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Construction of a quotient ring of Z2F in which a binomial
1 + w is invertible using small cancellation methods

A. Atkarskaya, A. Kanel-Belov, E. Plotkin, and E. Rips

Abstract. We apply small cancellation methods originating from group the-

ory to investigate the structure of a quotient ring Z2F/I where Z2F is the
group algebra of the free group F over the field Z2, and the ideal I is generated
by a single trinomial 1 + v + vw, where v is a complicated word depending
on w. In Z2F/I we have (1 + w)−1 = v, so 1 + w becomes invertible. We
construct an explicit linear basis of Z2F/I (thus showing that Z2F/I �= 0).
This is the first step in constructing rings with exotic properties.

1. Introduction

This paper describes the first step in a construction of a skew field with a
finitely generated multiplicative group.

We will construct this skew field as a quotient ring of a group algebra of a
finitely generated free group F . The full construction of such a skew field would
involve an iterative procedure, in which every step is similar to the one described
in this paper, in a more complicated situation. The resulting injective limit will be
either 0 or a skew field.

Our main objective is to show that the resulting skew field is non trivial, and,
moreover, to obtain a skew field of infinite dimension over its center in which every
non zero element is equal to a monomial, that is, an element of the free group F .
Hence, when F is finitely generated, the multiplicative group of this skew field is
finitely generated. In order to show that the resulting skew field is non trivial, we
need to develop its structure theory.

In this paper we consider the following problem. Let Z2F be the group algebra
of the free group F over the field Z2, and let 1 + w be a binomial. We would like
to find a quotient ring of Z2F in which the image of 1 + w is invertible, without
losing control of the quotient ring relations.

Our way to deal with this problem is influenced by an analogue with small
cancellation in groups. Namely, we equate (1 + w)−1 to a complicated word

v = xαyxα+1y · · ·xβ−1y

with |w| � α � β, where |w| is a word length of w in F . The monomial v exhibits
small cancellation properties because every subword of v that contains at least two
letters y appears in v only once ([7]).
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In the case of groups we consider semicanonical monomials, namely, monomials
that do not contain parts of the relations (or of their cyclic conjugates and inverses)
that are too big. It turns out that semicanonical monomials representing the same
element of the group are connected by a so-called one-layer diagram. The transition
between semicanonical monomials representing the same element is done by sub-
stituting subwords of the relations by the inverses of their complements repeatedly
(such transitions are called turns).

Here we imitate this process with inevitable complications. Since our relations
are not binomial but polynomial, we substitute a subword by the sum of the rest
of the monomials of the relation. We call such transitions multi-turns. The simple-
minded picture goes like this

U

a
(1)
h1

a
(2)
h2

a
(k)
hk. . .

where U is a monomial, and we have polynomial relations

li∑
ji=1

a
(i)
ji

= 0, i = 1, . . . , k, hi ∈ {1, . . . , li}.

Performing a number of multi-turns, we obtain sums of monomials of the form

a
(1)
j1

a
(2)
j2

a
(k)
jk. . .

We have l1 · . . . · lk monomials with linear dependencies induced by the multi-turns.
In our (simple-minded) case we obtain a linear space of dimension (l1−1)·. . .·(lk−1).

The actual situation is more complicated, due to a number of factors. Let us
list some of them:

• Some of the words a
(i)
ji

might be short, causing certain degeneracies.
• There can be highly non-trivial interactions between the neighbour occur-
rences, so that the order of performing the multi-turns might matter.

This explains why pursuing this program turns out not entirely simple. We have
to introduce a number of elaborate concepts to deal with the monomials and the
subwords of the relations appearing in them (for this, see especially Section 3).

To control the degenerations, we introduce a (decreasing) filtration and study
its properties (Section 4). Then we need to study the interaction between the linear
dependencies and the filtration. Because of the properties like transversality and
non-degeneracy, this interaction has nice properties (Section 4.2, Section 5). Our
final result (Theorem 5.1) supplies an explicit linear basis for the quotient ring. In
particular, the quotient ring does not collapse to 0.

Then we introduce a linear generating set of our quotient ring with particularly
nice properties. For this generating set, the multiplication can be expressed as a
sum of monomials forming thin triangles with the factors (Section 6, Theorem 6.1).
Small cancellation groups are hyperbolic, so their multiplication is expressed by
thin triangles. While we do not possess the concept of a hyperbolic ring (even for
algebras over a field), the quotient ring we construct does display some features of
what might be expected for a “hyperbolic ring”.
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2. Basic definitions

Consider the group ring Z2F , where F is a free group with at least 4 free
generators. We will call elements of F words or monomials. We deal only with
reduced monomials unless the converse is explicitly stated. For our purposes we
can use any field k, but we choose the field Z2 to simplify our calculations. Let
us fix w ∈ F , an arbitrary cyclically reduced primitive (not a proper power) word
from F . Fix positive integers α and β such that |w| � α � β, where |w| is a word
length of w in F . Our aim is inverting of the binomial 1 + w. Consider the word

(1) v = xαyxα+1y · · ·xβ−1y

such that w does not start or end with the letters x, y, x−1, y−1. We are going to
study a structure of the quotient ring Z2F/I, where

(2) I = 〈1 + v + vw〉.

Clearly, in the quotient ring we have v(1+w) = 1. Multiplying it by v on the right
side, we obtain v(1+w)v = v. Since v is a word, it is invertible in Z2F , so, it is also
invertible in Z2F/I or the quotient ring is trivial. Multiplying the last equation by
v−1, we obtain (1 + w)v = 1. Thus, v−1 = 1 + w in the ring Z2F/I.

Definition 2.1. Suppose M(v, w) is a non-commutative monomial over the
words v, w. We call arbitrary subwords of monomials M(v, w) (v, w)-generalized
fractional powers (or simply generalized fractional powers).

Let v1 be an arbitrary subword of v (or of v−1). We define an additive (length)
measure (aka Λ-measure) on subwords of v (or v−1) in the following way

(3) Λ(v1) =
my(v1)

β − α
,

where my(v1) is the number of occurrences of the letter y (or of the letter y−1) in
v1. Obviously, Λ(v) = 1 (Λ(v−1) = 1). For any subword w1 of w we put Λ(w1) = 0.
From now on, let us call Λ-measure of a generalized fractional power the sum of
Λ-measure of its parts.

Let U be a word and U1 be its subword. We call the triple that consists of U ,
U1 and the position of U1 in U an occurrence of U1 in U .

An arbitrary word from F may contain occurrences of generalized fractional
powers. While the notion of a maximal occurrence seems to be intuitively simple,
it turns out that the notion we actually need has considerable subtleties.

So, we define a maximal occurrence in the following way. Let a be a generalized
fractional power, that is, a is an occurrence in a monomial M(v, w) = MLaMR.
Assume that ML = M1(v, w)M

′
L, where M1(v, w) is a monomial in v, w, and M ′

L

has no initial subword equal to a monomial in v, w. In the same way, assume that
MR = M ′

RM2(v, w), where M2(v, w) is a monomial in v, w, and M ′
R has no final

subword equal to a monomial in v, w. Then we consider a as an occurrence in the
monomial

M0(v, w) = M1(v, w)
−1M(v, w)M−1

2 (v, w) = M ′
LaM

′
R.

Consider a set of monomials

A = {M(v, w) | M(v, w) = Mi(v, w)M0(v, w)Mj(v, w), i, j ∈ N},
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where Mi(v, w) and Mj(v, w) are arbitrary monomials in v, w. Then the occurrence
of a in M0(v, w) can be considered as the occurrence of a in M(v, w) ∈ A with the
same position in M0(v, w).

Suppose a is an occurrence in a word U ∈ F , a letter a1 prolongs a in U from
the left side, a letter a2 prolongs a in U from the right side. If a is an initial subword
of U , a1 is absent; if a is a final subword of U , a2 is absent. If for any M(v, w) ∈ A
the occurrence a can be prolonged neither by a1 on the left nor by a2 on the right
in M(v, w), then we call a a maximal occurrence of a generalized fractional power
in U .

Let U = ULaUR. The above definition in fact means the following. The
occurrence a is a maximal occurrence of a generalized fractional power in U if and
only if it satisfies one of the conditions:

(L1) UL is the empty word;
(L2) UL = U ′

La1, M
′
L = M ′′

La
′
1, a1 �= a′1;

(L3) UL = U ′
La1, M

′
L is the empty word, the last letter in each Mi(v, w) is

different from a1;

and one of the conditions

(R1) UR is the empty word;
(R2) UR = a2U

′
R, M

′
R = a′2M

′′
R, a2 �= a′2;

(R3) UR = a2U
′
R, M

′
R is the empty word, the first letter in each Mj(v, w) is

different from a2.

Definition 2.2. Let τ be some small value, U be an arbitrary word from F .
We call the set of maximal occurrences of generalized fractional powers in U of
Λ-measure greater or equal to a given threshold τ the chart of the word U , and we
call the corresponding occurrences of generalized fractional powers members of the
chart.

Let us put ε = 1
β−α . Further we will assume that τ � 10ε.

Any subword of v containing at least two letters y appears in a unique way in v.
Moreover, a subword of vl containing at least two letters y appears in vl uniquely
modulo the period v. Therefore, if the Λ-measure of some maximal occurrence
of a generalized fractional power is greater or equal to 2ε, it can not be properly
contained in another occurrence of a generalized fractional power (because otherwise
it would not be maximal). In particular, given the chart of some word, one member
of the chart can not be properly contained in another. However, members of the
chart may have overlaps.

Consider an overlap of two members of the chart. If the overlap is a common
part of two subwords of vl, then according to the last remark, the Λ-measure of the
overlap is not greater than ε. If the overlap contains a subword of wk, it may have
a more complicated form. Since α � |w|, w does not contain subwords yδ1xγyδ2 ,
where |γ| � α. Hence, since the Λ-measure of subwords of w is equal to zero, the
Λ-measure of the overlap still is not greater than ε for both members of the chart.
In particular, since τ � 10ε, we never have a situation when one member of the
chart is fully covered by others.
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Definition 2.3. Consider oriented graphs with edges marked by generators of
the group F . Take such a graph of the form

(4)

v

O

wk

w

w−k

w−1

Here to each integer power of w corresponds a separate arc. That is, there are
infinitely many arcs that correspond to different wk. We call this graph a v-diagram.

Assume that we have an oriented path in the graph (4). When we go along this
path, we can write down the mark of an edge if we pass the edge in the positive
direction, and we can write down the inverse to the mark of an edge if we pass the
edge in the negative direction. As a result, we obtain a generalized fractional power
(possibly after cancellations if there are any).

It is easy to see that to each monomial over v, w there corresponds a path
in the graph (4) with the initial and the final vertex O. By the definition, every
generalized fractional power is a subword in a monomial over v, w. Hence, given a
generalized fractional power M , one can specify two points I and F on the graph
(4) such that M corresponds to the unique path starting at I and ending at F .
For the sake of uniqueness, we assume that we always choose an arc with maximal
absolute value of degree of w along the path. So, one can see that M corresponds
to the path in the graph of one of the types (5)–(7).

Note that if a generalized fractional power is of Λ-measure strictly greater than
ε, then the positions of the initial and the final points that belong to the v-arc are
uniquely determined.

In what follows we use for v the notation v = vivmvf , where vi is some initial
part, vm is some middle part and vf is some final part of v (any part is allowed
to be empty). Analogously to the notion of v-diagram, in this paper we represent
all monomials (not only generalized fractional powers) as segments that consist of
oriented edges marked by generators of the group F ; such segments we always read
from left to right. So, for v we have

v
=

vi vm vf
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Similarly, for w we use the notation w = wiwmwf , where wi is some initial
part, wm is some middle part and wf is some final part of w (any part is allowed
to be empty).

Let us enumerate all possible positions of points I and F on the v-diagram.
Thereby, we enumerate all possible types of generalized fractional powers. In every
case, we explicitly write the corresponding forms of generalized fractional powers.
As above, M(v, w) is a monomial over v and w. First, both points I and F may
lie on the v-arc. Then they divide the v-arc into three parts and, according to the
notations introduced above, we denote them vi, vm and vf and obtain the pictures

(5)

vi

vm

vf

O

I

F

wk

w−k

vmvfM(v, w)v−1
f ,

vmvfM(v, w)vivm,

v−1
i M(v, w)vivm,

v−1
i M(v, w)v−1

f ;

vi

vm

vf

O

F

I

wk

w−k

vfM(v, w)vi,

vfM(v, w)v−1
f v−1

m ,

v−1
m v−1

i M(v, w)vi,

v−1
m v−1

i M(v, w)v−1
f v−1

m .
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The next configuration is when the point I lies on the v-arc and the point F lies
on a w-arc or vice versa. Then, according to the above notations, we put v = vivf ,
w = wiwf and obtain the pictures

(6)

vi

vf

O

I

F

wk

w−k

wfM(v, w)vi,

wfM(v, w)v−1
f ,

w−1
i M(v, w)vi,

w−1
i M(v, w)v−1

f ;

vi

vf

O

F

I

wk

w−k

vfM(v, w)wi,

v−1
i M(v, w)wi,

vfM(v, w)w−1
f ,

v−1
i M(v, w)w−1

f .

