3.5 below).

Example 3.4 ([38, (63)]) The inequality-constrained problem

minimize x1

subject to −x1 ≤ 0, (x1 − 2)2 + x2
2 ≤ 4,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R2 | μ̄1 = 1−4μ̄2,0 ≤ μ̄2 ≤ 1/4}.
This solution satisfies MFCQ (but not LICQ) and SOSC (and even SSOSC) holds
with any λ̄ ∈ M(x̄), except for μ̄ = (1,0), which is the unique critical multiplier for
I = {1,2}.

The SQP subproblem (1.4) takes the form

minimize ξ1 + μk
2(ξ

2
1 + ξ2

2 )

subject to −xk
1 − ξ1 ≤ 0, (xk

1 − 2)2 + (xk
2 )2 − 4 + 2(xk

1 − 2)ξ1 + 2xk
2ξ2 ≤ 0.

Since we expect the dual convergence to μ̄ = (1,0), we should consider the case
when the first constraint of SQP subproblem is active: ξk

1 = −xk
1 , and hence, the full

primal SQP step (with αk = 1) gives xk+1
1 = 0.

Now we can deal solely with the case when xk
1 = 0. In this case, the point

ξk = (0,−xk
2/2) is stationary in SQP subproblem, with both constraints being ac-

tive. Hence, the primal SQP step is given by xk+1 = xk/2 = (0, xk
2/2). In particular,

both QP constraints remain active, and hence, I = I (x̄) = {1,2}.
The multiplier of SQP subproblem is given by

μk+1 = (1 − 2μk
2,μ

k
2/2).

It follows that {μk} → μ̄ = (1,0). The constraints of (2.6) are degenerate at x̄, and
μ̄ = (1,0) is the unique associated critical multiplier. Hence, this μ̄ is a non-strictly
complementary critical (with respect to the taken I ) multiplier of (1.1).

Figure 8 presents the set of multipliers (thick line) and some SQP dual trajectories
for x0 = (1,2). As expected, convergence rate is only linear.

In our numerical experiments with this problem, SQP usually converges slowly to
the critical multiplier. Sometimes it terminates finitely (but still at the critical multi-
plier!). SNM-FB usually behaves similarly to SQP, but sometimes it converges super-
linearly to a noncritical multiplier. SNM-NR either converges slowly to the critical
multiplier, or fails (�k becomes almost singular).

We proceed with a brief discussion of dual behaviour of SNM-NR and SNM-FB.
Let the current iterate (xk, λk,μk) be close enough to (x̄, λ̄, μ̄), where (λ̄, μ̄) ∈

M(x̄). Denote N = {1, . . . ,m} \ I (x̄), I+ = I+(x̄, μ̄), I0 = I (x̄)\ I+(x̄, μ̄). Iteration
of SNM-NR can be interpreted as the Newton step for the “branch” equation of the
KKT system of the form


Jk
1 ,J k

2
(x,λ,μ) = 0, (3.1)
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Fig. 8 Dual trajectories for
Example 3.4, x0 = (1,2)

where


Jk
1 ,J k

2
: Rn × Rl × Rm → Rn × Rl × Rm,


Jk
1 ,J k

2
(x,λ,μ) =

(
∂L

∂x
(x,λ,μ),F (x),GI+(x),GJk

1
(x),μJk

2
,μN

)
,

and (J k
1 , J k

2 ) is a partition of I0 such that

{i ∈ I0 | μk
i > Gi(x

k)} ⊂ J k
1 , {i ∈ I0 | μk

i < Gi(x
k)} ⊂ J k

2 . (3.2)

Note that 
Jk
1 ,J k

2
(xk, λk,μk) does not depend on a specific choice of a parti-

tion (J k
1 , J k

2 ) satisfying (3.2), and that every partition gives a valid element of
∂B
Jk

1 ,J k
2
(xk, λk,μk). Therefore, the presented interpretation of SNM-NR is correct.

We refer the reader to [23, Sect. 5] for more details.
Now, suppose that (J k

1 , J k
2 ) stabilizes: (J k

1 , J k
2 ) = (J1, J2) for all k large enough.

Then SNM-NR reduces to the Newton–Lagrange method for the equality-constrained
problem

minimize f (x)

subject to F(x) = 0, GI+∪J1(x) = 0.

Hence, under the assumption of stabilization of (J k
1 , J k

2 ), all the previous discussion
(based on reduction to an equality-constrained problem) readily applies.

However, according to our experience, stabilization of (J k
1 , J k

2 ) in SNM-NR ap-
pears to be not as natural as stabilization of Ik for SQP. In Example 3.1, dual con-
vergence of SNM-NR fails precisely because the partitions (J k

1 , J k
2 ) do not stabilize.

