given mass flow), albeit with a definite scatter, whereas
the curves corresponding to different mass flows and also
to different spacings of the observation points for injec-
tion through a porous zone exhibit a distinct segregation,

The influence of liquid {njection on the maximum of
the transverse space—time correlation coefficient of the
wall pressure fluctuations is illustrated by the results
shown in Fig, 7. The correlation coefficient reaches a
maximum Rp for zero delay time. It is evident from an
analysis of the graphical data that liquid injection vn/
U =0.014) produces a certain increase in the correlation
at low frequencies; the values of the correlation coef-
ficient in the high-frequency range practically coincide
with those in the case of free flow over the surface, A
reduction in the transverse correlation is observed over
the entire investigated frequency range in the case of
large injection (vp/U,=0.0225),

Thus, large injection of a liquid in the normal direc-
tion through a permeable section of a surface in a flow
~ produces a substantial reduction in the spectral power
density and correlation of the wall pressure fluctuations,

A decrease in the intensity and correlation of the wall
pressure fluctuations in a uniform turbulent boundary
layer takes place, despite the increase in the thickness of
the boundary layer and the intensity of the velocity fluc-
tuations in the turbulent core of the flow during injection,
The principal causes of the observed reductions appear

to be the detachment of turbulence from the wall and the
formation of a layer with a low velocity-fluctuation level
in the wall zone, along with the suppression of correlations
in the turbulent flow above the permeable wall,
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A theory of the propagation of surface elastic waves in anisotropic solids with smooth curved boundaries is
developed by means of the perturbation method. The general scheme of the method used is described. The
propagation of Rayleigh waves in an isotropic medium is discussed as a case with degenerate anisotropy.

In the simplest formulation of the problem, Rayleigh=
type surface waves propagate in an anisotropic solid with-
out dispersion. In this formulation the problem is in-
vestigated in the linear approximation of the classical
theory of elasticity; it is assumed that the surface waves
have plane phase fronts, do not interact with other kinds
of fields, and propagate in a homogeneous half-space with
a plane free boundary in the absence of external distur-
bances. Departures from the described model can lead to
dispersion and additional attenuation (leaky waves have
attenuation in the original model). If the variations of the
wave characteristics as a result of these departures are
small, the additional attenuation and dispersion can be
calculated by means of perturbation theory. The perturba-
tion method described in Gurevich's monograph! are the
most effective, This method has been used previously in
the theory of surface elastic waves to account for the
influence of perturbations in the volume of the medium and
in the boundary conditions.? In the present article we
apply the indicated method to a new category of problems,
in which the perturbation is a variation in the shape of an
anisotropic solid. This category of problems has become
increasingly relevant in recent years in connection with
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the widespread application of crystals with curved bound-
aries in surface-wave acoustoelectronic devices. The
curvature of the surface of the crystals makes it possible
to design miniature long-delay lines for signal transmis-
sion,® topographic waveguides,* and geodesic lenses.’ How-
ever, the theory of the propagation of Rayleigh surface
waves, which are the principal type of surface waves used
in acoustoelectronics, has been developed so far for smooth
curved surfaces only in the case of isotropic materials®1?
(an asymptotic theory for the case of the free surface of a
solid has been developed in the cited papers). Yet even in
this simplest case, the results of different authors are in
disagreement, and not enough attention ig given to the
analysis of the derived expressions. For this reason we
also discuss the case of an isotropic medium in the pres-
ent study,

We give the general scheme of the method used here
for arbitrary small perturbations in application to the
problems of elastic wave propagation in anisotropic, solid-
state waveguides and unbounded solids, We assume that
the perturbed problem is described by the set of equations
comprising the equations of motion
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PV =3, Ty +1{, (1)
the equations of state

Ty =ciuSn'+f.7, )
the boundary conditions

To'+ZaVi=f2V,, 3)
and the stress—strain relation

Si'=(3/U;+0, U/ Y2+ 15, @)

where Vj is the particle velocity, Uj is the mechanical dis-
placement, Tij is the elastic stress, 5ij' is the strain, p is
the density of the medium, Cjjk; 1s the elasticity tensor
(stiffness constants), Zik is the mechanical impedance,
81=08/0xy, and x; denotes the Cartesian coordinates. The
Indices i, j, k, I take the values 1, 2, 3. The functions f
are perturbations. We shall not specify their form at this
stage. We assume that they are equal to zero in the un-
perturbed problem. The prime is used to denote the vari-
ables of the perturbed problem that do not coincide with
the analogous variables of the unperturbed problem. Al-
lowance for the interaction of elastic waves with other
types of fields adds equations for the dynami cs of those
fields. We also use locally Cartesian coordinates Xrs Xps
X. The X, axis is in the same direction as the phase
velocity of the wave., The x,, axis is directed along the
outward normal to the surface, and x, =0 on the surface.
We shall specify the direction of the x axis later, We
write the wave vector in the form exp[-i(wt-kxy)).