In picture (6) points I and F lie on a positive w-arc, but they may lie on a
negative w-arc within this type of paths as well.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8 A. ATKARSKAYA, A. KANEL-BELOV, E. PLOTKIN, AND E. RIPS

The last configuration is when both points I and F lie on a w-arc. Then,
according to the above notations, we put w = wiwmwf and obtain the pictures

(7)

v

O

IF

wk

w−k

wfM(v, w)wi,

wfM(v, w)w−1
f w−1

m ,

w−1
m w−1

i M(v, w)wi,

w−1
m w−1

i M(v, w)w−1
f w−1

m ;

v

O

FI

wk

w−k

wmwfM(v, w)w−1
f ,

wmwfM(v, w)wiwm,

w−1
i M(v, w)wiwm,

w−1
i M(v, w)w−1

f .

In picture (7) points I and F lie on a positive w-arc, but each of them may lie on
a negative w-arc within this type of paths as well. Also the point I and the point
F may lie on different w-arcs.

Given a set of generalized fractional powers Mj , j = 1, . . . , k, that correspond
to the paths with the same initial and the same final point in the diagram of type

(5)–(7), their sum
∑k

j=1 Mj corresponds to the collection of these paths.

Let Z2(w) be the field of rational functions in one variable w over Z2. Consider
a non-commutative Laurent polynomial P (x1, x2) over Z2 such that

(8) P ((1 + w)−1, w) = 0 as an element of Z2(w).

Notice that if P (x1, x2) satisfies condition (8), then P (v, w) ∈ 〈1 + v + vw〉 = I.

Example 2.1. Let us give an example of such polynomials. The first example
comes from the obvious equality in Z2(w)

w · 1

1 + w
=

1

1 + w
· w.

From this equality it follows that the polynomial

P (x1, x2) = x1x2 + x2x1

satisfies condition (8) and

P (v, w) = vw + wv ∈ I.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONSTRUCTION OF A QUOTIENT RING OF Z2F 9

Recalling the reduction of rational functions of the form w±k

1+w in Z2(w) to ele-

mentary fractions, we obtain the following equalities in Z2(w) for k > 0:

wk

1 + w
=

wk + wk−1 + wk−1 + . . .+ w + w + 1 + 1

1 + w

= wk−1 + wk−2 + . . .+ w + 1 +
1

1 + w

and

w−k

1 + w
=

w−k + w−k+1 + w−k+1 + . . .+ w−1 + w−1 + 1 + 1

1 + w

= w−k + w−k+1 + . . .+ w−1 +
1

1 + w
.

Hence, the polynomials

P1(x1, x2) = x1x
k
2 + xk−1

2 + xk−2
2 + . . .+ x2 + 1 + x1,

P2(x1, x2) = x1x
−k
2 + x−k

2 + x−k+1
2 + . . .+ x−1

2 + x1

satisfy condition (8) and

P1(v, w) = vwk + wk−1 + wk−2 + . . .+ w + 1 + v ∈ I,
P2(v, w) = vw−k + w−k + w−k+1 + . . .+ w−1 + v ∈ I.

According to types (5)–(7) of v-diagrams that correspond to possible forms of
generalized fractional powers, we consider the list of expressions (9)–(14), where
P (x1, x2) is a non-commutative Laurent polynomial such that P ((1+w)−1, w) = 0
as an element of Z2(w). We allow possibility of cancellations in monomials in
(9)–(14). First, consider expressions

vfP (v, w)vi,

vfP (v, w)v−1
f v−1

m ,

v−1
m v−1

i P (v, w)vi,

v−1
m v−1

i P (v, w)v−1
f v−1

m .

(9)

To each expression of (9), there corresponds a collection of paths in the graph (5).
Similarly, to each expression

vmvfP (v, w)v−1
f ,

vmvfP (v, w)vivm,

v−1
i P (v, w)vivm,

v−1
i P (v, w)v−1

f ,

(10)

there corresponds a collection of paths in the graph (5). To each expression

wfP (v, w)vi,

wfP (v, w)v−1
f ,

w−1
i P (v, w)vi,

w−1
i P (v, w)v−1

f ,

(11)
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there corresponds a collection of paths in the graph (6). Similarly, to each expression

vfP (v, w)wi,

v−1
i P (v, w)wi,

vfP (v, w)w−1
f ,

v−1
i P (v, w)w−1

f ,

(12)

there corresponds a collection of paths in the graph (6). Finally, consider the
expressions

wfP (v, w)wi,

wfP (v, w)w−1
f w−1

m ,

w−1
m w−1

i P (v, w)wi,

w−1
m w−1

i P (v, w)w−1
f w−1

m .

(13)

To each expression of (13) there corresponds a collection of paths in the graph (7).
Similarly, to each expression

wmwfP (v, w)w−1
f ,

wmwfP (v, w)wiwm,

w−1
i P (v, w)wiwm,

w−1
i P (v, w)w−1

f ,

(14)

there corresponds a collection of paths in the graph (7). Since P (v, w) ∈ I, the
expressions (9)–(14) vanish in Z2F/I.

Every expression (9)–(14) is, in fact, a linear combination of generalized frac-

tional powers. For any linear combination
∑k

j=1 Mj of such type (where the can-

cellations in monomials are already performed) we call the monomials Mj1 ,Mj2 ,
j1, j2 ∈ {1, . . . , k}, incident monomials. Notice that the paths in the v-diagram
corresponding to incident monomials always have the same initial points and the
same final points. Clearly, one generalized fractional power has an infinite number
of incident monomials because they may contain different powers of v and w.

Suppose we have a group G with a relator R = M1M
−1
2 . Let U = LM1R.

Recall that the transition from U = LM1R to LM2R representing the same element
of G

L

M2

M1

R

is called a turn of an occurrence of a subrelation M1 (to its complement M2). We
generalize this notion to a multi-turn. Multi-turns will play a central role in our
work.
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Definition 2.4. Let
∑k

j=1Mj be one of the expressions (9)–(14) (where the

cancellations in monomials are already performed). We call the transition

Mh �−→
k∑

j=1
j �=h

Mj ,

an elementary multi-turn of Mh.
Let Uh = LMhR

Uh =
L Mh R

be a monomial in Z2F , where Mh is a generalized fractional power, and
∑k

j=1 Mj

be one of the expressions (9)–(14), then the transition

Uh �−→
k∑

j=1
j �=h

Uj ,

where Uj = LMjR,

Uj =
L Mj R

j = 1, . . . , k, j �= h,

is called a multi-turn of the occurrence Mh in Uh. Notice that since
∑k

j=1Mj ∈ I,
Uh =

∑k
j=1
j �=h

Uj in the ring Z2F/I.

We call the corresponding sum
∑k

j=1 Uj the support of the multi-turn. Then

the expressions (9)–(14) are all types of supports of elementary multi-turns.

3. Linear dependencies on Z2F induced by multi-turns. The
description of the ideal I as a linear subspace of Z2F

3.1. How multi-turns influence the chart. Let U be a word and a and b
be members of its chart, i.e., maximal occurrences of generalized fractional powers.
Since the monomial U is represented as a segment, it is natural to represent mem-
bers of the chart of U as its subsegments. Let us describe possible configurations
of the members a and b.

(1) We say that the members of the chart a and b are separated if there exists
some non empty subword between them in the word U .

U a b

non empty
subword

(2) We say that the members a and b touch at a point if a and b are adjacent
and have no common non empty subword.

U a b

(3) We say that the members a and b have an overlap if the members have
non empty common subword. Recall that the Λ-measure of the overlap is
not greater than ε.
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U

a

b

overlap

We will call the member of the chart of U closest to a from the left side the
left neighbour of a in the chart of U . Similarly, we will call the member of the
chart of U closest to a from the right side the right neighbour of a in the chart of
U . Recall that maximal occurrences of generalized fractional powers are considered
as members of the chart only when they have Λ-measure greater or equal to a
given threshold τ and we assume that τ � 10ε. The restriction on the Λ-measure
allows us to avoid situations when one member of the chart is fully covered by other
members. So, we avoid the situation when there exist two members that are not
separated from a on one side. For example, we never obtain configurations like the
following:

U a b

c Λ(c) � 2ε

U a
b

c Λ(c) � 2ε

Suppose Uh = LahR is a word, ah is a member of its chart, in particular

Λ(ah) � τ . Suppose Uh �→
∑k

j=1
j �=h

Uj is a multi-turn of Uh that comes from an

elementary multi-turn ah �→
∑k

j=1
j �=h

aj . So, Uh =
∑k

j=1
j �=h

Uj in the ring Z2F/I. Let

us study how the chart of Uj = LajR, j = 1, . . . , k, j �= h, is related to the chart of

Uh = LahR. We distinguish three types of monomials in the sum
∑k

j=1
j �=h

Uj :

(1) LajR, where Λ(aj) > ε;
(2) LajR, where aj = 1.
(3) LajR, where Λ(aj) � ε but aj �= 1;

Let Uj = LajR be a monomial of type 1, that is, Λ(aj) > ε. Let us study
the chart of LajR. First of all notice that since ah is a maximal occurrence of a
generalized fractional power in LahR, the monomial Uj = LajR has no cancellations
and aj is a maximal occurrence of a generalized fractional power in Uj . Clearly, all
members of the chart of Uh = LahR that are separated from ah remain unchanged
in the chart of Uj = LajR. Let bh be the left neighbour of ah in the chart of
Uh. Assume bh is not separated from ah, and b′h is its initial subword such that
L = L′b′h, Uj = L′b′hahR. Then there is a corresponding occurrence of b′h in Uj .
Let bj be the member of the chart of Uj that prolongs b′h. Clearly, the member of
the chart of Uh that prolongs b′h is precisely bh. The member bj may differ from bh
when j �= h. There are four possibilities:

1.1 The members bh and ah touch at a point in Uh. The members bj and aj
have a non-empty overlap in Uj . Assume c is the overlap between bj and
aj . In this case bj = bhc. For example, we may obtain this effect when a

beginning of vm is replaced by an end of v−1
i or vice versa.
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bh

aj

ah

c

1.2 The members bh and ah have an overlap in Uh. The member bh is enlarged
in Uj with the use of aj and the overlap between bj and aj increases in
Uj . If the overlap increases by a piece c, then bj = bhc.

Uh

bh

a′ a′′ a′′′

ah

Uj

bh c

bj

a′ a′′′

aj

1.3 The members bh and ah have an overlap in Uh. The member bh is short-
ened in Uj such that bj and aj touch at a point in Uj . For example, we

obtain this effect when a beginning of vm is replaced by an end of v−1
i or

vice versa. In this case bh = bjc.

bj

ah

aj

c

1.4 The members bh and ah have an overlap in Uh. The member bh is short-
ened in Uj and the overlap between bj and aj becomes shorter in Uj . If
the overlap decreases on a piece c, then bh = bjc.

Uh

c

bh

a′ a′′′

ah

Uj

bj

a′ a′′ a′′′

aj

The essential observation is that either bh = bjc, or bj = bhc; in both cases the
Λ-measure of c can not exceed ε. The possibilities for being changed for the right
neighbour of ah in the chart are the same.

The cases described in 1.1–1.4 may occur even if Λ(bh) < τ or Λ(bj) < τ .
Therefore, the chart of Uj also may change as a result of the following effect.
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Assume τ − ε � Λ(bh) < τ . Then we may obtain Λ(bj) � τ in Uj , that is, bj is
counted as a member of the chart of Uj . So, a new member appears in the chart of
Uj . It can also happen that Λ(bj) < τ , while Λ(bh) � τ .

Consider the chart of a monomial Uj = LR of type 2. Cancellations between
L and R may occur. Suppose L = L′C, R = C−1R′ and L′R′ does not have
further cancellations. Let P be the meeting point of L′ and R′. Members of the
chart of L′R′ that are separated from the point P remain unchanged. The possible
configurations are as follows:

2.1 L′ does not have a terminal subword equal to some generalized fractional
power and R′ does not have an initial subword equal to some generalized
fractional power. Then the chart of L′R′ consists of members that lie left
to P in L′ and right to P in R′.

L′ R′a P

L′ R′bP

Suppose L′ = L′
1a, R′ = bR′

1, a and b are maximal occurrences of generalized
fractional powers in L′ and in R′, respectively, possibly with Λ-measure less than τ .
We allow one of a or b to be equal to 1. The occurrence of a in L′R′ does not have to
be maximal. Let us denote by a′ the maximal occurrence of a generalized fractional
power that prolongs a in L′R′. Similarly, let us denote by b′ the maximal occurrence
of a generalized fractional power that prolongs b in L′R′. Then interactions between
a′ and b′ are as follows:

2.2 a′ and b′ touch at a point in L′R′. Then like in the case 2.1 the chart of
L′R′ consists precisely of the members contained in L′ and the members
contained in R′.

L′ R′

Uj

a′ b′

P

2.3 a′ and b′ in L′R′ have an overlap. Then a′ is at most slightly enlarged
with respect to a, and b′ is at most slightly enlarged with respect to b.
Since the Λ-measure of their overlap does not exceed ε, their total increase
does not exceed ε.

L′

Uj

a

a′

P
b

b′

R′

2.4 a′ and b′ merge to one generalized fractional power ab in L′R′.

L′

Uj

a P b R′

merged generalized
fractional power

Consider the chart of monomials Uj = LajR of type 3. First of all notice
that since ah is a maximal occurrence of a generalized fractional power in U0, the
monomial Uj = LajR has no cancellations. The possible configurations are as
follows:
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3.1 L does not have a terminal subword equal to some generalized fractional
power and R does not have an initial subword equal to some generalized
fractional power. Then all members of the chart of LajR are separated
from aj . In this case no new members are added; hence, the chart of Uj

consists of occurrences that lie strictly left to aj in L and strictly right to
aj in R.

