УДК 551.465

Н.А.Евстигнеева

Морской гидрофизический институт НАН Украины, г.Севастополь

РАСЧЕТ ГИДРОФИЗИЧЕСКИХ ПОЛЕЙ В ЗИМНИЙ ПЕРИОД В СЕВЕРО-ЗАПАДНОЙ ЧАСТИ ЧЕРНОГО МОРЯ

Трехмерная нелинейная модель Черного моря адаптируется для расчета бароклинных течений с разрешением 1,6 км на шельфе Черного моря. В качестве тестового примера рассматривается задача построения непрерывных по времени и по пространству полей течений, температуры и солености на северо-западном шельфе Черного моря. Приводятся результаты численного эксперимента для зимнего периода времени. Анализируются изменения температуры и солености в мелководных районах шельфа.

Ключевые слова: численное моделирование, гидрофизические поля, высокое пространственное разрешение, открытая жидкая граница, северо-западный шельф.

В настоящее время прибрежная циркуляция вод Черного моря рассчитывается с помощью различных моделей [1 - 5], изучается роль рельефа дна, атмосферных возмущений, ветра, стока рек в формировании термогидродинамических полей. В [1] для зимне-весеннего сезона исследовались ветровые течения и течения, обусловленные стоком рек, с разрешением 6,1 км по оси x и 4,6 км по оси y. В [2 - 3] с использованием многослойной квазиизопикнической модели проведены адаптационные расчеты гидрофизических полей в северо-западной части Черного моря с разрешением 9,35 км по оси x и 9,27 км по оси y. В [4] описывается численная гидродинамическая модель прибрежной циркуляции вод, адаптированная к условиям Одесского и Приднепровско-Бугского районов. В [5] с использованием σ -координатной модели исследуются волновые поля, генерируемые атмосферными возмущениями типа циклонов на северо-западном шельфе.

Целью данной работы является расчет течений и термохалинных полей с высоким разрешением в прибрежных областях Черного моря с помощью модифицированной гидродинамической модели МГИ НАН Украины [6]. В качестве примера рассматривается северо-западный шельф – мелководный и распресненный район Черного моря, характеризующийся наличием заливов, лиманов и эстуарных областей черноморских рек. Циркуляция водных масс исследуется в зимний период времени, когда течения наиболее интенсивны. Используется высокое пространственное разрешение ~1,6 км по горизонтали.

Постановка задачи. Уравнения модели в приближении Буссинеска, гидростатики и несжимаемости морской воды имеют вид (ось *z* направлена вертикально вниз) [6]:

$$u_{t} - (\xi + f)v + wu_{z} = -g\varsigma_{x} - \frac{1}{\rho_{0}}(P' + E)_{x} + (v_{V}u_{z})_{z} + F^{u},$$

$$v_{t} + (\xi + f)u + wv_{z} = -g\varsigma_{y} - \frac{1}{\rho_{0}}(P' + E)_{y} + (v_{V}v_{z})_{z} + F^{v},$$

© Н.А.Евстигнеева, 2010

$$u_{x} + v_{y} + w_{z} = 0,$$

$$G_{t} + \int_{0}^{H} (u_{x} + v_{y}) dz = (Pr - Ev),$$

$$P = g\rho_{0}G + g\int_{0}^{z} \rho d\mu = g\rho_{0}G + P',$$

$$T_{t} + (uT)_{x} + (vT)_{y} + (wT)_{z} = F^{T} + (\kappa^{T}T_{z})_{z},$$

$$S_{t} + (uS)_{x} + (vS)_{y} + (wS)_{z} = F^{S} + (\kappa^{S}S_{z})_{z},$$

$$\rho = \rho_{0} + \alpha_{1}^{T}T + \alpha_{1}^{S}S + \alpha_{2}^{T}T^{2} + \alpha^{ST}ST,$$
(1)

где $E = (u^2 + v^2)/2$, $\xi = v_x - u_y$, Ev – скорость испарения воды с поверхности моря, Pr – скорость выпадения осадков. Остальные обозначения общепринятые.

Используется гармоническое представление турбулентных слагаемых в уравнениях движения и переноса тепла и соли:

$$F^{u} = v_{H} \nabla^{2} u, \quad F^{v} = v_{H} \nabla^{2} v, \quad F^{T} = \kappa_{H} \nabla^{2} T, \quad F^{S} = \kappa_{H} \nabla^{2} S$$

Уравнение (1) эквивалентно заданию линеаризованного кинематического условия на поверхности моря $w = -\zeta_t$ (при z = 0).

К системе уравнений необходимо присоединить граничные и начальные условия.