See also Examples 4.1 and 4.5 below.
As for SNM-FB, the situation appears to be more subtle. Nevertheless, an iteration

of SNM-FB can still be interpreted as inexact Newton–Lagrange step for some un-
derlying equality-constrained problem. We skip technical details and instead address
the reader to the numerical evidence in Sect. 4.
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We complete this section with a special class of degenerate problems, namely,
mathematical programs with complementarity constraints (MPCC). Specifically, we
consider the problem

minimize f (x)

subject to H1(x) ≥ 0, H2(x) ≥ 0, 〈H1(x), H2(x)〉 ≤ 0,
(3.3)

where f : Rn → R is a smooth function and H1,H2 : Rn → Rm are smooth map-
pings. Standard equality and inequality constraints can be easily added to this prob-
lem setting, making obvious (non-essential) modifications in what follows. As is well
known, every feasible point of MPCC violates MFCQ. Thus, MPCC is inherently de-
generate.

The (standard) Lagrangian of problem (3.3) has the form

L(x,μ) = f (x) − 〈μ1,H1(x)〉 − 〈μ2,H2(x)〉 + μ3〈H1(x),H2(x)〉,
x ∈ Rn,μ = (μ1,μ2,μ3) ∈ Rm × Rm × R.

We next recall terminology which is now standard in MPCC literature. Define the
so-called MPCC-Lagrangian of problem (3.3):

L : Rn × (Rm × Rm) → R,

L(x, ν) = f (x) − 〈ν1,H1(x)〉 − 〈ν2,H2(x)〉, ν = (ν1, ν2).

To a feasible point x̄ we associate the index sets

I1 = I1(x̄) = {i ∈ I | (H1)i(x̄) = 0},
I2 = I2(x̄) = {i ∈ I | (H2)i(x̄) = 0}, I0 = I1 ∩ I2.

A feasible point x̄ of (3.3) is said to be a strongly stationary point of this problem if
there exists ν̄ = (ν̄1, ν̄2) ∈ Rm × Rm satisfying

∂L
∂x

(x̄, ν̄) = 0, (ν̄1)I2\I1 = 0, (ν̄2)I1\I2 = 0, (ν̄1)I0 ≥ 0, (ν̄2)I0 ≥ 0.

Any such ν̄ is called an MPCC-multiplier associated with x̄.
Throughout the rest of this section we assume that the so-called MPCC-linear

independence constraint qualification (MPCC-LICQ) holds at x̄, i.e.,

(H1)
′
i (x̄), i ∈ I1, (H2)

′
i (x̄), i ∈ I2 are linearly independent.

It was shown in [33] that if MPCC-LICQ holds at a local solution x̄ of (3.3), then
this point is strongly stationary and the associated MPCC-multiplier ν̄ is unique.
Moreover, in this case x̄ is a stationary (in the classical sense) point of problem (3.3),
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and

M(x̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ = (μ1,μ2,μ3) ∈ Rm × Rm × R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(μ̄1)i = (ν̄1)i + μ̄3(H2)i(x̄),

i ∈ I1 \ I2,

(μ̄2)i = (ν̄2)i + μ̄3(H1)i(x̄),

i ∈ I2 \ I1,

(μ̄1)i = (ν̄1)i , i ∈ I2,

(μ̄2)i = (ν̄2)i , i ∈ I1,

μ̄3 ≥ γ̄

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where

γ̄ = max

{
0, max

i∈I1\I2

(
− (ν̄1)i

(H2)i(x̄)

)
, max
i∈I2\I1

(
− (ν̄2)i

(H1)i(x̄)

)}

(see, e.g., [12, Proposition 4.1]). Thus, the set M(x̄) is a ray, with its origin corre-
sponding to μ̄3 = γ̄ .

It can be easily checked that the (standard) critical cone of problem (3.3) at x̄ is
given by

C(x̄) =

⎧⎪⎨
⎪⎩ξ ∈ Rn

∣∣∣∣∣∣∣
(H1)

′
I1\I2

(x̄)ξ = 0, (H2)
′
I2\I1

(x̄)ξ = 0,

(H1)
′
I0

(x̄)ξ ≥ 0, (H2)
′
I0

(x̄)ξ ≥ 0,

〈f ′(x̄), ξ 〉 ≤ 0

⎫⎪⎬
⎪⎭ .

We say that MPCC-second-order sufficient condition (MPCC-SOSC) holds at a
strongly stationary point x̄ of problem (3.3) with the associated MPCC-multiplier
ν̄, if

∂2L
∂x2

(x̄, ν̄)[ξ, ξ ] > 0 ∀ξ ∈ C(x̄) \ {0}. (3.4)

According to [18, Proposition 1], MPCC-SOSC implies the usual SOSC for any μ̄ in
the ray M(x̄), including the origin of this ray.