Suppose L = L1a, R = bR1, a and b are maximal occurrences of generalized
fractional powers in L and R, respectively, possibly with Λ-measure less than τ . We
allow one of a or b to be equal to 1. As above, denote by a′ the maximal occurrence
of a generalized fractional power that prolongs a in LajR, and denote by b′ the
maximal occurrence of a generalized fractional power that prolongs b in LajR. We
have the possibilities similar to the above 2.2–2.4.

3.2 a′ remains equal to a and b′ remains equal to b in Uj . Hence, a′ and b′

are separated in LajR.

L Ra′

aj

b′

3.3 a′ slightly enlarges from the right side with respect to a, and b′ slightly
enlarges from the left side with respect to b. Let us illustrate possible
configurations of a′ and b′.

a′

aj aj

b′

a′

aj aj

b′

a′

aj aj

b′

We may obtain a combination of any two configurations for a′ and for
b′ in LajR; hence, a′ and b′ may have any mutual position in LajR (i.e.,
remain either separate, or touch at a point, or have an overlap). Let us
illustrate one possibility as an example.

a′ aj

b′

Since Λ-measure of a possible overlap of a′ and b′ does not exceed ε,
the total increase of a′ and b′ with respect to a and b does not exceed
2ε. Hence, if Λ-measure of both a′ and b′ increases, Λ-measure of each of
them increases at most by ε.

3.4 a′ enlarges with respect to a, b′ remains the same, or b′ enlarges with
respect to b, a′ remains the same (the case when both of them enlarge is
treated in 3.3). As above, a′ and b′ may have any mutual position in LajR
(i.e.,either remain separate, or touch at a point, or have an overlap). In
this case Λ-measure of a′ or b′ increases at most by 2ε. Let us illustrate one
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important possibility, the case when Λ-measure of a′ increases precisely
by 2ε.

L Ra′

aj b′

The most important case is the following:

3.5 a′ and b′ merge to one generalized fractional power aajb in Uj .

L a aj b R

merged generalized
fractional power

Remark 3.1. Notice that, using the explicit description of generalized frac-
tional powers (5)–(7) and the explicit description of elementary multi-turns
(9)–(14), one can show that the case 3.5 may take place in at most one mono-

mial of the corresponding sum
∑k

j=1
j �=h

LajR.

3.2. Linear dependencies on Z2F induced by multi-turns. First we
prove the important property of the supports of elementary multi-turns, that are
the expressions (9)–(14). Then we will show that all the supports of multi-turns
linearly generate the ideal I. This fact plays the key role for the description of the
linear structure of the quotient ring Z2F/I.

Proposition 3.1 (Transversality). Let Q1, . . . , Qn ∈ Z2F be linear combina-
tions of generalized fractional powers of the form (9)–(14). Consider

∑n
l=1Ql. If

in this sum, after additively cancelling out the identical monomials, we obtain non-
zero, then at least one of the remaining monomials (generalized fractional powers)
has Λ-measure � τ .

Proof. Monomials of Ql can be represented as paths in the corresponding
v-diagram with the same initial and the same final point. If some initial or some
final point lies on a w-arc, we fix it on the arc marked by the first power of w.
Divide the sum

∑n
l=1 Ql into subsums corresponding to the same initial and final

points (I, F ) in the v-diagram

n∑
l=1

Ql =
∑
(I,F )

n(I,F )∑
l=1

Q
(I,F )
l .

Let a be a member of
∑n

l=1 Ql such that Λ(a) � τ . Notice that since Λ(a) � τ > ε,

a has uniquely defined points I and F . So, a is a member of
∑n(I,F )

l=1 Q
(I,F )
l and a

is not a member of any
∑n(I′,F ′)

l=1 Q
(I′,F ′)
l with (I ′, F ′) �= (I, F ). Hence, if a is not

additively cancelled out in the sum
∑n(I,F )

l=1 Q
(I,F )
l , then a is not additively cancelled

out in the sum
∑n

l=1 Ql. It follows that it is enough to prove Proposition 3.1 for a

sum
∑n(I,F )

l=1 Q
(I,F )
l with some fixed (I, F ).

Assume the contrary. Suppose all members of
∑n(I,F )

l=1 Q
(I,F )
l after additively

cancelling out the identical monomials are of Λ-measure less than τ . Let us study
possible forms of monomials in this sum. Suppose b is a monomial in this sum,
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Λ(b) < τ , I and F are the initial and the final points of the path corresponding to
b. There are the following possible positions of I and F :

(1) The points I and F lie on the v-arc.
(2) The points I and F lie on a w-arc.
(3) The point I lies on the v-arc, the point F lies on a w-arc.
(4) The point I lies on a w-arc, the point F lies on the v-arc.

Since Λ(b) < τ , the smallest path between I and F is necessarily of Λ-measure less
than τ .

Consider case 1. Let us denote the smallest path from I to F by b′, the smallest
path from I to O by b1, and the smallest path from O to F by b2. Recall our notion
that v = vivmvf . Then there are the following possibilities:

1.1 b′ contains the point O;

vi

vm

vf
O

I
F

wk

w−k

b1 = v−1
i , b2 = v−1

f ,

b′ = v−1
i v−1

f ;

vi

vm

vf
O

F
I

wk

w−k

b1 = vf , b2 = vi,

b′ = vfvi.
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1.2 b′ does not contain the point O and Λ(b1) + Λ(b2) < τ

vi

vm

vf

O

I

F

wk

w−k

b1 = v−1
i , b2 = vivm,

b′ = vm;

vi

vm

vf

O

F

I

wk

w−k

b1 = v−1
m v−1

i , b2 = vi,

b′ = v−1
m ;

vi

vm

vf
O

I

F

wk

w−k

b1 = vmvf , b2 = v−1
f ,

b′ = vm;

vi

vm

vf
O

F

I

wk

w−k

b1 = vf , b2 = v−1
f v−1

m ,

b′ = v−1
m ;
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1.3 b′ does not contain the point O and Λ(b1) + Λ(b2) � τ .

vi

vm

vf

O

I
F

wk

w−k

b′ = vm;

vi

vm

vf

O

F
I

wk

w−k

b′ = v−1
m ;

In case 1.3 there is only one path of Λ-measure < τ (b = b′). Hence, if the

sum
∑n(I,F )

l=1 Q
(I,F )
l contains several different monomials of Λ-measure < τ , then

configuration 1.3 is not possible.

Consider configurations 1.1 and 1.2. Since all members of the sum
∑n(I,F )

l=1 Q
(I,F )
l

correspond to paths in the v-diagram with the initial point I and the final point F
and of Λ-measure less than τ , the members are of the form

b1w
kjb2.

Notice that the monomial with kj = 0 may have cancellations and equals to b′ after
cancellations.

Let us return to the consideration of case 1 in general. Recall that all Q
(I,F )
l

are of one of the types (9)–(14). So, if we multiply
∑n(I,F )

l=1 Q
(I,F )
l by b−1

1 from

the left side and by b−1
2 from the right side, we obtain the Laurent polynomial

P (v, w) = b−1
1

∑n
j=1 Qjb

−1
2 such that P (v, w) satisfies (8). But, on the other hand,

in cases 1.1 and 1.2

P (v, w) = b−1
1

n(I,F )∑
l=1

Q
(I,F )
l b−1

2 =

s∑
j=1

wkl .

In case 1.3, the polynomial consists of one monomial

P (v, w) = b−1
1

n(I,F )∑
l=1

Q
(I,F )
l b−1

2 = b−1
1 b′b−1

2 .

Evidently, this polynomials does not satisfy (8). This contradiction completes the
proof. The remaining cases are considered in the same way. �

Let us define a subspace of Z2F of linear dependencies induced by multi-turns.
For every monomial from F , we do all possible multi-turns of all members of the
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chart. As a result, we obtain a set of expressions

(15)

T =

{
k∑

j=1

Uj | Uh ∈ F , Uh = LahR, where ah is a member of the chart of Uh,

Uh �→
k∑

j=1
j �=h

Uj is a multi-turn coming from an elementary multi-turn ah �→
k∑

j=1
j �=h

aj

}
.

That is, T consists of the supports of all the multi-turns of members of the chart.
We denote by 〈T 〉 the linear span of this set.

Proposition 3.2. The linear subspace 〈T 〉 ⊆ Z2F is equal to the ideal I =
〈1 + v + vw〉.

Proof. First let us show that 〈T 〉 is an ideal in Z2F . Assume that T is the
support of a multi-turn of Mh = LahR that comes from an elementary multi-turn

ah �→
∑k

j=1
j �=h

aj , that is, T =
∑k

j=1 Uj , Uj = LajR. We have to check that if Z is

a monomial, then ZT ∈ 〈T 〉 and TZ ∈ 〈T 〉. Clearly, it is sufficient to check this
property only for a monomial Z that consists of only one letter z. We will show an

even stronger property, namely that z(
∑k

j=1 Uj) ∈ T , (
∑k

j=1 Uj)z ∈ T .

Consider z(
∑k

j=1 Uj), Uj = LajR. Suppose Λ(ah) < τ . From Proposition 3.1,

it follows that in the sum
∑k

j=1 aj there exists a monomial ah′ such that Λ(ah′) �
τ . Then, by definition, ah′ is a member of the chart of Lah′R. Hence, the sum∑k

j=1 Uj =
∑k

j=1 LajR can be considered as the support of the multi-turn Mh′ =

Lah′R �→
∑k

j=1
j �=h′

LajR. So, in the sequel we can assume that Λ(ah) � τ .

First consider the case when L is not empty. Since Λ(ah) � τ , ah is a member of
the chart of (zL)ahR both when z does not cancel out with L, or when it does. Since

z(LajR) = (zL)ajR,
∑k

j=1 zUj =
∑k

j=1 z(LajR) =
∑k

j=1(zL)ajR. Then, clearly,∑k
j=1 zUj is the support of the multi-turn (zL)ahR �→

∑k
j=1
j �=h

(zL)ajR. Hence,∑k
j=1 zUj ∈ T .
Consider the case when L is empty, that is, Uj = ajR. If z does not cancel

with ah and z does not prolong ah to a generalized fractional power from the left,
then ah is a maximal occurrence of a generalized fractional power in zUh = zahR.

Since Λ(ah) � τ , ah is a member of the chart of zahR. Hence, zahR �→
∑k

j=1
j �=h

zajR

is a multi-turn of a member of the chart and its support
∑k

j=1 zajL =
∑k

j=1 zUj

belongs to T .
Assume that z does not cancel with ah and z prolongs ah to a generalized

fractional power from the left. Then for every j �= h either z does not cancel with
aj (and since Λ(ah) � τ > ε, z prolongs it to a generalized fractional power), or

z cancels with aj . Hence, zah �→
∑k

j=1
j �=h

zaj is an elementary multi-turn (after the

cancellations from the right hand side). Clearly, zah is a maximal occurrence of a
generalized fractional power in zUh = zahR. Since Λ(zah) � Λ(ah) � τ , zah is a
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member of the chart of zahR. Therefore, zahR �→
∑k

j �=h
j=1

zajR is a multi-turn of a

member of the chart and its support
∑k

j=1 zajR =
∑k

j=1 zUj belongs to T .
Assume that z cancels with ah. Then for every j �= h either z does not cancel

with aj (and since Λ(ah) � τ > ε, z prolongs it to a generalized fractional power),

or z cancels with aj . Hence, zah �→
∑k

j=1
j �=h

zaj is an elementary multi-turn (after the

cancellations). Since Λ(zah) � Λ(ah), we distinguish the following two possibilities:

(1) Λ(zah) � τ . Then zah is a member of the chart of zahR. Therefore,

zahR �→
∑k

j=1
j �=h

zajR is a multi-turn of a virtual member of the chart and

its support
∑k

j=1 zajR =
∑k

j=1 zUj belongs to T .

(2) Λ(zah) � τ . Then zah is not a member of the chart of zahR. Then we
argue as at the beginning of the proof. From Proposition 3.1 it follows that

in the sum
∑k

j=1 zaj there exists a monomial zah′ such that Λ(zah′) � τ .

So, zah′ is a member of the chart of zah′R. Hence, the sum
∑k

j=1 zajR

can be considered as the support of the multi-turn zah′R �→
∑k

j �=h′

j=1

zajR.

Thus, the sum
∑k

j=1 zUj =
∑k

j=1 zajR belongs to T .

Summarising all of the above, we obtain zT = z(
∑k

j=1) ∈ T . Clearly, for the

same reason we obtain Tz = (
∑k

j=1)z ∈ T . Hence, 〈T 〉 is an ideal in Z2F .

Evidently, every
∑k

j=1 aj of the form (9)–(14) belongs to I. Hence,
∑k

j=1 LajR

belongs to I for every
∑k

j=1 aj of the form (9)–(14). So, T ⊆ I and 〈T 〉 ⊆ I. Since
vw + v + 1 is the support of the multi-turn vw �→ v + 1 and Λ(vw) = 1 � τ ,
vw+ v+1 ∈ T . Therefore, since 〈T 〉 is an ideal in Z2F , we obtain I ⊆ 〈T 〉. Thus,
I = 〈T 〉. �

3.3. Virtual members of the chart. Recall that the chart of a word consists
of maximal occurrences of generalized fractional powers with Λ-measure � τ (τ is
our threshold). When we perform multi-turns, the measure of the occurrences may
increase on the right or decrease on the right by at most ε in the resulting monomials
of type 1. Similarly, it may increase on the left by at most ε or decrease on the left
by at most ε. It follows that occurrences with measure � τ (above the threshold)
may turn into occurrences < τ (below the threshold) and vice versa. Therefore we
need to modify our notion of a member of the chart to a notion with more stable
properties with respect to multi-turns. We call such a notion a virtural member of
the chart. In this section, we define this notion and study its properties.