Краевые условия на поверхности (при z = 0) имеют вид:

 $v_V u_z = -\tau^x$, $v_V v_z = -\tau^y$, $\kappa^V T_z = Q^T$, $\kappa^V S_z = (Ev - Pr) \cdot S_0 + \beta \cdot (S^{cl} - S_0)$, где τ^x , τ^y – составляющие компоненты напряжения трения ветра, S^{cl} – климатическая соленость, S_0 – соленость на поверхности моря, Q^T – потоки тепла, κ^V – коэффициент вертикальной диффузии, β – заданный параметр.

На дне выполняются условия u = v = w = 0, $T_z = 0$, $S_z = 0$.

На твердых боковых стенках используются следующие условия: для меридиональных участков u = 0, $v_x = 0$, $T_x = 0$, $S_x = 0$, для зональных участков границы v = 0, $u_y = 0$, $T_y = 0$, $S_y = 0$.

Для участков границы, где вода втекает, задаются условия: для меридиональных участков границы $u = u^p$, $v_x = 0$, $T = T^p$, $S = S^p$, для зональных участков $v = v^p$, $u_y = 0$, $T = T^p$, $S = S^p$, где u^p , v^p – скорости в устьях рек, T^p , S^p – температура и соленость в реках.

По результатам адаптации модели в баротропном приближении было показано, что на открытой границе целесообразно ставить условия смешанного типа: для участков открытой границы, где вода втекает, задаются компоненты скорости, температура, соленость:

$$u|_{\Gamma} = u^g, v|_{\Gamma} = v^g, T|_{\Gamma} = T^g, S|_{\Gamma} = S^g.$$

Там, где вода вытекает, задаются условия свободного протекания: $\partial u/\partial n = 0, \ \partial v/\partial n = 0, \ \partial T/\partial n = 0, \ \partial S/\partial n = 0.$

Для задания граничных условий взяты полученные в [7] поля течений, температуры, солености для квазипериодического режима кинетической энергии, рассчитанные по модели для всего Черного моря с разрешением 5 км по осям x и y. Из 45 горизонтов использовались восемь: 2,5; 5; 10; 15; 20; 25; 30; 40 м. Значения для *u*, *v*, *T* и *S*, соответствующие широте жидкой границы, были линейно проинтерполированы на выбранную сетку для каждого момента времени.

Численная схема модели подробно описана в [6, 8] с указанием проведенных преобразований, обеспечивающих учет задания скоростей, температуры и солености на жидкой части границы.

Для согласования начальных полей масс и течений был проведен адаптационный расчет с целью геострофического приспособления поля течений к полю плотности и получению начальных полей для эксперимента. Уравнения модели интегрировались на 5 сут с зафиксированными краевыми условиями (начальные поля взяты из [7]). Из анализа графиков средней по объему и на горизонтах кинетической энергии, а также дивергенции горизонтальной скорости течений было установлено, что квазигеостофический баланс достигается через трое суток. Полученные поля для горизонтальных составляющих скорости, уровня, температуры и солености на 3 сутки принимались за начальные.

Параметры численной модели. Для численного решения поставленной задачи рассматривалась область Черного моря, ограниченная 45,5° с.ш. и расположенная между 29,5° и 33,5° в.д., для которой максимальная глубина не превышает 50 м.

Численные эксперименты проводились с разрешением 1,66 км по оси *x*, 1,56 км по оси *y*. По вертикали горизонтальные составляющие скорости течений, температура и соленость рассчитывались на 44 горизонтах: 0,5; 1; 1,5; 2; 2,5; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 34; 35; 37; 39; 41; 43; 45; 47, 49 м. Вертикальная компонента скорости вычислялась между горизонтами.

Для коэффициента турбулентной вязкости и диффузии по горизонтали выбраны следующие значения: $v_h = 5 \cdot 10^5 \text{ см}^2/\text{с}$, $k_H = 5 \cdot 10^5 \text{ см}^2/\text{с}$. Шаг по времени в модели равен 30 с.

Коэффициенты турбулентного обмена импульсом и диффузии по вертикали вычислялись с аппроксимацией Филандера-Пакановского [9]. В результате серии численных экспериментов были подобраны максимальные значения для коэффициентов.

При расчетах учитывался сток трех рек – Днепра, Днестра и Южного Буга. Использовались следующие значения расходов рек за год: 38,88 км³ – Днепр, 7,65 км³ – Днестр, 2,81 км³ – Южный Буг. Для выбранного периода времени температура и соленость воды в устьях рек задавалась 4,5 °C и 7 ‰ соответственно.

Потоки влаги и тепла на поверхности моря были взяты из [10].