MPCC-SOSC is a rather strong condition. In particular, it cannot be linked to any
second-order necessary condition for (3.3). By this we mean that a solution of (3.3)
that satisfies MPCC-LICQ (and thus is strongly stationary) does not have to satisfy
the condition obtained from (3.4) by replacing the strict inequality by non-strict (as
“should” be, by natural analogy with the links between classical necessary conditions
and sufficient conditions for optimality). We next state a second-order sufficient con-
dition, which is weaker than MPCC-SOSC, and which is naturally connected to an
appropriate second-order necessary condition.

Define the cone

C2(x̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ ∈ Rn

∣∣∣∣∣∣∣∣∣

(H1)
′
I1\I2

(x̄)ξ = 0, (H2)
′
I2\I1

(x̄)ξ = 0,

(H1)
′
I0

(x̄)ξ ≥ 0, (H2)
′
I0

(x̄)ξ ≥ 0,

〈(H1)
′
i (x̄), ξ 〉〈(H2)

′
i (x̄), ξ 〉 = 0, i ∈ I0,

〈f ′(x̄), ξ 〉 ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
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where the subscript “2” indicates that, unlike C(x̄), this set takes into account the
second-order information about the last constraint in (3.3). By direct comparison,
C2(x̄) ⊂ C(x̄).

We say that piecewise SOSC holds at a strongly stationary point x̄ of problem (3.3)
with the associated MPCC-multiplier ν̄, if

∂2L
∂x2

(x̄, ν̄)[ξ, ξ ] > 0 ∀ξ ∈ C2(x̄) \ {0}. (3.5)

Piecewise SOSC is indeed sufficient for optimality, even though it is evidently weaker
than MPCC-SOSC. Moreover, the condition obtained from (3.5) by replacing the
strict inequality by non-strict is necessary for optimality [33].

Regarding dual behaviour of Newton-type methods when applied to MPCC, the
following two possibilities should be considered:

• If the upper-level strict complementarity condition (ULSCC) holds, that is,

(ν̄1)I0 > 0, (ν̄2)I0 > 0,

then there is exactly one multiplier violating strict complementarity, namely the
basic multiplier μ̄ corresponding to μ̄3 = γ̄ .

• If ULSCC does not hold then there are no strictly complementary multipliers.

It is very tempting to extend our discussion above of general degenerate prob-
lems to MPCC. For example, suppose that ULSCC holds. Since MPCC-SOSC im-
plies SOSC with any multiplier, it is tempting to deduce that under MPCC-SOSC, if
the dual trajectory converges then most likely it converges to the (non-strictly com-
plementary) basic multiplier. Similarly, under piecewise SOSC (3.5), there may exist
γ̂ ≥ γ̄ such that SOSC holds only with those multipliers μ̄ that correspond to μ̄3 > γ̂ .
And then it is tempting to deduce that under piecewise SOSC, if the dual trajectory
converges then most likely it converges either to the critical multiplier μ̄ correspond-
ing to μ̄3 = γ̂ , or to the (non-strictly complementary) basic multiplier. The cases of
violated ULSCC can be also treated as above.

However, the discussion for general mathematical programming problems should
be applied to MPCCs with some care, because of very special structure of the lat-
ter. Specifically, according to [12], a quite possible (and, in fact, favorable) sce-
nario for SQP applied to MPCC reformulation with slack variables y1 = H1(x) and
y2 = H2(x) is the following: the primal trajectory hits a point satisfying exact com-
plementarity, that is, yk

1 ≥ 0, yk
2 ≥ 0 and 〈yk

1 , yk
2 〉 = 0 for some k. In this case, the

constraints of the QP approximation about the corresponding point (xk, yk
1 , yk

2 ) vio-
late standard constraint qualifications and, hence, the corresponding QP multipliers
would normally be not unique. Moreover, exact complementarity is preserved for all
subsequent iterations. Therefore, specificity of the QP solver should be taken into
account (otherwise, as already discussed above, if QP solver may pick any multi-
plier then dual behaviour should be considered essentially arbitrary). In [12], this
specificity consists of saying that “a QP solver always chooses a linearly independent
basis”, and this (together with other things, including ULSCC) results in dual con-
vergence to the basic multiplier. Note, however, that if one assumes piecewise SOSC
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instead of MPCC-SOSC then dual convergence to the basic multiplier is still a bad
thing, since it may not satisfy SOSC (even though it is noncritical, in general).

At the same time, if 〈yk
1 , yk

2 〉 > 0 for all k then our discussion for general prob-
lems still perfectly applies and the corresponding conclusions remain valid. In the
next example, MPCC-LICQ and piecewise SOSC are satisfied but MPCC-SOSC and
ULSCC are violated.