Namely, we may have the following effect. As above, let Uh be a monomial, ah
be a member of its chart, and Uh = LahR. Let Uh �→

∑k
j=1
j �=h

Uj be a multi-turn of

ah that comes from an elementary multi-turn ah �→
∑k

j=1
j �=h

aj , Uj = LajR. Assume

bh is a maximal occurrence of a generalized fractional power in Uh different from
ah, Λ(bh) < τ , that is, bh is not counted as a member of the chart of Uh. According
to the previous section, the element bh may be prolonged in Uj and the Λ-measure
of the corresponding prolonged element bj in Uj may increase and become � τ . So,
bj may become a member of the chart of Uj and the number of members of the
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chart of Uj may become greater than the number of members of the chart of Uh.
We may obtain this effect for both neighbours of ah simultaneously.

Uh

b
(1)
h

ah

b
(2)
h

Λ(b
(1)
h ) < τ

Λ(b
(2)
h ) < τ

Uj b
(1)
h

b
(1)
j

aj b
(2)
h

b
(2)
j

Λ(b
(1)
j ) � τ

Λ(b
(2)
j ) � τ

In this case, the number of members of the chart of Uj become greater than the
number of members of the chart of Uh even if Λ(aj) < τ .

Assume that Uj = LajR is a resulting monomial of a multi-turn such that,
roughly speaking, aj is of small Λ-measure (for example Λ(aj) < τ , so aj is not
counted as a member of the chart). In Section 4, we will use an inductive argument
for such resulting monomials of multi-turns. It looks natural to use induction by
the number of members of the chart. But the example described above shows
that the number of members of the chart may increase in Uj ; hence, it is not an
appropriate parameter for the induction. In order to prove that the induction is
nevertheless finite, we refine a notion of a member of the chart in this section. After
that we introduce a function that guarantees finiteness of the inductive process (see
Corollary 3.6).

In this section, we consider the set M(Uh) of all maximal occurrences of gen-
eralized fractional powers in Uh, regardless of their Λ-measure, such that they are
not properly contained in other occurrences of generalized fractional powers in Uh.
There are two types of such occurrences: occurrences that are not fully covered
by other occurrences from M(Uh) and occurrences that are fully covered by other
occurrences from M(Uh). Denote the first set by Mnfc(Uh) and the second set by
Mfc(Uh). Clearly, all maximal occurrences of a generalized fractional powers in Uh

of Λ-measure greater than ε are contained in the set M(Uh). It is also clear that
elements of Mfc(Uh) are of Λ-measure not greater than 2ε.

For any maximal occurrence of a generalized fractional power in Uh we define
a set of its images in a resulting monomial of a multi-turn.

Definition 3.1. Let Uh = LahR be a monomial, and ah be a maximal occur-
rence of a generalized fractional power such that Λ(ah) � τ − 2ε. Let aj and ah be
incident monomials. Assume bh is a maximal occurrence of a generalized fractional
power in Uh that is different from ah and is not properly contained in ah. Since
Λ(ah) � τ − 2ε > ε, ah can not be properly contained in any other occurrence,
particularly in bh. To be precise, assume that the end of bh lies strictly left to the
end of ah. We give the definition in the cases aj �= 1 and aj = 1 separately.

(1) Assume aj �= 1, Uj = LajR. Then we call an element of M(Uj) that
contains aj we call an image of ah in Uj . We call the set of all these
elements the set of images of ah in Uj .
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Denote by b′h a subword of bh that is an intersection of bh and L. We
have L = L′

1b
′
hL

′
2, where L′

2 is possibly equal to 1. Hence,

Uh = LahR = L′
1b

′
hL

′
2ahR,

Uj = LajR = L′
1b

′
hL

′
2ajR.

We call an element of M(Uj) that contains b
′
h an image of bh in Uj . We

call the set of all these elements the set of images of bh in Uj .
(2) Assume aj = 1. Then we say that the set of images of ah in Uj is empty.

Let L = L′C, R = C−1R′ and L′R′ has no further cancellations. If
there is no non-empty subword of bh that is contained in L′, we say that
the set of images of bh in Uj is empty. Otherwise, let b′h be a subword of
bh that is an intersection of bh and L′. We have L′ = L′

1b
′
hL

′
2, where L′

2

is possibly equal to 1. Hence,

Uh = LahR = L′CahC
−1R′ = L′

1b
′
hL

′
2CahC

−1R′,

Uj = L′R′ = L′
1b

′
hL

′
2R

′.

We call an element of M(Uj) that contains b
′
h an image of bh in Uj . We

call the set of all these elements the set of images of bh in Uj .

Clearly, we have a similar correspondence for bh when its beginning lies strictly
right from the beginning of ah.

If Λ(b′h) � ε, it can be contained in several elements of M(Uj) and the set of
images of bh may contain several elements. If Λ(b′h) > ε, then its prolongation in
Uj is uniquely determined and the set of images of bh consists of one element. In
fact, in the previous section we described in detail all possible images of maximal
occurrences of generalized fractional powers.

Example 3.1. We observe the following effect for elements of Mfc(Uj). Let a

maximal occurrence bh touch ah at a point from the left side. Suppose bh = b
(1)
h c′h,

where c′h is a maximal occurrence of a generalized fractional power, Λ(c′h) � ε.

Suppose aj = c′ja
(1)
j , where c′j is a maximal occurrence of a generalized fractional

power, Λ(c′j) � ε. Assume cj = c′hc
′
j is a maximal occurrence of a generalized

fractional power in Uj , then we obtain a new element in Mfc(Uj), which grows
from two maximal occurrences c′h /∈ M(Uh) and c′j /∈ M(Uj).

Uh bh

c′h
ah

Uj bh c′h
ajc′j

cj

This example shows that we can not use just the size of M(Uj) as an inductive
parameter. We will introduce special notions in order to control the behaviour of
elements both from Mnfc(Uj) and from Mfc(Uj).

All elements of M(Uh) can be divided into sets such that every set covers a
part of Uh and different parts are separated from each other. We denote them by
M1(Uh), . . . ,Mk(Uh)(Uh). We consider subcoverings of all parts, that are subsets
of M1(Uh), . . . ,Mk(Uh)(Uh), and call the union of this subcoverings a covering of
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Uh. There are finitely many different coverings of Uh, we denote them by {Ci(Uh) |
i = 1, . . . , n(Uh)}. If Z is a subword of Uh and Ci(Uh) is a covering of Uh, we
consider elements of Ci(Uh) that have non empty intersection with Z. We call the
set of this elements a covering of a subword Z and denote it by Ci(Z,Uh).

Let us consider a subcovering of every set Mk(Uh) that consists of the smallest
number of elements and denote this number by Nk(Uh). Let us call the union of
this subcoverings a minimal covering of Uh. Clearly, a minimal covering of Uh may
not be uniquely defined. We define

N(U) =

k(Uh)∑
k=1

Nk(Uh),

that is, the number of elements in a minimal covering of Uh. Notice that all elements
of Mnfc(Uh) are contained in any covering of Uh. If some element of Mfc(Uh) is
fully covered by elements of Mnfc(Uh), it is never contained in a minimal covering
of Uh.

Let us study a general structure of positions of elements of Mfc(Uh). Consider
c ∈ Mfc(Uh), that is, c is fully covered by other elements of M(Uh). Consider the
set of all maximal occurrences {ck} from M(Uh) that have non empty intersection
with c. Then for every ck either its beginning point or its end point belong to
c, since c is not properly contained in another occurrence. Consider ck1

with the
leftmost beginning with respect to the beginning of c and ck2

with the rightmost
beginning with respect to the beginning of c.

c
ck1

ck2

By the definition of M(Uh) neither of ck is contained in another one. Hence, if
k �= k1, then ck begins after ck1

, if k �= k2, then ck ends before ck2
. Therefore, if

k �= k1, k �= k2, then ck is fully covered by c, ck1
, ck2

, so, ck ∈ Mfc(Uh).

c

ck1

ck

ck2

c
ck1

ck

ck2

If ck1
is also fully covered by other elements of M(Uh), we consider an element of

M(Uh) that has the end at the leftmost side of ck1
and repeat the argument. If

ck2
is fully covered by other elements of M(Uh), we consider an element of M(Uh)

that has non-empty intersection with ck2
with the rightmost beginning with respect

to the beginning of ck2
and repeat the argument. We continue the process until

we find an element of Mnfc(Uh) that has the beginning from the left of c and an
element of Mnfc(Uh) that has the end from the right of c. Denote the first element
by d1 and the second element by d2. We see that all elements of M(Uh) that have
the beginning after the beginning of d1 and the end before the end of d2 belong to
Mfc(Uh).
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d1
· · · c

· · ·

d2

Lemma 3.3. Let Uh be a monomial, ah ∈ Mnfc(Uh), Uh = LahR. Assume
ah and aj are incident monomials, Uj = LajR. Then we have N(Uj) � N(Uh).
If, moreover, aj is fully covered by images of elements of Mnfc(Uh) \ {ah} (for
instance, if aj = 1), then N(Uj) < N(Uh).

Proof. Let Ci1(Uh) be a minimal covering of Uh. First consider the case
aj �= 1. Since ah ∈ Mnfc(Uh), it necessarily belongs to Ci1(Uh). Hence, the
covering Ci1(Uh) can be written as

Ci1(Uh) = Ci1(L,Uh) � {ah} � Ci1(R,Uh),

where � is a disjoint union. Denote by a′j an image of ah. Denote by C′ the set of
images of elements of Ci1(L,Uh), by C′′ the set of images of elements of Ci1(R,Uh).
For elements that have more than one image, we take one arbitrary image. Every
letter of L that is covered by Ci1(Uh) is covered by C′ in Uj . Every letter of R that
is covered by Ci1(Uh) is covered by C′′ in Uj . The occurrence of aj in Uj is covered
by a′j . Therefore,

C′ ∪ {a′j} ∪ C′′ is a covering of Uj .

Denote it by Ci2(Uj).
Since we take one image for every element of Ci1(Uh),

|C′| = |Ci1(L,Uh)|, |C′′| = |Ci1(R,Uh)|,
where | · | is the number of elements in a set. Hence, |Ci2(Uj)| � |Ci1(Uh)| = N(Uh),
so we obtain N(Uj) � N(Uh).

Let us show that bh ∈ Mnfc(Uh) \ {ah} has one image in Uj . If bh is separated
from ah, it is obvious. Suppose bh is not separated from ah from the left. Let b′h be
a subword of bh that is an intersection of bh and L. We have L = L′

1b
′
h. Since bh

is not fully covered by elements of M(Uh), b
′
h is also not fully covered by elements

of M(Uh). This means that b′h can not be prolonged from the left neither in Uh

nor in Uj . Hence, b′h in Uj may be fully contained only in some element of M(Uj)
that is contained in the word b′hajR. Since b′h is an initial subword of b′hajR, there
exists only one such element of M(Uj) that contains b

′
h (possibly b′h itself). Hence,

bh has one image in Uj . The case of bh being not separated from ah from the right
is considered similarly.

Every element of Mnfc(Uh) is contained in any covering of Uh. Therefore,
every element of Mnfc(Uh)\{ah} is contained either in Ci1(L,Uh), or in Ci1(R,Uh).
Assume aj is fully covered by images of elements of Mnfc(Uh) \ {ah}. Since every
element of Mnfc(Uh) \ {ah} has only one image, aj is fully covered by C′ ∪ C′′.
Therefore, C′ ∪ C′′ is a covering of Uj that has strictly less elements than Ci1(Uh).
Thus, we obtain N(Uj) < N(Uh).

Now consider the case aj = 1. Assume Uj = LR = L′CC−1R′ = L′R′, where
L′R′ has no further cancellations. We have Uh = L′CahC

−1R′, hence the covering
Ci1(Uh) can be written as

Ci1(Uh) = Ci1(L′, Uh) � {Ci1(L,Uh) \ Ci1(L′, Uh)} � {ah}
� {Ci1(R,Uh) \ Ci1(R′, Uh)} � Ci1(R′, Uh).
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Denote by C′ the set of images of elements of Ci1(L′, Uh), by C′′ the set of images
of elements of Ci1(R′, Uh). Again, for elements that have more than one image, we
take one arbitrary image. Every letter of L′ that is covered by Ci1(Uh) is covered
by C′ in Uj . Every letter of R′ that is covered by Ci1(Uh) is covered by C′′ in Uj .
Hence,

C′ ∪ C′′ is a covering of Uj .

Denote it by Ci2(Uj).
Since we take one image for every element of Ci1(Uh), we have

|C′| = |Ci1(L′, Uh)|, |C′′| = |Ci1(R′, Uh)|.
Hence, |Ci2(Uj)| < |Ci1(Uh)| = N(Uh), so we obtain N(Uj) < N(Uh). �

Assume ah ∈ Mnfc(Uh). Consider the set of elements of M(Uh) that are not
separated from ah from the left side. Evidently, there exists at most one element
of Mnfc(Uh) in this set. Similarly, there exists at most one element of Mnfc(Uh)
that is not separated from ah from the right side. Let us call them the essential
left neighbour of ah and the essential right neighbour of ah, respectively.