На поверхности моря задаются поля климатического ветра, полученные в [11] и линейно проинтерполированные на выбранную сетку. В выбранный период времени 15 января – 15 февраля преобладают северные и северовосточные ветры со средней скоростью 5 – 6 м/с. Сила ветра максимальна 20 – 21 января и 28 – 30 января (7 м/с). После 7 февраля направление ветра изменяется, и скорость ветра уменьшается до 2 – 3 м/с.

Результаты численных экспериментов. Поля приведенного уровня. Изучим изменение полей уровня в зависимости от направления ветра. Уровень моря изменяется в основном под влиянием сгонно-нагонных колебаний, а также стока речных вод. Также существенную роль в формировании поля уровня, как было отмечено в [1], играет рельеф дна.

На рис.1 – 2 представлены поля векторов касательных напряжений трения ветра и поля уровня, сформировавшиеся под действием северо-восточного и северного ветра соответственно, рассчитанные в экспериментах с разрешениями 1,6 и 5 км (изолинии проведены через 0,2 см).

Максимумы отклонений свободной поверхности от невозмущенного уровня достигаются в Днепровском лимане в области впадения Днепра (8,5 и 16 см соответственно), тогда как значения в области без учета мелководных районов не превышают 4 см.

Анализируя поля ветра, отметим, что северо-восточный ветер (рис.1, *a*) нагоняет воду в западный район области (значения уровня повышаются до 4 см). В районе Тендровской косы уровень понижается до -3,4 см (рис.1, δ), в Ягорлыцком заливе - до -4,8 см. Значения уровня под действием стока рек в Днепровском и Бугском лиманах изменяются от -0,7 до 8 см.

Северный ветер (рис.2, a) направляет водные массы на юг к открытой границе (рис.2, δ), формируя тем самым сгоны до – 2 см на севере области в районе Одессы, а также около Тендровской косы, значения нагонов составляют не более 1 см. Значения уровня под действием стока рек в Днепровском и Бугском лиманах изменяются от 1 до 16 см.

Сравнивая поля уровня, полученные по модели с шагами по пространственным переменным 1,6 и 5 км, отметим, что между ними наблюдается качественное соответствие, однако поля уровня, рассчитанные с более высоким разрешением, имеют более сложную структуру.

Рис.1. Поля климатического ветра и уровня (см) для северо-восточного ветра: поля ветра (a); поля уровня с шагом 1,6 км (δ) и 5 км (ϵ).

Р и с. 2. Поля климатического ветра и уровня (см) для северного ветра: поля ветра (a); поля уровня с шагом 1,6 км (δ) и 5 км (β).

Рис. 3. Поля течений (см/с), сформировавшиеся под действием северо-восточного (*a*) и северного (б) ветров.

Поля течений. Опишем кратко поверхностные течения. В прибрежной мелководной области они довольно сильны. 16 – 22 января (рис.3, *a*) под действием северо-восточного ветра вода направлена к западной части открытой границы, максимальные значения скорости течений не превышают 18 см/с (район Тендровской косы), в центральной части бассейна скорости течений составляют 5 – 12 см/с.

В период с 23 января по 6 февраля (рис.3, б) под влиянием северных ветров вода устремляется к открытой границе, максимальные значения меняются от 19 до 33 см/с (наблюдаются в Тендровском заливе) в зависимости от силы ветра. С 7 по 14 февраля течения направлены на юго-запад, максимумы величин составляют 20 – 22 см/с. Приток поступающей воды трех рек усиливает циркуляцию на мелководье, скорости течений вблизи устьев рек составляют 13 – 18 см/с.

Проанализируем изменения в полях течений на различных горизонтах, сформировавшихся под действием северо-восточного и северного ветра соответственно.

С 16 по 22 января (рис.4, 5) над поверхностью моря дует северо-восточный ветер (максимальные значения достигают 7 м/с). На верхних горизонтах (рис.4, *a*; рис.5, *a*) движение воды направлено к западной части открытой границы со скоростью 12 - 13 см/с, при изменении глубины от 0,5 до 3 м максимальные значения меняются от 20 до 13 см/с. На глубине ниже 10 м (рис.4, *б*; рис.5, *б*) направление течений изменяется – вода втекает на шельф через западную часть открытой границы со средней скоростью 6 см/с. На горизонте 30 м (рис.4, *в*; рис.5, *в*) максимум скорости не больше 3 см/с.

С 23 января по 6 февраля под влиянием северного ветра (максимальные значения достигают 6,5 м/с) вода устремляется к открытой границе, при изменении глубины от 0,5 до 3 м максимальные значения меняются от 30 до 22 см/с. На глубине ниже 10 м направление течений изменяется – вода втекает в юго-западном направлении через открытую границу со средней скоростью 6 см/с. На горизонте 30 м максимум скорости не больше 5 см/с.