Example 3.5 (ralph2 in MacMPEC [27]) The MPCC

minimize x2
1 + x2

2 − 4x1x2

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R3 | μ̄1 = μ̄2 = 0, μ̄3 ≥ 0}. This
solution satisfies MPCC-LICQ but not MPCC-SOSC.

The SQP subproblem (1.4) takes the form

minimize 2xk
1ξ1 + 2xk

2ξ2 − 4xk
2ξ1 − 4xk

1ξ2 + ξ2
1 + ξ2

2 − (4 − μk
3)ξ1ξ2

subject to xk
1 + ξ1 ≥ 0, xk

2 + ξ2 ≥ 0, xk
1xk

2 + xk
2ξ1 + xk

1ξ2 ≤ 0.

Suppose that 0 ≤ μk
3 < 6, and let xk

1 = xk
2 �= 0. It can be easily seen that the first two

constraints cannot be active in this case, and that ξk = −xk/2 is the unique stationary
point of SQP subproblem, with the last constraint being active. Hence, the primal SQP
step (with αk = 1) is given by xk+1 = xk/2. In particular, only the last QP constraint
remains active along the primal trajectory. Hence, I = {3}, while I (x̄) = {1,2,3}.
The multiplier of SQP subproblem is given by

μk+1 = (0,0,1 + μk
3/2).

It follows that {μk} → μ̄ = (0,0,2). The unique constraint of (2.6) is degenerate
at x̄, and μ̄3 = 2 is an associated critical multiplier. Hence, this μ̄ is a non-strictly
complementary critical (with respect to the chosen set I ) multiplier of (1.1), and
I �= I (x̄). As predicted, convergence is only linear.

Note that in this example, (2.6) has another critical multiplier μ̄3 = 6, despite of
SOSC (but not SSOSC!) for (1.1) being valid with μ̄ = (0,0,6).

Figure 9 presents the projection of the set of multipliers onto (μ1,μ3)-plane (thick
line) and the projections of some SQP dual trajectories for x0 = (1,1), μ0

2 = 0. Note
that for μ0

3 ≥ 6, one-step termination happens at a noncritical multiplier.
In our numerical experiments with this example, SQP usually has finite termina-

tion, but sometimes converges slowly to the critical multiplier μ̄ = (0,0,2). SNM-
NR demonstrates similar behaviour, though it also fails quite often. SNM-FB demon-
strates all kinds of behaviour: sometimes it fails, sometimes converges superlinearly
to a noncritical multiplier, and sometimes converges slowly to the critical multiplier
μ̄ = (0,0,2).



A.F. Izmailov, M.V. Solodov

Fig. 9 Dual trajectories for
Example 3.5, x0 = (1,1),
μ0

2 = 0

4 Further examples and numerical experiments

In this section, we put together some more examples of mathematical programming
problems violating standard CQs, and briefly report on our numerical experience with
them in Matlab environment.

We start with examples with no critical multipliers (Examples 4.1–4.15); they
complement Example 3.1. These examples put in evidence that when there are no
critical multipliers, SQP convergence is usually superlinear, despite degeneracy. Nu-
merical results for these examples are reported in Table 1. For each problem, we used
10 random starting points (x0, λ0,μ0) with components x0

j in [x̄j − 10, x̄j + 10],
j = 1, . . . , n, and with components of (λ0,μ0) in [−10,10] × [0,10]. Here, x̄ is a
solution specified in the corresponding example, or a convex combination (with equal
coefficients) of solutions when there are many (like in Example 4.8). Example 4.4 is
omitted from Table 1 because the algorithms converge to a nondegenerate local so-
lution (see the discussion in Example 4.4). For each problem and each algorithm, we
report on the number of successful runs (those for which the stopping criterion was
satisfied after no more than 50 iterations), and on the number of times superlinear
convergence was detected (in parentheses).

Example 4.1 ([38, p. 138]) The inequality-constrained problem

minimize
1

2
(x1 + 1)2 + 1

2
x2

2

subject to −x1 ≤ 0, (x1 − 1)2 + x2
2 ≤ 1,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R2 | μ̄1 = 1−2μ̄2,0 ≤ μ̄2 ≤ 1/2}.
This solution satisfies MFCQ (but not LICQ), and SSOSC holds with all μ̄ ∈M(x̄).

SQP and SNM-FB converge superlinearly for this example (SQP actually has fi-
nite termination). For SNM-NR, partition (J k

1 , J k
2 ) does not stabilize, the dual tra-

jectory does not converge (has two distinct accumulation points), and the primal
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trajectory converges slowly, which sometimes results even in a failure because the
iterations limit is reached.