We define a special sequence of transformations of monomials.

Definition 3.2. Let U be a word, b ∈ Mnfc(U). We denote U by U (1) and
b by b(1) and define a sequence of transformations inductively. Assume monomials
U (i), maximal occurrence of a generalized fractional powers b(i) in U (i) and trans-
formations ri : U

(i−1) �→ U (i), 1 � i � k, are already defined (we assume that the

transformation r1 is identical). Let a
(k)
h be a maximal occurrence of a generalized

fractional power in U (k) = L(k)a
(k)
h R(k) such that

(1) a
(k)
h differs from b(k);

(2) Λ(a
(k)
h ) � τ − 2ε (hence, a

(k)
h ∈ Mnfc(U (k)));

(3) if the beginning of b(k) lies from the right of the beginning a
(k)
h , a

(k)
h has

the right essential neighbour; if the beginning b(k) lies from the left of the

beginning a
(k)
h , a

(k)
h has the left essential neighbour.

Suppose a
(k)
h and a

(k)
j are incident monomials. If a

(k)
j in L(k)a

(k)
j R(k) is not covered

by images of Mnfc(U (k)) \ {a(k)h }, then we say that

U (k+1) = L(k)a
(k)
j R(k),

b(k+1) is an image of b(k) in U (k+1),

rk+1 : U (k) �→ U (k+1) is a replacement of a
(k)
h by a

(k)
j .

Lemma 3.4. Let U be a word, b ∈ Mnfc(U). Assume we have a sequence of
transformations defined above that starts from U . If U (K) is a monomial in this
sequence, then b(K) can increase or decrease at most by a piece of Λ-measure ε from
the right side and at most by a piece of Λ-measure ε from the left side with respect
to b.

Proof. In this proof, we use notations from Definition 3.2. Let us prove the
lemma by induction on K.

Assume K = 2, that is, the sequence of transformations has only one step r1. If

a
(1)
h is separated from b(1), then the occurrence b(2) in U (2) is equal to b(1). Let a

(1)
h
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be not separated from b(1). Since b(1) = b ∈ Mnfc(U), b(1) is an essential neighbour

of a
(1)
h . According to the classification given in Section 3.1, b(2) can decrease at

most by a piece of Λ-measure ε after the replacement a
(1)
h �→ a

(1)
j . Since b(1) is an

essential neighbour of a
(1)
h , a

(1)
j is not covered by the image of b(1), by Definition 3.2.

Hence, according to the classification given in Section 3.1, b(2) can increase at most

by a piece of Λ-measure ε after the replacement a
(1)
h �→ a

(1)
j .

Let us prove the step of the induction. Consider the replacement r2 : U (1) �→
U (2), a

(1)
h �→ a

(1)
j . Suppose b(2) ∈ Mfc(U). Then any element of Mnfc(U) that is

not separated from b(2) does not have the essential neighbour from the necessary
side. Hence, there are no more possible replacements U (i) �→ U (i+1), i � 2, of
occurrences that are not separated from b(i). So, b(i) remains equal to b(2) after
any further replacement.

Further we consider only the case b(2) ∈ Mnfc(U). If a
(1)
h is separated from b(1),

then the occurrence b(2) in U (2) is equal to b(1). The sequence of transformations
starting from U (2) has a fewer number of steps. Hence, b(K) can increase or decrease
at most by a piece of Λ-measure ε from the right and the left sides with respect to
b(2) (= b(1)) by the induction hypothesis.

Suppose a
(1)
h is not separated from b(1). If b(2) remains equal to b(1), then as

above b(K) can increase or decrease at most by a piece of Λ-measure ε from the
right and the left sides with respect to b(1) by the induction hypothesis.

Assume Λ(b(2)) changes with respect to Λ(b(1)). Then there are the following
cases:

(1) The beginning of b(1) lies from the left of the beginning of a
(1)
h , Λ(b(2)) <

Λ(b(1)).

(2) The beginning of b(1) lies from the right of the beginning of a
(1)
h , Λ(b(2)) <

Λ(b(1)).

(3) The beginning of b(1) lies from the left of the beginning of a
(1)
h , Λ(b(2)) >

Λ(b(1)).

(4) The beginning of b(1) lies from the right of the beginning of a
(1)
h , Λ(b(2)) >

Λ(b(1)).

Let us consider case 1. There are the following two configurations for b(2):

(α) a
(1)
j ∈ Mnfc(U (2))

U (2)

b(2)

a
(1)
j

(β) a
(1)
j ∈ Mfc(U (2))

U (2)

b(2)

a
(1)
j

c

Λ(c) � 4ε
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If a
(1)
j ∈ Mfc(U (2)), then an element c ∈ M(U (2)) covers its terminal

subword. Since a
(1)
j is not covered by images of Mnfc(U (1)) \ {a(1)h }, c is

not an image of an element of Mnfc(U (1)) \ {a(1)h }. Hence, c is an image
of some generalized fractional power of Λ-measure not greater than 2ε.
Then, by the classification from Section 3.1, Λ(c) � 4ε.

Let us study case (β) first. Since Λ(c) � 4ε < τ − 2ε, c can not be used for the
next replacement r3. The sequence of replacements starting from U (2) has K − 1
steps. Hence, if c ∈ Mnfc(U (2)), then by the induction hypothesis the Λ-measure
of an image of c can increase at most by 2ε with respect to Λ(c) in every U (i),
3 � i � K. So, an image of c is of less Λ-measure than τ − 2ε and can not be used
for a replacement in any U (i), 3 � i � K. Hence, all the next replaced occurrences
are separated from b(i) from the right side. So, b(i) has no more changes from the
right side with respect to b(2), 3 � i � K.

Suppose c ∈ Mfc(U (2)). Denote the element closest to c from the right such
that it belongs to Mnfc(U (2)) by d. Then d does not have the left essential neigh-
bour. By the induction hypothesis, b(i) can decrease at most by a piece of Λ-measure
ε from the left side. Hence, the image of d can not have the left essential neighbour
in every U (i). Thus, d can not be used for a replacement in any U (i), 3 � i � K.
Therefore, all the next replaced occurrences are separated from the image of c from
the right side. Hence, b(i) has no more changes from the right side with respect to
b(2), 3 � i � K.

Consider case (α). Consider the next replacement r3 : U (2) �→ U (3), a
(2)
h �→

a
(2)
j . With a slight abuse of language, we use the same indices in different incident

monomials. By the induction hypothesis, b(i), 3 � i � K, may increase or decrease
from the left at most by a piece of Λ-measure ε with respect to b(2). This means
that it remains to consider only replacements from the right of b(2). Therefore,

without loss of generality, we can assume that the beginning a
(2)
h lies from the right

of the beginning of b(2). Then there are the following possibilities:

(1) a
(2)
h is separated from a

(1)
j . Then we again obtain configuration (α) for

b(3), that is, the image of a
(1)
j belongs to Mnfc(U (3)).

(2) a
(2)
h coincides with a

(1)
j . In this case if a

(2)
j ∈ Mnfc(U (3)), we obtain

configuration (α) for b(3), possibly with a smaller overlap or without an

overlap between b(3) and a
(2)
j . If a

(2)
j ∈ Mfc(U (3)), we obtain configuration

(β) for b(3).

(3) a
(2)
h is not separated from a

(1)
j . If the image of a

(1)
j belongs to Mnfc(U (3)),

we obtain configuration (α) for b(3). If the image of a
(1)
j belongs to

Mfc(U (3)), we obtain configuration (β) for b(3).

So, we may obtain for b(3) either configuration (β) that was already considered, or
again configuration (α). If we obtain configuration (α), b(3) increases or decreases
at most by a piece of Λ-measure ε from the right side with respect to b(1).

Cases 2–4 are studied in the same way as case 1. So, if we continue the descrip-
tion for the next transformations ri, we observe that possible changes of b(i) with
respect to b(1) are restricted by a piece of Λ-measure not greater than ε from each
side. �
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Remark 3.2. In fact, in Lemma 3.4 we also proved the following. Assume
that some maximal occurrence a ∈ Mnfc(U) has an overlap of measure ε with its
left essential neighbour. Then after a sequence of replacements from Definition 3.2,
the Λ-measure of the image of a can not increase from the left with respect to the
Λ-measure of a. Similarly, if a has an overlap of measure ε with its right essential
neighbour, then after a sequence of replacements from Definition 3.2 the Λ-measure
of the image of a can not increase from the right with respect to the Λ-measure of
a.

Definition 3.3. Let U be a word, b ∈ Mnfc(U). If there exists a sequence of
replacements constructed in Definition 3.2 such that U (K) is the last monomial in
the sequence and Λ(b(K)) � τ , we call b a virtual member of the chart of U . We
call the set of such maximal occurrences from M(U) the virtual τ -chart of U .

We denote the number of virtual members of the chart of U by Kτ (U).

From Lemma 3.4 it follows that if b is a virtual member of the chart of U , then
Λ(b) � τ − 2ε. Clearly, every member of the chart of U is also a virtual member of
the chart of U .

From now on, when we speak about the chart of some word, we use only virtual
members of the chart even if the qualification virtual is omitted.

Let us prove important properties of virtual members of the chart that we will
use in the further argument.

Lemma 3.5. Let Uh be a monomial, ah be a virtual member of its chart, Uh =
LahR. Assume ah and aj are incident monomials, aj �= 1, Uj = LajR. If aj is not
fully covered by images of Mnfc(Uh) \ {ah}, then Kτ (Uj) � Kτ (Uh). If, moreover,
aj is not a virtual member of the chart of Uj, then Kτ (Uj) < Kτ (Uh).

Proof. Let Uh = LahR, Uj = LajR. Suppose b is a virtual member of the
chart of Uj different from aj . Since aj is not fully covered by images of Mnfc(Uh)\
{ah}, aj is not fully contained in b. To be precise, assume that the beginning of
b lies from the left side of the beginning of aj , that is, b is an occurrence in the
subword Laj . Since b is a virtual member of the chart of Uj , there exists a sequence
of transformations

(16) Uj = U
(1)
j �→ . . . �→ U

(K)
j

defined above such that the image of b in U
(K)
j is of Λ-measure � τ . Denote by b′

the inverse image of b in Uh.
First assume that ah in Uh has the left essential neighbour. Since aj is not fully

covered by images of Mnfc(Uh)\{ah}, the replacement ah �→ aj can be used in the
definition of a virtual member of the chart. Hence, we can add the transformation
Uh �→ Uj to the beginning of the sequence (16). Therefore, we obtain the sequence
that starts from Uh and defines b′ as a virtual member of the chart of Uh.

Now assume that ah in Uh does not have the left essential neighbour. Then
it is possible that there exist elements of Mfc(Uh) that are not separated from ah
from the left side. The other possibility is that there are no elements of M(Uh)
that are not separated from ah from the left side. Let us study the first case. Since
ah in Uh does not have the left essential neighbour, b′ is separated from ah.

Uh

b′ ah
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Consider the first possibility, namely, there exist elements of Mfc(Uh) that are
not separated from ah from the left side. Let us show that there exists an element
of M(Uj) of Λ-measure � 5ε such that its beginning lies between the beginning of
b and the beginning of aj and it is not fully covered by its essential neighbours. Let
d′ ∈ M(Uh) be not separated from ah from the left and has the leftmost beginning
among such elements. Let d be an image of d′ in Uj . Since ah does not have the
left essential neighbour, d′ ∈ Mfc(Uh). Hence, Λ(d′) � 2ε, so, Λ(d) � 5ε. If d is
not covered by its essential neighbours, then d is the necessary element.

Suppose d is covered by its essential neighbours. In particular, this means
that d has both the left and the right essential neighbour. First assume that aj is
contained in d. Then aj is covered by essential neighbours of d. Since aj is not
covered by images of Mnfc(Uh) \ {ah}, at least one essential neighbour of d is not
equal to an image of the element of Mnfc(Uh) \ {ah}. Hence it is of Λ-measure
� 5ε and it satisfies necessary conditions.

Assume that aj is not contained in d. Since d′ has the rightmost beginning
among elements that are not separated from ah from the left, its image d in Uj has
the same beginning position. Therefore, the left essential neighbour of d in Uj is the
image of the left essential neighbour of d′ in Uh. Hence, the left essential neighbour
of d is separated from aj , since ah does not have the left essential neighbour. So,
d can not be covered by its left essential neighbour and aj . Then consider the
right essential neighbour of d and denote it by c. Since d is not covered by its left
essential neighbour and aj , the occurrence c is not equal to the occurrence aj . If
some element of M(Uj) has the beginning from the right of the beginning of d and
the end from the left of the end of aj , it is covered by d and aj . Hence, it does not
belong to Mnfc(Uj). Therefore, since c ∈ Mnfc(Uj), aj is contained in c. Since
aj is not covered by images of Mnfc(Uh) \ {ah}, c is not equal to an image of an
element of Mnfc(Uh) \ {ah}. Since the occurrence c is not equal to the occurrence
aj , Λ(c) � 5ε and it satisfies the necessary conditions.

We denote the obtained element by g. We put g = glgmgr, where gl is an
overlap with the left essential neighbour (if there is any) and gr is an overlap with
the right essential neighbour (if there is any). Since g is not covered by its left and
right essential neighbours, gm is not empty.

We put Uj = U
(1)
j = L(1)gmR(1). Then b is an occurrence in the subword L(1).