Сравнивая поля течений на различных горизонтах (рис.4, 5), полученные по модели с шагами по пространственным переменным 1,6 и 5 км, отметим, что между ними наблюдается качественное соответствие, однако поля течений, рассчитанные с более высоким разрешением, характеризуются воспроизведением течений в Джарылгачском, Тендровском, Ягорлыцком заливах и в Днепровском лимане, усилением течений вблизи мелководных районов. Ниже горизонта 10 м разница между максимальными значениями скорости течений

Рис.4. Поля течений (см/с) для северо-восточного ветра, рассчитанные с шагами 1,6 км на горизонтах 3 (a); 20 (δ) и 30 (β) м.

Рис.5. Поля течений (см/с) для северо-восточного ветра, рассчитанные с шагами 5 км на горизонтах 3 (a); 20 (δ) и 30 (β) м.

составляет не больше 1 – 2 см/с. На глубинных слоях модель с высоким разрешением отображает течения, не воспроизводимые моделью с крупным шагом, за счет улучшенного рельефа дна.

Среди работ по моделированию течений, возникающих под действием климатического ветра, на шельфе в зимний период имеется только одна статья [3], в которой отмечается, что в феврале холодные воды интенсивно вы-

носятся через южную открытую границы в юго-западном направлении (эксперимент проводился с разрешением 9,3 км).

Наблюдаем соответствие с его результатами (рис.6), однако за счет высокого разрешения получена более сложная структура поля течений, появились элементы вихревого характера, отображаются течения в мелководных районах.

Поля вертикальной скорости. Проанализируем изменения в полях вертикальной скорости в зависимости от направления ветра. На рис.7 представлены поля вертикальной скорости на глубине 2,75 м, сформировавшихся под действием северо-восточного и северного ветра соответственно.

С 16 по 22 января под действием северо-восточного ветра (рис.7, *a*) по всей западной границе области наблюдаем опускание вод; в восточной части 36

Рис. 7. Поля вертикальной скорости (см/с), сформировавшиеся под действием северо-восточного (*a*) и северного (б) ветров.

области происходит подъем вод. Максимальное положительное значения вертикальной скорости отмечается в Тендровском заливе и составляют 0,016 см/с, максимальные отрицательные – 0,016 см/с (достигаются в районе Тендровской косы).

С 23 января по 6 февраля под влиянием северного ветра (рис.7, *б*) практически во всей области формируются подъемы вод, опускание отмечается только в Тендровском заливе, у устья Днестра и некоторых зонах на севере области.

Максимальное положительное значения вертикальной скорости отмечается у западного берега открытой границы, и составляют 0,012 см/с, максимальные отрицательные – 0,016 см/с (достигаются в районе впадения Днестра).

Поля температуры. Зимой наиболее значительные изменения температуры Черного моря от места к месту происходят в мелководном северо-западном районе. В январе – феврале температура изменяется здесь от – 0,5 - 1,0 °C у берегов до + 7 °C в открытой части [12]. По полученным расчетам в период с 15 января по 15 февраля минимальные значения температуры по всей области не превышают 0 °C, максимальные значения уменьшаются от 7,2 до 5,6°C.

На изменение температуры воды оказывают влияние сгонно-нагонные явления и сток рек. На первый расчетный день (рис.8, *a*) температура у открытой границы составляет 6 – 7 °С, в мелководных заливах и лиманах температура меняется от 0,3 до 4 °С. Под действием северных ветров и зимних потоков тепла происходит интенсивное выхолаживание мелководных районов. В последние расчетные дни (рис.8, δ) температура у открытой границы области не превышает 5 °С, в мелководных заливах и лиманах температура воды – нулевая.

Сравнивая поля температуры на различных горизонтах (на верхних горизонтах без учета мелководных районов), полученные по модели с шагами

Рис. 8. Поля температуры на верхнем горизонте: 16 января (*a*); 14 февраля (б). 37

Рис. 9. Поля солености на верхнем горизонте: 16 января (*a*); 14 февраля (б).

1,6 и 5 км, отметим, что между ними наблюдается количественное и качественное соответствие (разница между значениями составляет не более 0,5 °C).

Поля солености. По данным наблюдений [12] в январе – феврале соленость поверхностного слоя моря в северо-западной части моря составляет около 18 ‰, по мере приближения к берегам она уменьшается до 16 ‰; в районе устьев рек соленость понижается до 5 – 6 ‰. В период с 15 января по 15 февраля по результатам расчетов максимальная соленость в рассматриваемой области изменяется от 18,09 до 18,15 ‰, минимальная соленость изменяется от 8,2 до 8,15 ‰.