Example 4.2 ([38, Example 1, “three-circle problem”]) The inequality-constrained
problem

minimize x1

subject to (x1 − 2)2 + x2
2 ≤ 4, (x1 − 4)2 + x2

2 ≤ 16, x2
1 + (x2 − 2)2 ≤ 4,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R3 | μ̄1 = 1/4 − 2μ̄2,0 ≤ μ̄2 ≤
1/8, μ̄3 = 0}. This solution satisfies MFCQ (but not LICQ), and SSOSC holds with
all μ̄ ∈ M(x̄).

For this example, SQP has superlinear primal convergence (Ik = {2} for large k).
SNM-FB and SNM-NR either have superlinear primal convergence, or fail (for SNM-
NR, �k often becomes almost singular, and failures are typical).

Example 4.3 ([15, Problem 43], [9, Example 3], [38, Example 3]) The inequality-
constrained problem

minimize x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

subject to x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 ≤ 8,

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 ≤ 10,

2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 ≤ 5,

−x3
2 − 2x2

1 − x2
4 − x1 + 3x2 + x3 − 4x4 ≤ 7

has the unique solution x̄ = (0,1,2,−1), with M(x̄) = {μ̄ ∈ R4 | μ̄1 = 3− μ̄3, μ̄2 =
0,2 ≤ μ̄3 ≤ 3, μ̄4 = μ̄3 − 2}. This solution satisfies MFCQ (but not LICQ), and
SSOSC holds with all μ̄ ∈M(x̄).

SQP either converge superlinearly for this example (with Ik = {1,3} for large k),
or fails because of unbounded subproblems. SNM-FB usually fails, though some-
times converges superlinearly. SNM-NR fails.

Example 4.4 ([32], [2, p. 9]) The equality-constrained problem

minimize x2

subject to F(x) = 0,

where

F(x) =
{

x6 sin(1/x) if x ∈ R \ {0},
0 if x = 0,

has the unique global solution x̄ = 0 and infinitely many local solutions of the form
1/(πs), where s runs over integers. In particular, x̄ is a nonisolated local solution,
M(x̄) = R, and this solution violates the regularity condition (2.2) but satisfies SOSC
with all λ̄ ∈ R.
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For this example, the Newton–Lagrange method converges superlinearly to local
minimizers distinct from x̄ (that is why this example is not reported in Table 1).

Example 4.5 ([13, (4)]) The inequality-constrained problem

minimize x2

subject to x2 ≤ 0,

has the unique feasible point (hence, unique solution) x̄ = 0, and M(x̄) = R+. This
solution violates MFCQ but satisfies SSOSC with all μ̄ ∈ M(x̄).

SQP and SNM-FB converge superlinearly for this example (SQP actually has fi-
nite termination). For SNM-NR, partition (J k

1 , J k
2 ) does not stabilize, the dual trajec-

tory does not converge (has two distinct accumulation points −1/2 and 0), and the
primal trajectory converges slowly.

Example 4.6 ([1]) The problem with mixed constraints

minimize x2
1

subject to x2 = 0, x2 ≤ 0,

has the unique solution x̄ = 0, with M(x̄) = {(λ̄, μ̄) ∈ R × R+ | λ̄ + μ̄ = 0}. This
solution violates MFCQ but satisfies SSOSC for all (λ̄, μ̄) ∈ M(x̄).

SQP and SNM-FB have finite (one-step) termination for this example. SNM-NR
usually fails (because �k becomes almost singular) but sometimes also shows one-
step termination.

Example 4.7 (model MPCC) MPCC

minimize x1 + 2x2

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R3 | μ̄1 = 1, μ̄2 = 2, μ̄3 ≥ 0}. This
solution satisfies MPCC-LICQ, and MPCC-SOSC holds (trivially, because C(x̄) =
{0}).

SQP has finite termination for this example. SNM-FB either converges superlin-
early or fails. SNM-NR usually fails (because �k becomes almost singular) but some-
times shows one-step termination.

Example 4.8 ([16]) MPCC

minimize
1

2
(x1 − 1)2 + 1

2
(x2 − 2)2

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has two local solutions x̄1 = (1,0) and x̄2 = (0,2), with M(x̄1) = {μ̄ ∈ R3 | μ̄1 =
0, μ̄3 − 2 = μ̄2 ≥ 0}, M(x̄2) = {μ̄ ∈ R3 | 2μ̄3 − 1 = μ̄1 ≥ 0, μ̄2 = 0}, respectively.
Both solutions satisfy MPCC-LICQ and MPCC-SOSC.
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For this example, SQP has finite termination, while SNM-FB converges superlin-
early. SNM-NR either has finite termination or fails (�k becomes almost singular).

Example 4.9 ([4, Example 1]) MPCC

minimize
1

2
(x2 − 1)2

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the unique solution x̄ = (0,1), with M(x̄) = {μ̄ ∈ R3 | μ̄1 = μ̄3 ≥ 0, μ̄2 = 0}.
This solution satisfies MPCC-LICQ and MPCC-SOSC.