We perform the following operations on the basic
equations. We multiply Eq. (1) by V{* and multiply the
analogous complex-conjugate equation of the unperturbed
problem by Vi'. Summing these equations with allowance
for the relation 8/t = +iw, we obtain

V"aj’T,‘,'l+ V.-'a,-T¢,-'+/.-’V,-'==0. (5)

We assume the existence of points x;, xi' at which 3i=9;'.
We carry out the subsequent transformations at these
points, We write Eq. (5) in the form

O A{-T, VTV }+iw (TS3U =T, U =V, =0, 6)
We integrate Eq. (6) over the cross-sectianal area § of the
waveguide and invoke the two-dimensional Gauss diver-

gence theorem _" 8;{ };dsw= ja,( }.ds+j { }.dz. Here
F a8 L

{ l; denctes the expression in the braces in Eq. (6), and L
is tgxe contour of the cross section S. Integration is not
carried out in the one-dimensional case. We also use a
relation that follows from Eqs. (2), (4) and the symmetry
of Cijkz> along with a relation that is valid when the time-
average energy flux across the boundary of the unperturbed
waveguide is equal to zero:

Tii,aJUi'—T(j'a)'Uil=Tu‘j'fijs+S1'j.jifrq 5 { },. dr=— j a2V Vi dz,.
L L

The indicated transformations lead to the equation

‘[a‘{ }eds=—iw J'[fijTSij"f‘fﬁ!T,-,-'-—ff'U.»']d8+ j’ fafV\ Ve dzm=F.
] 8 L

We assume that the perturbed and unperturbed solutions
are joined in this equation by the relation &' (z., ., ).
exp(ik'z.) =a(z,) [#(zn, z,)+AS(z., .) Joxplikz.),
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where a(x ) is a slowly varying amplitude, A% 1512
term characterizing the change in structure of the wave,
and # is ihe amplitude value of Tij, Ui, or Vi.

We ultimately obtain the equation in a(x;)

da Fa _ FNL
Bz, 4Py ~dp  4Pw Lap ' ™

Pw=(/)Ref P.ds, P=—T, V..
8

Ap=~— _[ (AT Vo+AVT. Y ds,
8

where Re 2, is the time-average energy flux density, FL
is the linear part of the function F with respect to the
amplitude g, which is separated from it as a factor; FNL=
F — aFL, We have the following expression for the per-
turbation Ak of the wave number from Eq, (7):

Akmk'—k'=—iF/ (4Pw+Ap), (8)
a(z:) =exp(iAkz,).

In this equation we substitute the solution in the formof a
power gseries in a small parameter characterizing the
perturbation. Hereinafter we consider only situations in
which the relative variation of the wave structure is of the
same order of magnitude as the relative variation of the
wave number. We then find that the perturbation Ak can
be calculated in the (N+1)-st order with respect to the
small parameter in terms of the wave fields determined
up to the N-th order with respect tothis parameter, Equa-
tion (8) can therefore be used to calculate the wave num-
ber of the perturbed problem by iterations. In the first
order with respect to the small parameter

Ak=—iF /4Py, ©9)

and FyL is determined in terms of the solution of the un-
perturbed problem. The variation of the wave structure
is actually neglected in the calculation of Ak according to
Eq. 9).

We use the above-described algorithm to calculate
the perturbation of the surface elastic wave number due to
variationof the shape of an anisotropic solid. We assume
that the solid has a plane surface in the unperturbed prob-
lem and the surface of a eircular cylinder in the perturbed
problem, and that the ratio of the wavelength to the radius
R of the cylinder is a small parameter (kR> 1), In ac-
cordance with the choice of the small parameter we rep-
resent the elasticity equations describing the perturbed
problem in a cylindrical coordinate system r, z, ¢ in the
form of Egs. (1)-(4). The functions f and the coordinates
xi' have the following form in this case {the indices i, j,
k.1 take the values r, z, ¢): £yF = €3y Tr o+ (Trr=T po)/r,
EoF = €34To+ 2Try/r, 15F = 8, T2 0+ Tra/r, [ S=
tﬁ¢U¢+Ur/r. E= (r-i—R-l), 2f¢zs=€3¢Uzg 2f¢r = Ca‘pUr-
Ug/ts Xr' =r=R, %;' =2, X' =R¢, and all other £ S=0,
The perturbations f;;T, f;,Z are absent in this case, and
Zjk=0. The perturbation of the wave number can be de-
termined from the known functions f by means of Eq. (9)
in the first order with respect to the parameter 1/kR. We
first consider two special cases: propagation along the
generatrix of the cylinder and propagation perpendicular
to the generatrix, We assume that the surface waves have
plane phase fronts, Then the integrals over the cross
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section of the waveguide in the expressions for F and Pw
in Eq. (9) degenerate into integrals with respect to the
depth (i.e., the coordinate xp). For surface waveg prop=-
agating along a convex cylinder, Xn=Xr's Xp =Xz, xp =
x(P" and the x,, xn and Xt axes form a right trihedral,
The expression for the perturbation Ak in this case has
the form