From Lemma 3.4 it follows that the Λ-measure of an image of g in every U
(i)
j is

not greater than 7ε < τ − 2ε. Therefore, an image of g can not be used in any

replacement U
(i)
j �→ U

(i+1)
j in (16). Then every replacement in (16) is of the form

L(i)gmR(i) �→ L(i+1)gmR(i+1),

where either L(i+1) = L(i), or R(i+1) = R(i).

The possibility of a transformation L(i)gmR(i) �→ L(i+1)gmR(i+1), where R(i+1) =
R(i), does not depend on R(i). Since b is an occurrence in the subword L(1),
it is sufficient to do only transformations L(i)gmR(i) �→ L(i+1)gmR(i+1), where
R(i+1) = R(i), in a sequence that defines b. So, we obtain the sequence

U
(1)
j = L(1)gmR(1) �→ L(i1)gmR(1) . . . �→ L(is)gmR(1)
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that also defines b. We have Uh = L(1)R′. Thus, the same replacements can be
done starting with Uh, so, we obtain the sequence

(17) Uh = L(1)R′ �→ L(i1)R′ . . . �→ L(is)R′

such that the image of b′ in L(is)R′ is of Λ-measure � τ . Therefore, b′ is a virtual
member of the chart of Uh.

The case when there are no elements of M(Uh) that are not separated from ah
from the left side is considered in a similar (but easier) way.

So, we have proved that every virtual member of the chart of Uj is the image
of a virtual member of the chart of Uh. Hence, Kτ (Uj) � Kτ (Uh). If aj is not a
virtual member of the chart of Uj , then the image of ah is not a virtual member
of the chart of Uj , because aj is not fully covered by images of Mnfc(Uh) \ {ah}.
Thus, in this case Kτ (Uj) < Kτ (Uh). �

Corollary 3.6. Let Uh be a monomial, ah be a virtual member of its chart,
Uh = LahR. Assume ah and aj are incident monomials, Uj = LajR. If aj is a
virtual member of the chart of Uj, then N(Uj) = N(Uh). If aj is not a virtual
member of the chart of Uj, then either N(Uj) < N(Uh), or N(Uh) = N(Uj) and
Kτ (Uj) < Kτ (Uh).

Proof. From Lemma 3.3 it follows that N(Uj) � N(Uh). Let aj be a virtual
member of the chart of Uj , then aj ∈ Mnfc(Uj). Hence, we can apply Lemma 3.3
to the opposite replacement aj �→ ah and obtain N(Uh) � N(Uj). Thus, N(Uj) =
N(Uh).

Assume aj is not a virtual member of the chart of Uj . From Lemma 3.3 it
follows that if aj is fully covered by images of Mnfc(Uh) \ {ah}, then N(Uj) <
N(Uh). Therefore, if N(Uh) = N(Uj), then aj is not fully covered by images of
Mnfc(Uh) \ {ah}. Hence, from Lemma 3.5 it follows that Kτ (Uj) < Kτ (Uh). �

Corollary 3.7. Let Uh be a monomial, ah be a virtual member of its chart,
Uh = LahR. Assume ah and aj are incident monomials, aj is a virtual member
of the chart of Uj = LajR. Assume bh ∈ Mnfc(Uh), bh is different from ah and
bj is the image of bh in Uj. Then bh is a virtual member of the chart of Uh if
and only if bj is a virtual member of the chart of Uj. In particular, in this case
Kτ (Uh) = Kτ (Uj).

Proof. Since aj is a virtual member of the chart of Uj , Λ(aj) � τ − 2ε and
aj ∈ Mnfc(Uj). Hence, the conditions of Lemma 3.5 hold for the replacement
Uh �→ Uj , ah �→ aj . In the proof of Lemma 3.5 we actually show that if bj is a
virtual member of the chart of Uj , then bh is a virtual member of the chart of Uh.

Since aj is a virtual member of the chart of Uj , we can consider the opposite
transformation Uj �→ Uh, aj �→ ah. Then, obviously, the image of bj in Uh is bh. If
we apply Lemma 3.5 in this case, we obtain that if bh is a virtual member of the
chart of Uh, then bj is a virtual member of the chart of Uj . �
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In the same way as (15) we define the set of all the supports of multi-turns of
virtual members of the chart

T ′ =

{
k∑

j=1

Uj | Uh ∈ F , Uh = LahR, where ah is a virtual member(18)

of the chart of Uh, Uh �→
k∑

j=1
j �=h

Uj is a multi-turn

that comes from an elementary multi-turn ah �→
k∑

j=1
j �=h

aj

}
.

Proposition 3.8. The linear subspace 〈T ′〉 ⊆ Z2F is equal to the ideal I =
〈1 + v + vw〉.

Proof. From Proposition 3.1 it easily follows that T ′ = T . Hence, by Propo-
sition 3.2, 〈T ′〉 = I. �

3.4. Sequences of transformations of a given monomial. Let U be a
monomial, ah and bh be virtual members of the chart of U = LaahRa = LbbhRb. To
be precise, assume that the beginning of ah lies from the left of the beginning of bh.
Assume ah and aj , bh and bj are incident monomials and consider transformations
ah �→ aj , bh �→ bj . If aj or bj is equal to 1 and the resulting monomial LaRa or
LbRb have cancellations, we do not perform them right after the replacement.

Let ãh be the image of ah in LbbjRb. If bj = 1 and LbRb has cancellations, we
say that ãh is the intersection of ah and Lb (notice that this slightly differs from
Definition 3.1). Then ãh = ahd1, where d1 is a generalized fractional power that

cancels or prolongs ah (d1 may be empty). Let b̃h be the image of bh in LaajRa. If

aj = 1 and LaRa has cancellations, we say that b̃h is the intersection of bh and Ra.

Then b̃h = d2bh, where d2 is a generalized fractional power that cancels or prolongs
bh (d2 may be empty).

Since the monomials ah and aj are incident, the monomials ahd1 = ãh and ajd1
are also incident. Hence, we consider the replacement ãh �→ ãj in LbbhRb, where
ãj = ajd1. Similarly, since the monomials bh and bj are incident, the monomials

d2bh = b̃h and d2bj are also incident. So, we consider the replacement b̃h �→ b̃j in

LaahRa, where b̃j = d2bj . The next lemma states an important property of these
transformations.

Lemma 3.9. The result of the replacement ãh �→ ãj in LbbjRb and the result

of the replacement b̃h �→ b̃j in LaajRa are equal.

Proof. First assume that ah and bh are separated, U = LaahMbhRb. Then
we obtain two sequences of transformations

U = LaahMbhRb �→ LaajMbhRb �→ LaajMbjRb

and

U = LaahMbhRb �→ LaahMbjRb �→ LaajMbjRb.

Obviously, the results are equal.
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Assume ah and bh touch at a point, U = LaahbhRb. After the replacement
ah �→ aj we obtain the monomial LaajbhRb. The image of bh in LaajbhRb may
have different forms depending on aj (see classification in Section 3.1). But in any

case the replacement b̃h �→ b̃j in LaajbhRb can be represented as a replacement
bh �→ bj and the further cancellations (if there are any). So, we obtain

U = LaahbhRb �→ LaajbhRb �→ LaajbjRb.

After the replacement bh �→ bj we obtain the monomial LaahbjRb. Similarly, the
replacement ãh �→ ãj in LaahbjRb can be represented as a replacement ah �→ aj
and the further cancellations (if there are any). So, we obtain

U = LaahbhRb �→ LaahbjRb �→ LaajbjRb

and results of both sequences are equal.
Assume ah and bh have an overlap c. Denote by a′h the intersection of ah and

Lb, by b′h the intersection of bh and Ra, then U = Laa
′
hcb

′
hRb. After the replacement

ah �→ aj we obtain the monomial Laajb
′
hRb. As above, the replacement b̃h �→ b̃j

in Laajb
′
hRb can be represented as a replacement b′h �→ c−1bj and the further

cancellations (if there are any). So, we obtain

U = Laa
′
hcb

′
hRb �→ Laajb

′
hRb �→ Laajc

−1bjRb.

After the replacement bh �→ bj we obtain the monomial Laa
′
hbjRb. As above, the

replacement ãh �→ ãj in Laa
′
hbjRb can be represented as a replacement a′h �→ ajc

−1

and the further cancellations (if there are any). So, we obtain

U = Laa
′
hcb

′
hRb �→ Laa

′
hbjRb �→ Laajc

−1bjRb

and results of both sequences are equal. �

Lemma 3.10. Let U be a monomial, ah and bh be virtual members of the chart
of U , U = LaahRa = LbbhRb. Let ah and aj be incident monomials, bh and bj be
incident monomials, and consider transformations ah �→ aj, bh �→ bj . Assume aj
is a virtual member of the chart of LaajRa, bj is a virtual member of the chart of

LbbjRb. Denote by b̃h the image of bh in LaajRa and consider the transformation

b̃h �→ b̃j, obtained by multiplying of bh �→ bj by the corresponding generalized frac-
tional power. Let us apply this replacement to the monomial LaajRa and denote

the result by Ua,b. Then b̃j is a virtual member of the chart of Ua,b.

Proof. To be precise, assume that the beginning of ah lies from the left of
the beginning of bh. We will consider only the most interesting case when ah and
bh have an overlap c. The cases when ah and bh are separate or touch at a point
are considered similarly.

Denote by a′h the intersection of ah and Lb, that is, ah = a′hc. Denote by b′h
the intersection of bh and Ra, that is, bh = cb′h.

U a′h

ah

c

b′h

bh
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Let us perform the replacement ah �→ aj in U = LaahRa. Then the image of bh in
LaajRa is equal to c1b

′
h, where c1 is an overlap with aj (possibly empty). We put

aj = a′jc1 and b̃h = c1b
′
h.

LaajRa a′j

aj

c1

b′h

b̃h

Since aj is a virtual member of the chart of LaajRa, from Corollary 3.7 it follows

that b̃h is also a virtual member of the chart of LaajRa. The monomials bh and bj
are incident. Hence, multiplying them by c1c

−1 from the left, we obtain incident

monomials c1b
′
h and c1c

−1bj . So, we have the replacement c1b
′
h = b̃h �→ b̃j , where

b̃j = c1c
−1bj .

Let us perform the replacement bh �→ bj in U = LbbhRb. Then the image of
ah in LbbjRb is equal to a′hc2, where c2 is an overlap with bj (possibly empty). We
put bj = c2b

′
j and ãh = a′hc2.

LbbjRb
a′h

ãh

c2

b′j

bj

Since bj is a virtual member of the chart of LbbjRb, from Corollary 3.7 it follows
that ãh is also a virtual member of the chart of LbbjRb. The monomials ah and aj
are incident. Hence, multiplying them by c−1c2 from the right, we obtain incident
monomials a′hc2 and ajc

−1c2. So, we have the replacement a′hc2 = ãh �→ ãj , where
ãj = ajc

−1c2.
From Lemma 3.9 it follows that the sequences of replacements

U = LaahRa �→ LaajRa �→ Laa
′
j b̃jRb

and

U = LbbhRb �→ LbbjRb �→ Laãjb
′
jRb

give the same final result. So, we have

Ua,b a′j

ãj

c3

b′j

b̃j

where the overlap c3 is possibly empty. One can easily calculate that c3 = c1c
−1c2.

Recall that the Λ-measure of any overlap of two maximal occurrences of gener-
alized fractional powers is equal either to ε, or to zero. Since aj = a′jc1 is a virtual
member of the chart of LaajRa, Λ(aj) � τ − 2ε. If Λ(c1) = ε, then, according to
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Remark 3.2, Λ(aj) � τ − ε. Hence, Λ(a′j) � τ − 2ε. If Λ(c1) = 0, then, clearly,
Λ(a′j) = Λ(aj) � τ − 2ε.

We have Λ(ãj) � Λ(a′j) � τ − 2ε. Since bj is a virtual member of the chart of
LbbjRb, there exists a sequence of replacements from Definition 3.2 starting from
LbbjRb such that the Λ-measure of the image of bj in the last monomial of the
sequence is not less than τ . Since Λ(ãj) � τ − 2ε, we can consider the replace-
ment ãj �→ a′hc2 = ãh in the monomial Ua,b. Then we obtain the transformation
Ua,b �→ LbbjRb. We add this transformation to the beginning of the sequence.

Since the image of b̃j in LbbjRb is equal to bj , as a result we obtain the sequence

of replacements starting from Ua,b such that the Λ-measure of the image of b̃j in

the last monomial is not less than τ . Hence, b̃j is a virtual member of the chart of
Ua,b. �

Applying Lemma 3.9 and Lemma 3.10, we obtain the following statement, that
we will use in the next section.

Corollary 3.11. Let U be a monomial.

(1) Assume we have a sequence of replacements starting from U such that
every replacement transforms a virtual member of the chart into a vir-
tual member of the chart. Then any replacement can be moved to any
position in the sequence and the final result remains the same. Moreover,
after changing of the order of the replacements, every replacement in the
obtained sequence still transforms a virtual member of the chart into a
virtual member of the chart.

(2) Let a
(1)
h , . . . , a

(n)
h be virtual members of the chart of U . Consider a number

of replacements a
(i)
h �→ a

(i)
j in U such that each a

(i)
j is a virtual member

of the chart of the resulting monomial. Suppose these transformation are
applied consecutively. Then every transformation in the chain also trans-
forms a virtual member of the chart into a virtual member of the chart.
Moreover, we can apply the replacements in any order.