For this example, SQP has finite termination. SNM-FB either converges superlin-
early or fails. SNM-NR usually fails (�k becomes almost singular), but sometimes
has finite termination.

Example 4.10 ([4, Example 2]) MPCC

minimize −x1 +
∫ x2

0
t6 sin(1/t)dt

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the sequence of local solutions of the form (0,1/(π + 2πj)), j = 0,1, . . . . All
those solutions satisfy MPCC-LICQ and MPCC-SOSC. In our numerical experi-
ments, we used x̄ = 1/π .

For this example, SQP and SNM-FB either converge superlinearly to x̄ (for SQP,
Ik = {1,3} for large k) or fail. Fails of SQP are quite frequent, due to unbounded
subproblems. SNM-NR fails too (�k becomes almost singular).

Example 4.11 ([26, Example 1 and p. 15], jr1 in MacMPEC [27], [12, Sect. 2.1])
MPCC

minimize (x1 − 1)2 + x2
2

subject to x2 ≥ 0, x2 − x1 ≥ 0, x2(x2 − x1) ≤ 0,

has the unique solution x̄ = (1/2,1/2), with M(x̄) = {μ̄ ∈ R3 | μ̄1 = 0, μ̄2 ≥ 1,

μ̄3 = 2(μ̄2 − 1)}. This solution satisfies MPCC-LICQ and MPCC-SOSC.
SQP and SNM-FB converge superlinearly for this example (SQP actually has fi-

nite termination, while SNM-FB sometimes fails). SNM-NR fails, apart from some
rare cases of “accidental” finite termination.

Example 4.12 ([26, Example 1 and p. 15], jr2 in MacMPEC [27], [12, Sect. 2.1])
MPCC

minimize x2
1 + (x2 − 1)2

subject to x2 ≥ 0, x2 − x1 ≥ 0, x2(x2 − x1) ≤ 0,

has the unique solution x̄ = (1/2,1/2), with M(x̄) = {μ̄ ∈ R3 | μ̄1 = 0, μ̄2 ≥
0, μ̄3 = 2(μ̄2 + 1)}. This solution satisfies MPCC-LICQ and MPCC-SOSC.
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SQP and SNM-FB converge superlinearly for this example (SQP actually has fi-
nite termination, while SNM-FB sometimes fails). SNM-NR fails, apart from some
rare cases of “accidental” finite termination.

Example 4.13 ([39, (6.6)]) MPCC

minimize x2

subject to −x2
2 ≤ −1, x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the unique solution x̄ = (0,1), with M(x̄) = {μ̄ ∈ R4 | μ̄1 = 1/2, μ̄2 = μ̄4 ≥
0, μ̄3 = 0}. This solution satisfies MPCC-LICQ and MPCC-SOSC (trivially, because
C(x̄) = {0}).

For this example, SQP either converges superlinearly (with Ik = {1,4} for large k)
or fails because of inconsistent subproblems. SNM-FB either converges superlinearly
or fails. In some cases, SNM-FB converges slowly by gradient steps. SNM-NR fails
(�k becomes almost singular).

Example 4.14 (s14 in MacMPEC [27], [12, (2.3)]) MPCC

minimize x1 + x2

subject to −x2
2 ≤ −1, x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0,

has the unique solution x̄ = (0,1), with M(x̄) = {μ̄ ∈ R4 | μ̄1 = 0, μ̄2 − μ̄4 =
1, μ̄3 = 0, μ̄4 ≥ 0}. This solution satisfies MPCC-LICQ and MPCC-SOSC (trivially,
because C(x̄) = {0}).

For this example, SQP either converges superlinearly (with Ik = {1,2,4} for
large k) or fails because of inconsistent subproblems. SNM-FB either converges su-
perlinearly or fails. SNM-NR fails (�k becomes almost singular).

Example 4.15 (s12 in MacMPEC [27], [12, Sect. 7.2)]) MPCC

minimize −x1 − 1

2
x2

subject to x1 + x2 ≤ 2, x2
1 − x1 ≥ 0, x2 ≥ 0, (x2

1 − x1)x2 ≤ 0,

has the unique solution x̄ = (0,2), with M(x̄) = {μ̄ ∈ R4 | μ̄1 = 1/2,2μ̄2 = 4μ̄4 +
1, μ̄3 = 0, μ̄4 ≥ 0}. This solution satisfies MPCC-LICQ and MPCC-SOSC (trivially,
because C(x̄) = {0}).

For this example, SQP either converges superlinearly (with Ik = {1,2} for large k)
or fails because of inconsistent subproblems. SNM-FB sometimes converges super-
linearly but usually fails. SNM-NR fails (�k becomes almost singular).