]
(AR/E) = (4PwkR) ™ [ (N +i,)dz., (10)

where Nj=2wRe(Ui* T'u{-Un* Tii) and summation ig not
carried out over i. An analogous expression holds for
propagation around a convex ¢ylinder;

(Ak/k)(=(4Pka.)"‘{ J: (N +iP,) dr,+ j: J:(Zk Re 2, dz,.)dn}.(ll)

In this case, xp =xp', X =x 's Xt=x,', and the Xrs X, and
% axes form a lefttrihedral, The double integral in Eq.
(11) occurs in the computation of an integral of the form

J. z.P.dz, by parts, The indices T and t-attached to R

and Ak/k signify that the normal curvature of the surface
with respect to the wave vector is longitudinal or trans-
verse {from now on we refer simply to the longitudina]

or transverse curvature), The quantities Tij and Uj, Vi
are determined from the solution of the problem with a
plane boundary, The anisotropy of the solid and the orien-
tation of its principal axes in Eqs. (10) and (11) are arbi-
trary under the condition that the curvature of the surface
changes the wave structure only slightly. It is necessary
to set xp=—xy' for concave cylindrical surfaces, so that
Ak changes sign. In this case we can also make use of
Eqs. (10) and (11) if the radii of curvature are considered
to be negative for concave surfaces, The derived expres-
sions are also valid for other types of surface waves with
a change in the limits of integration, The results are
readily generalized to the case of wave propagation over
a smooth surface of arbitrary configuration as follows.
The curvature of the smooth surface at any point is com-
pletely determined by the radii of normal curvature in two
orthogonal directions. In the given problem one of them is
naturally associated with the direction of the wave vector,
The separate influence of the curvatures of the surface in
each of these directions is determined by Egs, (10) and
(11). Their joint influence is determined simply by the
sum of Eqs. (10) and (11) owing to the independence of the
action of the small perturbations:

Aklk=(Ak/k) c+(Akik) A,/ (kR,) +4./(kR.),

where Rt and Ry represent the local radii of curvature,
Using this equation to calculate the local velocity of the
surface waves, we can then determine their path by ap-
plying Fermat's principle, The validity of Eq. (12) for
surface waves on a sphere hag been confirmed in the deri-
vation of the perturbation Akby the above~described method
from the elasticity equations in a spherical coordinate
system. The perturbation Ak can also be determined in
terms of the prinecipal radii of curvature Ry, R, of the
surface with the application of the Euler equation:

Ak=(A./R+A./R))cos* 6+ (A./R,+A./R,)sin* 6,
where 8 {s the angle between the wave vector and the prin-

(12)

(13)
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cipal direction of the surface with the radius of curvature
Ry. For a circular eylinder of radius R we have Ry=0,
R;=R, and 4 is the angle between the wave vector and the
generatrix of the cylinder,

It is advisable to begin the analysis of the solutions
with the simplest case of degenerate anisotropy, viz,:
the case of an isotropic medium. The results for Rayleigh
waves can be reduced to the following form after trans-
formations using the dispersion relation;

i, (ki—gs) = _(F—4¢*) (=5 (14)
23K ' T 2ks*g’K ’

where

K=1/s+1/g*+2/k~8/ (k+52)
TRkl Sli—ki, ki=o'p/(AF2), kimgiplp,

and A, 4 are the Lamé coefficients. The corresponding
equations of Refs, 6-14 can be reduced to the same form,
confirming the validity of the solutions obtained here, The
expressions given in Refs. 15-19 yield results that do not
concur with Eqs. (14) and that differ from one another,
The functions Al, Al depend only on the Poisson ratio v
and vary monotonically with v between the following limits
for real solids: v =0: sz_/vt2=3- V5, Al=vIO(VE+ 1/
20~ 0.284, A i=-4+ B)Aclm 1774 for v=0.5: vp¥/nl=
N =@/3)@+ V3V33. 17 V3 Va3.  17), At =@-n)(1-n)(2-n)/
(@41-16)~ 0.050, A, i=3(2-7) Aén-4)~ -2.211; vR and vt
are the velocities of Rayleigh and shear waves., It follows
from these expressions that Arl, unlike Al depends weakly
on the elastic properties of the medium (max Azl/min Ari=
1.25), An analysis of the values of Ati,‘ A.,.’; and Eq. (12)
leads to a number of qualitative conclusions,bh19-2 e
give some of them, which have not been noted previously
in the literature. First, owing to the curvature of the
surface, the nature of the dispersion depends strongly on
how the surface is curved in relation to the wave vector,
Specifically, whereas longitudinal curvature induces nor-
mal dispersion for convex surfaces, transverse curvature
induces anomalous dispersion; the situation is reversed
for concave surfaces. Second, the influence of longitudinal
curvature is much stronger than that of transverse curva-
ture for equal radii of curvature. This means that the
influence of transverse curvature can be neglected in ap-
proximate caleculations of the phase velocity of Rayleigh
waves on spherical surfaces, Third, anisotropic curvature
of the surface alters the diffraction spreading of surface
waves, In particular, the diffraction spreading of Rayleigh
waves at the rounded edges of delay lines in the form of
plates with such edges is greater than on a flat surface,