4. The structure of certain subspaces of Z2F/I: filtration,
grading and tensor products

First let us introduce the notion of derived monomials.

Definition 4.1 (derived monomials). Let U be a monomial. Consider the
following transformations of U :

(1) Replacements of a virtual member of the chart by an incident monomial
non-equal to 1. Recall that in this case the result is always a reduced
monomial.

(2) Replacements of a virtual member of the chart by incident monomial equal
to 1 and further cancellations (in order to obtain the reduced monomial).

Starting with a certain monomial U we consecutively apply transformations (1),
(2). All the monomials that we obtain after some sequence of transformations (1),
(2) (including the monomial U itself) are called derived monomials of U .

Definition 4.2. Let {Ui} be either finite or countable set of monomials. By
〈U1, . . . , Uk, . . .〉d, we denote a subspace of Z2F generated by all the derived mono-
mials of the monomials {Ui}.
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Remark 4.1. Assume U is a monomial and U ∈ 〈U1, . . . , Uk, . . .〉d, where Ui

are monomials. Then U =
∑l

j=1 Ũij , where Ũij is a derived monomial of Uij .

Since monomials form a basis of Z2F , we obtain U = Ũij0
. So, we obtain that

U ∈ 〈U1, . . . , Uk, . . .〉d if and only if U is a derived monomial of some Ui.

We have shown that I = 〈T ′〉. Consider
∑l

j=1 Uj = T ∈ T ′, where Uh �→∑k
j=1
j �=h

Uj is a multi-turn of a virtual member of the chart of Uh. Then, by definition

of 〈Uh〉d, we obtain T ∈ 〈Uh〉d.
In this section, we show that 〈U1, . . . , Uk〉d ∩ I is generated by supports of

multi-turns of monomials from 〈Ui〉d for i = 1, . . . , k. This enables us to construct
a linear basis of 〈U1, . . . , Uk〉d/(〈U1, . . . , Uk〉d∩I) and a linear basis of Z2F/I (and
therefore show that Z2F/I is non-trivial).

Our approach can be compared with the more standard one, that uses the Di-
amond Lemma to control the ring relations ([1]). Instead, we introduce a filtration
(and the corresponding grading) on 〈U1, . . . , Uk〉d and show its compatibility with
the subspaces of linear dependencies (see Lemma 4.7 and Theorem 4.1). This allows
us to deal with linear dependencies in each graded component independently. The
structure of each graded component is described in Proposition 4.10 and Proposi-
tion 4.12.

Notice that the Diamond Lemma can also be reformulated in the language of
grading.

4.1. The filtration on spaces 〈U1, . . . , Uk〉d. Let Z be a monomial. We
introduce the following numerical characteristics of Z (f -characteristics of mono-
mials):

(19) f(Z) = (N(Z),Kτ (Z)),

where N(Z) is the number of elements in a minimal covering of Z, Kτ (Z) is the
number of virtual members of the chart of Z. If Z1 and Z2 are monomials, we
say that f(Z1) < f(Z2) if and only if N(Z1) < N(Z2) or N(Z1) = N(Z2) and
Kτ (Z1) < Kτ (Z2).

The characteristics f satisfies the following property.

Lemma 4.1. Assume U and Z are monomials, where Z is a derived monomial of
U . Then f(Z) � f(U). Moreover, f(Z) < f(U) if and only if in the corresponding
sequence of replacements there exists at least one replacement of the form LahR →
LajR such that ah is a virtual member of the chart of LahR and aj is not a virtual
member of the chart of LajR.

Proof. It follows directly from Corollary 3.6 and Corollary 3.7. �

In this section, let us set

V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F .

We will define a decreasing filtration on V .
First consider a space generated by one monomial and its derived monomials,

namely, W = 〈U〉d, U ∈ F . Let us define a subspace L(W ) ⊆ W . We put

(20) L(W ) = 〈Z ∈ F | Z is a derived monomial of U such that f(Z) < f(U)〉.
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If the set of monomials with strictly smaller f -characteristics than f(U) is empty,
by definition, we put L(W ) = 0.

Let a monomial Z ′ ∈ L(W ), Z ′′ be a derived monomial of Z ′. Then, by
definition of L(W ) and Lemma 4.1, f(U) > f(Z ′) � f(Z ′′). Hence, Z ′′ also belongs
to L(W ), that is, L(W ) is closed under taking derived monomials.

Now consider a space Y = 〈Z1, . . . , Zk, . . .〉d, where {Zi} is either a finite or
infinite set of monomials. By definition, we put

(21) L(Y ) =
∑
i

L(〈Zi〉d).

Since every L(〈Zi〉d) is generated by monomials and closed under taking derived
monomials, the space L(Y ) is generated by monomials and closed under taking
derived monomials as well. Hence,

(22) L(Y ) = 〈Z ′
1, . . . , Z

′
k, . . .〉d for some Z ′

i ∈ F .

Notice that one generalized fractional power may have an infinite number of in-
cident monomials of Λ-measure less than τ−2ε, because they may contain different
powers of w. Recall that such generalized fractional powers are never counted as a
virtual members of the chart. Hence, even if the space Y is generated by derived
monomials of finite number of monomials, the space L(Y ) might be generated by
derived monomials of countably many monomials.

In the sequel, we will widely use the following simple properties of derived
monomials.

Lemma 4.2. Let Z1 be a monomial, Z be a derived monomial of Z1, Y ⊆ Z2F
be a space generated by monomials and closed under taking derived monomials.
Then the following statements hold:

(1) If Z ∈ 〈Z1〉d \ L(〈Z1〉d), then 〈Z1〉d = 〈Z〉d.
(2) If Z ∈ Y and Z ∈ 〈Z1〉d \ L(〈Z1〉d), then 〈Z1〉d ⊆ Y .

Proof. Suppose Z ′
1 is a result of transformation (1) (Definition 4.1) such that

Z ′
1 is contained in 〈Z1〉d\L(〈Z1〉d). Then this transformation is invertible, hence Z1

is also a derived monomial of Z ′
1. Repeating this argument for every transformation

in a sequence that connects Z1 and Z, we obtain that Z1 is a derived monomial of
Z. Now assume U is a derived monomial of Z1. Since Z1 is a derived monomial of
Z, U is also a derived monomial of Z. Hence 〈Z1〉d = 〈Z〉d. The first statement of
the lemma is proved.

Now let us prove the second statement. Since Z ∈ Y and Y is generated by
monomials and closed under taking derived monomials, we obtain 〈Z〉d ⊆ Y . But
above we proved 〈Z〉d = 〈Z1〉d, hence, 〈Z1〉d ⊆ Y . �

We defined the subspace L(Y ) using a set of generators of Y (see formula (21)).
Let us show that, in fact, L(Y ) does not depend on the set of generators of Y .

Proposition 4.3. Assume

Y = 〈Z1, . . . , Zk, . . .〉d = 〈Z ′
1, . . . , Z

′
k, . . .〉d,

where {Zi} and {Z ′
i} are either finite or infinite sets of monomials. Then∑

i

L(〈Zi〉d) =
∑
i

L(〈Z ′
i〉d).
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Proof. Let us enumerate all monomials from Y . Let {Xj} be the set of all
monomials of the space Y . Then, evidently, we obtain the following description
of Y :

Y = 〈X1, . . . , Xk, . . .〉 = 〈X1, . . . , Xk, . . .〉d.
Clearly, it is sufficient to show that∑

i

L(〈Zi〉d) =
∑
j

L(〈Xj〉d)

for an arbitrary set of monomials {Zi} such that Y = 〈Z1, . . . , Zk, . . .〉d.
Since {Z1, . . . , Zk, . . .} ⊆ {X1, . . . , Xk, . . .}, clearly,∑

i

L(〈Zi〉d) ⊆
∑
j

L(〈Xj〉d).

Assume Z ∈
∑

j L(〈Xj〉d). Monomials form a basis of Z2F and every L(〈Xj〉d)
is generated by monomials. Hence, Z is a derived monomial of some Xj0 such
that we have Z ∈ L(〈Xj0〉d) for some j0. Therefore, there exists a sequence of
transformations α1, . . . , αs1 of type (1), (2) such that

(23) Xj0
α1�−→ . . .

αs1�−→ Z.

Moreover, in the sequence, there exists at least one transformation αl : Yl−1 → Yl

such that f(Yl) < f(Yl−1).
Since Xj0 ∈ Y = 〈Z1, . . . , Zk, . . .〉d, we have Xj0 ∈ 〈Zi0〉d for some i0. Hence,

there exists a sequence of transformations β1, . . . , βs2 of type (1), (2) such that

(24) Zi0
β1�−→ . . .

βs2�−→ Xj0 .

Gluing (24) and (23), we obtain

Zi0
β1�−→ . . .

βs2�−→ Xj0
α1�−→ . . .

αs1�−→ Z.

Consequently, since there exists αl that decreases the value of the function f , we
have Z ∈ L(〈Zi0〉d). Hence, Z ∈

∑
i L(〈Zi〉d) and∑

j

L(〈Xj〉d) ⊆
∑
i

L(〈Zi〉d).

This completes the proof. �

Now we define a decreasing filtration on V = 〈U1, . . . , Uk〉d in the following
way. By definition, put

F0V = V,

Fn+1V = L(FnV ).
(25)

Since for every Y = 〈Z1, . . . , Zk, . . .〉d, where {Zi} is either a finite or infinite set of
monomials, we have description (22), therefore formula (25) is applicable for every
n � 0. Here we mean L(0) = 0.

Proposition 4.4. The filtration defined above has finitely many levels, that is,
there exists a number N such that FNV = 0. Moreover, we never have a situation
Fn+1V = FnV for FnV �= 0.
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Proof. Recall that V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . We put

Nmax = max
i∈{1,...,k}

(N(Ui)).

Consider f -characteristics of monomials in V . Let U be an arbitrary monomial from
V . From Lemma 4.1 it follows that N(U) � Nmax. Since every virtual member
of the chart is of Λ-measure not less than τ − 2ε, it is contained in every covering
of U . Hence, we evidently obtain Kτ (U) � N(U) � Nmax. Therefore, there are
finitely many different values of f -characteristics of monomials in V . Then

m(n) = max
U∈FnV

f(U)

is finite for any n such that FnV �= 0.
Recall that, by definition, Fn+1V = L(FnV ). Then from (20) and (21) it follows

that m(n) > m(n+1) if Fn+1V �= 0. So, we have a strictly decreasing sequence of
f -characteristics

(26) m(0) > . . . > m(n) > . . .

that corresponds to the decreasing sequence of non-trivial spaces

F0V ⊇ . . . ⊇ FnV ⊇ . . . .

The sequence (26) can not be infinite, so, it ends up at some step n0. This means
that Fn0

V is the last non-trivial subspace of the filtration. That is, the filtration
has finitely many non-zero levels.

Assume Fn+1V = FnV for FnV �= 0. That is, FnV = L(FnV ). Then by
induction we have Fn+kV = FnV �= 0 for any k ∈ N. But we already proved that
the filtration has finitely many non-zero levels. This contradiction completes the
proof. �

Definition 4.3. Suppose Y is a subspace of Z2F linearly generated by an
arbitrary set of monomials and closed under taking derived monomials. Every
linear dependence from T ′ is, in fact, a linear dependence between a monomial U
and its derived monomials. Hence, any multi-turn of a virtual member of the chart
of a monomial from Y generates a linear dependence between the monomials from
Y , because Y is closed under taking derived monomials. We consider the subspace
of Y

Dp(Y ) =

〈
k∑

j=1

Uj | Uh is a monomial from Y,

Uh = LahR, where ah is a virtual member of the chart of Uh,

Uh �→
k∑

j=1
j �=h

Uj is a multi-turn that comes from

an elementary multi-turn ah �→
k∑

j=1
j �=h

aj

〉

and call this subspace the subspace of dependencies on Y . Using this notion,
I = 〈T ′〉 = Dp(Z2F).
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Note that if a monomial U ∈ W has the empty chart, then there are no multi-
turns of U . Hence, when W consists only of monomials with the empty chart, by
definition we put Dp(W ) = 0.

Since V is closed under taking derived monomials, we consider its subspace
Dp(V ). Evidently, for every monomial U the space L(〈U〉d) is linearly generated
by monomials and closed under taking derived monomials. Therefore, by the def-
inition, every FnV is generated by monomials and closed under taking derived
monomials. Hence, we can consider its subspace Dp(FnV ) and define the filtration
on Dp(V ) in the following way

FnDp(V ) = Dp(FnV ),

that is, FnDp(V ) is the vector space generated by linear dependencies coming from
monomials of FnV .

Lemma 4.5. Suppose U is a monomial, U ∈ FnV . If U /∈ Fn+1V , then

Fn+1V ∩ 〈U〉d = L(〈U〉d).

Proof. Let FnV = 〈Z1, . . . , Zk, . . .〉d, where {Zi} is either a finite or infinite
set of monomials. Since U ∈ FnV and FnV is closed under taking derived mono-
mials, we can assume that FnV = 〈U,Z1, . . . , Zk, . . .〉d. Since the definition of
Fn+1V = L(FnV ) does not depend on the set of generators of FnV (see Proposi-
tion 4.3), we have

Fn+1V = L(FnV ) = L(〈U〉d) +
∑
i

L(〈Zi〉d).

Let Z ∈ L(〈U〉d). Then, using the last equality, we immediately obtain Z ∈ Fn+1V .
So, L(〈U〉d) ⊆ Fn+1V ∩ 〈U〉d.