На рис.9 представлены распределения солености на первый и последние расчетные дни. Поступление пресной воды из рек обуславливает низкую соленость вблизи устьев рек (7 – 15 ‰). Максимальные значения поверхностной солености наблюдаются у южной открытой границы, что обусловлено поступлением более соленых и относительно теплых вод с района свала глубин. Сравнивая поля солености (рис.9, a, δ), отметим, что через месяц структура поля осталась практически неизменной, за исключением некоторого уменьшения области распресненных вод за счет замерзания рек. Наблюдается соответствие с результатами, полученными в [3].

При сравнении полей солености, полученных по модели с шагами по пространственным переменным 1,6 и 5 км, отметим, что при моделировании с более высоким разрешением места впадения рек и глубины устьев рек были заданы более точно.

Заключение. В отличие от [8] трехмерная нелинейная численная модель Черного моря адаптирована к условиям шельфовой зоны в бароклинном приближении. Для зимнего периода получены поля уровня, течений, вертикальной скорости, температуры, солености с высоким разрешением.

Наибольшие величины сгонов и нагонов получены при действии северо-восточного ветра. Определены местоположения зон подъема и опускания вод при ветрах различного направления.

За счет мелкого шага сетки и уточненного рельефа дна описаны распределения течений, температуры и солености на мелководье. На глубинных горизонтах получены течения, не воспроизводимые моделью с крупным шагом.

В описанную модифицированную численную нелинейную модель планируется подключить процедуру ассимиляции данных наблюдений температуры и солености для обработки гидрологических съемок на шельфе Черного моря, проведенных в 2007 – 2009 гг.

Список литературы

- 1. Андросович А.И., Михайлова Э.Н., Шапиро Н.Б. Численная модель и расчет циркуляции вод северо-западной части Черного моря // Морской гидрофизический журнал.– 1994.– № 5.– С.28-42.
- Алаев В.Г., Рябцев Ю.Н., Шапиро Н.Б. Адаптационный расчет скорости течений на шельфе с помощью квазиизопикнической модели // Морской гидрофизический журнал.– 1999.– № 4.– С.64-79.
- 3. Алаев В.Г. Исследование сезонной изменчивости гидродинамических полей в северо-западной части Черного моря на основе изопикнической модели // Морской гидрофизический журнал.– 2000.– № 6.– С.5-17.
- Тучковенко Ю.С. Математическая модель формирования термохалинной структуры и циркуляции вод в лиманах, приустьевых и шельфовых областях северо-западной части Черного моря // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа.— 2003.— вып.9.— С.138-154.
- 5. Алексеев Д.В., Иванов В.А., Иванча Е.В., Фомин В.В., Черкесов Л.В. Моделирование эволюции волновых полей в районе северо-западной шельфа Черного моря при прохождении циклона // Морской гидрофизический журнал.– 2005.– № 1.– С.42-54.
- Демышев С.Г., Коротаев Г.К. Численная энергосбалансированная модель бароклинных течений океана на сетке С // Численные модели и результаты калибровочных расчетов течений в Атлантическом океане. – М.: Изд. ИВМ, 1992. – С.163-231.
- Демышев С.Г., Иванов В.А., Маркова Н.В., Черкесов Л.В. Построение поля течений в Черном море на основе вихреразрешающей модели с ассимиляцией климатических полей температуры и солености // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа.– Севастополь: ЭКОСИ-Гидрофизика, 2007.– вып.15.– С.215-226.
- 8. Демышев С.Г., Евстигнеева Н.А. Численная баротропная модель течений на шельфе Черного моря // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа.– 2009.– вып.19.– С.78-86.
- 9. *Pacanowski R.C., Philander S.G.H.* Parameterization of vertical mixing in numerical models of tropical oceans // J. Phys. Oceanogr.– 1981.– № 11.– P.1443-1451.
- Staneva J.V., Stanev E.V. Oceanic response to atmospheric forcing derived from different climatic data sets. Intercomparison study for the Black Sea // Oceanologia.– 1998.– v.21(3).–P.383-417.
- 11. Дорофеев В.Л., Коротаев Г.К. Ассимиляция данных спутниковой альтиметрии в вихреразрешающей модели циркуляции Черного моря // Морской гидрофизический журнал.– 2004.– № 1.– С.52-68.
- 12. Добровольский А.Д., Залогин Б.С. Моря СССР.– М.: Изд-во МГУ, 1982.– 192 с.

Материал поступил в редакцию 15.10.2010 г.