A number of special conclusions can be formulated for
bodies of specific geometries, We note the special direc-
tions of propagation of Rayleigh waves over the surface of
an isotropic circular cylinder, The phase velocity and
diffraction Spreading attain extrema in the directions g =0,
90°, and the angle ¥ of deviation of the group velocity from
the phase velocity becomes equal to zero:

¥(8) =arctg (va='0va’00) ~ (4.-4,)sin (20) / (kR). (15)

The nature of the dispersion is exactly opposite in thege
directions. The nature of the dispersion changes at 9,=
arctg ¥ —4,'/4,/~23°-9ge,, Despite the fact that dispersion
is absent for thig direction, the angle $,) has a finjte
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frequency-dependent value, $(8,) =—2V—4,4,/(kR)=~
(46°v—82°)/(kR). The largest value of ¥ is attained at
45°, Y(45°)~ (28°v-102°02-118°)/(kR).

The analysis of the functions A¢ and Ar in the aniso~
tropic case presents a large-scale and difficuit problem
and is therefore not carried out within the scope of the
present article. We merely note one difference associated
with anisotropy, which is readily discerned without cal-
culating the specific values of At and Ar. According to
Egs. (12) and (15), even isotropic curvature of the bound-
ary (case of a sphere) can alter the angle of deviation of
the group velocity from the phase velocity in crystals,
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The problem of sound transmission through a liquid layer is solved within the framework of the linearized
Navier-Stokes and heat-transfer equations. It is shown that a strong absorption effect must exist under
definite conditions, when the dissipated energy flux density becomes commensurate in magnitude with the

acoustic energy flux density in the incident wave.

The absorption of acoustic energy is usually taken
into account in the solution of problems of sound trans-
mission through layered systems on the assumption that
the equations of classical acoustics are valid with a com-
plex wave number (for each case), the imaginary part of
which corresponds to the ordinary coefficient of sound
absorption in an unbounded medium (see Ref. 1, p. 18 Russ.
ed.). It is well known, however, that the process cannot
be described within the framework of classical acoustics
in the acoustie layers near the interfaces of media con-
sisting of immiscible liquids (the present paper is con-
cerned strictly with liquids); in this case it is required
to invoke the linearized equations of the mechanics of
viscous heat-conducting liquids, Since the temperature
and velocity gradients are anomalously high in the acoustic
layers, the contribution from these layers to the dis-
sipated energy can be decisive in a number of cases of
sound transmission through a liquid body.»® A quantita-
tive criterion for comparison of the energies absorbed per
unit time in an acoustic layer and in the remaining volume
of the liquid body can be obtained fromthe theory of me-
chanical energy dissipationin liquids (see Ref. 4, p. 368).
Specifically, if the following condition is satisfied:

I (cMro)", (1)
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the absorption in the volume of the medium can be com-
pletely neglected in comparison with the absorption in the
acoustic boundary layer, Here ! is the path traversed by
the sound in the liquid bod » A is the wavelength, and x is
the thermal diffusivity (allowance for viscosity produces

a similar expression with the kinematic viscosity coef-
ficient), Inasmuch as the right-hand side of Eq. (1) is
almost always considerably greater than unity for ordinary
gases and liquids, it can be inferred that the sound ab-
sorption even in a liquid body of comparatively large wave
dimensions is associated mainly withthe "nonclassical®
behavior of the liquid in the acoustic layer,

It is clear from the foregoing considerations that the
solutions of problems’ of sound absorption in layered sys-
tems! must be reexamined. Inthe present article we
solve such a problem for the simplest case of sound trans-
mission through one liquid layer.

Let an infinitely extended plane layer of one liquid
(whose parameters are identified by the index 2) of thick-
ness ! be situated in an unbounded different liquid (index 1);
a plane sinusoidal sound wave is incident on the layer at
an arbitrary angle. The behavior of the liquid in any of
the three regions is described by the linearized hydro-
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