We continue with examples (Examples 4.16–4.22) where critical multipliers do
exist; they complement Examples 2.1–2.4, 3.2–3.5. These examples put in evidence
that attraction of SQP iterates to critical multipliers is typical and, as a consequence,
convergence is slow. Numerical results for these examples are reported in Table 2.
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Table 1 Examples with no
critical multipliers: the number
of times convergence was
declared for 10 different starting
points, and the number of times
it was superlinear

Examples Algorithm

SQP SNM-FB SNM-NR

3.1 8(8) 8(8) 6(0)

4.1 10(10) 10(10) 4(0)

4.2 10(10) 6(6) 2(2)

4.3 5(5) 2(2) 0(0)

4.5 10(10) 10(10) 10(0)

4.6 10(10) 10(10) 3(3)

4.7 10(10) 4(4) 1(1)

4.8 10(10) 10(10) 4(4)

4.9 8(8) 6(6) 2(2)

4.10 3(3) 6(6) 0(0)

4.11 10(10) 8(8) 2(2)

4.12 10(10) 6(6) 2(2)

4.13 4(4) 4(3) 0(0)

4.14 7(7) 4(4) 0(0)

4.15 4(4) 2(2) 0(0)

Table 2 Examples where there
exist critical multipliers: number
of times convergence was
declared for 10 different starting
points, number of times it was
superlinear, and number of times
dual convergence to a critical
multiplier was detected

Examples Algorithm

SQP SNM-FB SNM-NR

2.1 10(0/10) 10(0/10) 10(0/10)

2.2 10(0/10) 7(0/7) 10(0/10)

2.3 10(0/10) 7(0/7) 10(0/10)

2.4 10(0/10) 7(0/7) 10(0/10)

3.2 10(0/10) 10(0/10) 10(0/10)

3.3 6(0/6) 9(2/7) 6(3/6)

3.4 9(2/9) 8(3/5) 5(0/5)

3.5 10(8/2) 5(2/3) 6(5/1)

4.16 0(0/0) 10(2/8) 1(1/0)

4.17 0(0/0) 8(0/8) 3(3/0)

4.18 10(0/10) 10(0/10) 10(0/10)

4.19 8(0/8) 10(0/10) 10(0/10)

4.20 10(0/10) 9(0/9) 10(0/10)

4.21 8(0/8) 7(0/7) 9(1/8)

4.22 7(5/2) 10(4/5) 3(0/1)

In addition to the information reported in Table 1, we now report on the number
of runs for which convergence to a critical multiplier was detected (after slash in
parentheses). Note that for equality-constrained problems (those in Examples 2.1–
2.4), the three algorithms differ only in linesearch rules.
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Example 4.16 ([5, p. 1350]) The inequality-constrained problem

minimize x3

subject to 〈Qi(x1, x2), (x1, x2)〉 − x3 ≤ 0, i = 1,2,3,4,

where

Qi = UT
i QUi, Ui =

(
cos[π(i − 1)/4] sin[π(i − 1)/4]

− sin[π(i − 1)/4] cos[π(i − 1)/4]
)

, i = 1,2,3,4,

Q =
(

1 0
0 −2

)
,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R4+ | ∑4
i=1 μ̄i = 1}. This solu-

tion satisfies MFCQ (but not LICQ), and violates SOSC for any μ̄ ∈ M(x̄). Critical
multipliers for I = {1,2,3,4} are those satisfying the equality (2μ̄1 − μ̄2 − 4μ̄3 −
μ̄4)(−4μ̄1 − μ̄2 + 2μ̄3 − μ̄4) − 9(μ̄2 − μ̄4)

2 = 0.
For this example, SQP usually fails (because of unbounded subproblems), and

SNM-NR also (�k becomes almost singular), apart from some rare cases of finite
termination. SNM-FB usually converges slowly, with dual trajectory converging to
some critical multiplier (however, in some cases, superlinear convergence to a non-
critical multiplier was observed).

Example 4.17 ([7, Example 6.1]) The inequality-constrained problem

minimize x3

subject to 〈Qi(x1, x2), (x1, x2)〉 − x3 ≤ 0, i = 1,2,3,

where

Q1 =
(

0
√

3√
3 −2

)
, Q2 =

(
0 −√

3
−√

3 −2

)
, Q3 =

(−3 0
0 1

)
,

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R3+ | ∑3
i=1 μ̄i = 1}. This solution

satisfies MFCQ (but not LICQ) and violates SOSC for any μ̄ ∈ M(x̄). Critical mul-
tipliers for I = {1,2,3} are those satisfying the equality 2(μ̄1μ̄2 + μ̄1μ̄3 + μ̄2μ̄3) −
μ̄2

1 − μ̄2
2 − μ̄2

3 = 0.
The algorithms behave very similarly to what has been observed in Example 4.16.

Example 4.18 ([24, Example 2.1], [19, Example 2], [25, Example 1]) The equality-
constrained problem

minimize x2

subject to x2 = 0,

has the unique feasible point (hence, unique solution) x̄ = 0, with M(x̄) = R. This
solution violates the regularity condition (2.2) but satisfies SOSC with all λ̄ > −1.
The unique critical multiplier is λ̄ = −1.
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For this example, all versions of the Newton–Lagrange method converge slowly;
dual trajectory converges to the unique critical multiplier.

Example 4.19 The inequality-constrained problem

minimize x3

subject to x2 ≤ 0,

has the unique feasible point (hence, unique solution) x̄ = 0, with M(x̄) = R+. This
solution violates MFCQ but satisfies SSOSC with all μ̄ ∈ M(x̄) except for μ̄ = 0,
which is the unique critical multiplier.

For this example, SQP, SNM-NR and SNM-FB all converge slowly; dual trajec-
tory converges to the unique critical multiplier. SQP sometimes fails because of un-
bounded subproblems.

Example 4.20 ([17], [19, Example 2], [25, Example 3]) The equality-constrained
problem

minimize x2
1

subject to x2
1 − x2

2 = 0,

has the unique solution x̄ = 0, with M(x̄) = R. This solution violates the regularity
condition (2.2) but satisfies SOSC with all λ̄ ∈ (−1,0). Critical multipliers are λ̄ =
−1 and λ̄ = 0.

For this example, all versions of the Newton–Lagrange method converges slowly;
dual trajectory converges to some critical multiplier.

Example 4.21 The equality-constrained problem

minimize x2
1 + x2

2 + x2
3

subject to sinx1 + sinx2 + sinx3 = 0, x1 + x2 + x3 + x2
1 + sinx1x3 = 0,

has the unique solution x̄ = 0, with M(x̄) = {λ̄ ∈ R2 | λ̄1 + λ̄2 = 0}. This solution
violates the regularity condition (2.2) but satisfies SOSC with all λ̄ ∈M(x̄) such that
λ̄1 ∈ (−2,6). Critical multipliers are λ̄ = (−2,2) and λ̄ = (6,−6).

This is the only example where we had to reduce the region of distribution for
random primal starting points, in order to avoid attraction to a different (nondegener-
ate) stationary point. Specifically, we used starting points x0 with components x0

j in
[x̄j − 1, x̄j + 1], j = 1, . . . , n. With this choice, all versions of the Newton–Lagrange
method usually converge slowly to a critical multiplier.

Example 4.22 ([24, Example 4.2]) MPCC

minimize x1 + x2 + x2
1 + x2

2 + (x3 − 1)2

subject to x1 + x2 ≥ 0, x2
1 − (x3 − 1)2 ≥ 0, x2 ≥ 0, x3 ≥ 0,

(x1 + x2)x2 + (x2
1 − (x3 − 1)2)x3 ≤ 0,
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has solution x̄ = (0,0,1), with M(x̄) = {μ̄ ∈ R4 | μ̄1 = 1, μ̄2 ≥ 0, μ̄3 = μ̄4 ≥
0, μ̄5 ≥ 0}. This solution violates MPCC-LICQ but satisfies MPCC-SOSC with some
MPCC-multipliers. Critical multipliers for I = {1,2,3,5} are those satisfying the
equality μ̄5 = 1 + μ̄2.

For this example, the methods demonstrate various kinds of behaviour depending
on a starting point. SQP either has finite termination, or converges slowly to a critical
multiplier, or fails (for various reasons). SNM-FB either slowly converges to a critical
multiplier, or superlinearly converges to a noncritical one, or even sometimes linearly
converges to a noncritical multiplier. SNM-NR either converges slowly to a critical
multiplier, or converges slowly because partition (J k

1 , J k
2 ) does not stabilize, but most

times it fails.

We complete this collection with two examples where Lagrange multipliers do not
exist.

Example 4.23 ([3, (2.15)]) MPCC

minimize x2 − x1

subject to x1 ≤ 0, x2 ≤ 0, x1 + x2 ≤ 0, x2(x1 + x2) ≤ 0,

has solution x̄ = 0, which is not a strongly stationary point.
For this example, SQP either has finite termination or converges slowly, while

μk
4 → +∞. SNM-FB and SNM-NR usually fail.

Example 4.24 (scholtes4 in MacMPEC [27], [12, Sect. 7.1]) MPCC

minimize −x1 + x2 + x3

subject to x1 − 4x2 ≤ 0, x1 − 4x3 ≤ 0, x2 ≥ 0, x3 ≥ 0, x1x3 ≤ 0,

has the unique solution x̄ = 0, which is not a strongly stationary point.
For this example, SQP usually has finite termination. SNM-FB fails. SNM-NR

fails to make a step.
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