Assume a monomial Z ∈ Fn+1V ∩ 〈U〉d and Z /∈ L(〈U〉d). Since U /∈ Fn+1V ,
we have U /∈ L(〈Zi〉d) for all i. Monomials form a basis of Z2F and every
L(〈Zi〉d) is generated by monomials. So, since Z ∈ Fn+1V =

∑
i L(〈Zi〉d), we

have Z ∈ L(〈Zi0〉d) for some i0. We assumed that Z ∈ 〈U〉d \ L(〈U〉d), hence,
by Lemma 4.2, 〈U〉d ⊆ L(〈Zi0〉d). But that contradicts the assumption that
U /∈ Fn+1V . Therefore, Fn+1V ∩ 〈U〉d ⊆ L(〈U〉d).

Thus, finally we obtain Fn+1V ∩ 〈U〉d = L(〈U〉d). �
In Definition 4.1. we defined derived monomials with the use of a special set of

transformations (1) and (2). However, in the next lemma we will use a slightly wider
class of transformations. Let us prove that, using this wider class of transformations
of a given monomial, we still will have its derived monomials.

Namely, let U be a monomial, ah and bh be virtual members of the chart
of U . We consider two replacements ah �→ aj , bh �→ bj (ah and aj are incident
monomials, bh and bj are incident monomials). Assume that first we apply the
transformation ah �→ aj , namely, U = LaahRa �→ LaajRa. To be precise, we
suppose that the beginning of bh lies from the right of the beginning of ah. Denote
by b′h the intersection of bh and Ra. If ah and bh are separated or touch at a point,
b′h = bh.

U

ah b′h = bh

Ra
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U

ah b′h = bh

Ra

If ah and bh has an overlap c, then bh = cb′h.

U

ah

c

b′h

Ra

In any case, we can apply the transformation b′h �→ b′j to LaajRa, where either

b′j = bj if ah and bh are separated or touch at a point, or b′j = c−1bj if ah and
bh has an overlap c. Here we mean that if aj = 1 and the monomial LaRa has
cancellations, we do not perform them. Instead, we perform a replacement b′h �→ b′j .

Assume aj �= 1 or aj = 1 and LaRa has no further cancellations. The re-
placement of the image of b′h in LaajRa (see Definition 3.1) can be represented
as the replacement b′h �→ b′j and the further cancellations if there are any (they

may occur when b′h is not a maximal occurrence of a generalized fractional power
in LaajRa). So, if the image of b′h is a virtual member of LaajRa, as a result of
the transformation b′h �→ b′j in LaajRa and the further cancellations, we obtain a
derived monomial of U .

If aj is a virtual member of the chart of LaajRa, then, by Corollary 3.7, the
image of b′h is always a virtual member of LaajRa. If aj is not virtual member of
the chart of LajR, then the image of b′h may not be a virtual member of LaajRa.
The following lemma states that if we apply the replacement b′h �→ b′j to LaajRa in
this case, we, nevertheless, obtain a derived monomial of U .

Lemma 4.6. Let U be a monomial, ah and bh be virtual members of the chart
of U . We consider two replacements ah �→ aj, bh �→ bj (ah and aj are incident
monomials, bh and bj are incident monomials). Assume U = LaahRa, aj is not a
virtual member of the chart of LaajRa, b

′
h is an intersection of Ra and bh. Then

the result of the replacement b′h �→ b′j (corresponding to bh �→ bj) in LaajRa is
a derived monomial of U , possibly after the further cancellations. Moreover, its
f -characteristics is strictly less than f(U).

Proof. We will consider only the most interesting case when ah and bh has
an overlap c. Two other cases are similar.

U

ah

c

b′h

First we consider the case when aj �= 1. Then the resulting monomial LaajRa is
reduced. We have the transformation bh �→ bj . Since bh = cb′h, we also have the
transformation b′h �→ c−1bj . So, we have a sequence of replacements

(27) U = LaahRa �→ LaajRa = Laajb
′
hRb �→ Laajc

−1bjRb.

If Λ(bh) � τ+ε, then Λ(b′h) � τ . The image of b′h in LaajRa prolongs b′h. Therefore,
its Λ-measure is not less than the Λ-measure of b′h. So, the image of b′h in LaajRa is
of Λ-measure � τ . Therefore, it is a virtual member of the chart of LaajRa and the
result of (27) is a derived monomial of U , possibly after the further cancellations.
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Suppose Λ(bh) < τ + ε. Consider an elementary multi-turn bh �→
∑s

k=1
k �=h

bk,

where bj is one of the resulting monomials. In Proposition 3.1, we proved that
there exists bk0

such that Λ(bk0
) � τ . However, using the same argument, one can

easily prove a slightly stronger statement, namely, that there exists bk0
such that

Λ(bk0
) � τ + ε (and, hence, k0 �= h).

Assume U = LbbhRb. Consider the transformation

U = LbbhRb �→ Lbbk0
Rb.

Denote by a′h the intersection of ah and Lb in LbbhRb. Then ah = a′hc. Let the
image of ah in Lbbk0

Rb be equal to a′hc
′, where c′ is possibly empty. Also let

us put bk0
= c′b′k0

. Since bk0
is a virtual member of the chart of Lbbk0

Rb, from
Corollary 3.7 it follows that a′hc

′ is a virtual member of the chart of Lbbk0
Rb.

a′h c′

b′k0

Lb Rb

La

We have a transformation ah �→ aj . Multiplying it by c−1c′ from the right, we
obtain a′hc

′ �→ a′j , where a′j = ajc
−1c′. The monomials bk0

and bj are incident, so,

we have a transformation bk0
�→ bj . Multiplying it by c′

−1
from the left, we obtain

b′k0
�→ b′j , where b′j = c′−1bj . Since Λ(bk0

) � τ + ε, clearly, Λ(b′k0
) � τ . Therefore,

a prolongation of b′k0
is always a virtual member of the chart. Hence, we obtain a

sequence of replacements of virtual members of the chart

Lbbk0
Rb = Laa

′
hc

′b′k0
Rb �→ Laa

′
jb

′
k0
Rb(28)

�→ Laa
′
jb

′
jRb = Laajc

−1c′c′
−1

bjRb = Laajc
−1bjRb.

So, the results of (27) and of (28) are equal. But the result of sequence (28) is a
derived monomial of U , by definition. Since aj is not a virtual member of the chart
of LaajRa, from Lemma 3.10 it follows that a′j is not a virtual member of the chart

of Laa
′
jb

′
k0
Rb. Hence, f(Laajc

−1bjRb) < f(U).
Consider the case when aj = 1. If there are no cancellations in LaRa, then we

argue as above. Suppose there are cancellations in LaRa, namely, bh = cbh,mbh,f ,

La = L′
ab

−1
h,m, where bh,f is possibly empty. For simplicity, assume that L′

abh,fRb

has no further cancellations.

U

ah

c

bh,m bh,f

b−1
h,m

L′
a

As above, let b′h be an intersection of bh and Ra, that is, bh = cb′h, b
′
h = bh,mbh,f .

We have a replacement bh �→ bj and the corresponding replacement b′h = c−1bh �→
c−1bj . After the replacement LaahRa �→ LaRa there are cancellations of the re-
sulting monomial. Let us not perform them, instead, we perform the replacement
b′h �→ c−1bj . So, we have a sequence of replacements

(29) U = LaahRa �→ LaRa = Lab
′
hRb = Lac

−1bjRb.
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Again consider an elementary multi-turn bh �→
∑s

k=1
k �=h

bk, where bj is one of

the resulting monomials. Multiplying it by b−1
h,mc−1 from the left side, we obtain

an elementary multi-turn bh,f �→
∑s

k=1
k �=h

b−1
h,mc−1bk. If Λ(bh,f ) � τ , then its image

in L′
abh,fRb is a virtual member or the chart. Then we again can argue as in the

beginning of the proof. Assume Λ(bh,f ) < τ . Then, by Proposition 3.1, there exists

bk1
such that Λ(b−1

h,mc−1bk1
) � τ .

We have the replacement ah �→ 1. As above, let a′h be an intersection of ah
and Lb, that is, ah = a′hc. Let a′hc

′′ be the image of ah in Lbbk1
Rb (c′′ is possibly

empty). That is, c′′ is an overlap of a′hc
′′ and bk1

, bk1
= c′′b′k1

. From Corollary 3.7
it follows that a′hc

′′ is a virtual member of the chart of Lbbk1
Rb.

U

a′h

c′′ b′k1
b−1
h,m

L′
a

So, multiplying ah �→ 1 by c−1c′′ from the right side, we obtain the replacement
a′hc

′′ �→ c−1c′′.
The monomials bk1

and bj are incident, hence, we have a transformation bk1
�→

bj . So, we also have b−1
h,mc−1bk1

�→ b−1
h,mc−1bj . Since Λ(b−1

h,mc−1bk1
) � τ its prolon-

gation is always a virtual member of the chart. Therefore, we obtain the sequence
of replacements of virtual members of the chart:

(30) U = LbbhRb �→ Lbbk1
Rb = Laa

′
hc

′′b′k1
Rb �→

�→ Lac
−1c′′b′k1

Rb = L′
ab

−1
h,mc−1bk1

Rb �→ L′
ab

−1
h,mc−1bjRb = Lac

−1bjRb.

So, the result of (29) is equal to the result of (30). But the result of sequence (30)
is a derived monomial of U , by definition. In (30) we had the replacement a′hc

′′ �→
c−1c′′, where Λ(c−1c′′) � 2ε. Hence, c−1c′′ can not be a virtual member of the
chart. Therefore, f(Lac

−1bjRb) < f(U). �

Lemma 4.7 (Main Lemma). Let V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . Then
we have

Dp(FnV ) ∩ Fn+1V = Dp(Fn+1V ).

Proof. We have

Dp(FnV ) = Dp(Fn+1V ) + 〈T (n)
1 , . . . , T

(n)
k , . . .〉,

where T
(n)
i are linear dependencies coming from monomials of FnV \ Fn+1V . Ev-

idently, Dp(FnV ) ∩ Fn+1V ⊇ Dp(Fn+1V ). So, we need to show that Dp(FnV ) ∩
Fn+1V ⊆ Dp(Fn+1V ). Since Dp(Fn+1V ) ⊆ Fn+1V , it is sufficient to prove that

〈T (n)
1 , . . . , T

(n)
k , . . .〉 ∩ Fn+1V ⊆ Dp(Fn+1V ).

First let us show that it is sufficient to prove Lemma 4.7 only for the case when
FnV is generated by one monomial and its derived monomials. Indeed, suppose
Lemma 4.7 is proved for this case, then let us prove it for the general case. Assume
T1, . . . Tl are linear dependencies coming from monomials of FnV \ Fn+1V and∑l

i=1 Ti ∈ Fn+1V . So, all monomials from FnV \Fn+1V have to cancel out in this
sum.
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Let Ti be generated by a multi-turn of a monomial Zi ∈ FnV \ Fn+1V ,
i = 1, . . . , l. We choose a subset {Zi1 , . . . , Zik} ⊆ {Z1, . . . , Zl} such that
〈Zi1 , . . . , Zik〉d = 〈Z1, . . . , Zl〉d and 〈Zij 〉d � 〈Zij′ 〉d for j �= j′. The dependen-

cies {T1, . . . Tl} can be split into groups {T j
1 , . . . T

j
lj
}, j = 1, . . . k, of dependencies

coming from monomials of 〈Zij 〉d. So, we have

(31)

l∑
i=1

Ti =

k∑
j=1

lj∑
i=1

T j
i ∈ Fn+1V.

Every linear dependence Ti comes from a monomial that belongs to FnV \Fn+1V ;

hence, by the definition of Fn+1V , every T j
i comes from a monomial that belongs

to 〈Zij 〉d \ L(〈Zij 〉d). From Lemma 4.5 it follows that all monomials from 〈Zij 〉d \
L(〈Zij 〉d) are contained in FnV \ Fn+1V and L(〈Zij 〉d) ⊆ Fn+1V . Hence, the
monomials from every 〈Zij 〉d \ L(〈Zij 〉d), j = 1, . . . , k, have to cancel out in the
sum (31).

Since 〈Zij 〉d � 〈Zij′ 〉d for j �= j′, from Lemma 4.2 it follows that if a monomial Z

belongs to 〈Zij 〉d \L(〈Zij 〉d), then Z /∈ 〈Zij′ 〉d for j �= j′. Therefore, the monomials

from FnV \ Fn+1V in the sum (31) have to cancel out in every sum
∑lj

i=1 T
j
i

separately. Hence, we obtain
∑lj

i=1 T
j
i ∈ L(〈Zij 〉d). Since we assumed that the

statement of the lemma holds for the spaces 〈Zij 〉d, we have

lj∑
i=1

T j
i ∈ Dp(L(〈Zij 〉d)) ⊆ Dp(Fn+1V ).

Thus,
l∑

i=1

Ti =

k∑
j=1

lj∑
i=1

T j
i ∈ Dp(Fn+1V ).

So, it remains to prove the lemma only for the case when FnV is generated by one
monomial and its derived monomials.

We start with proving the following statement.

Lemma 4.8. Suppose A1, . . . , Ak are vector spaces, L(Ai) ⊆ Ai is a subspace of
Ai. Suppose Di is a subspace of Ai such that Di∩L(Ai) = 0. Consider A1⊗. . .⊗Ak

and its subspaces A1 ⊗ . . .⊗Di ⊗ . . .⊗ Ak. Define the subspaces

L(A1 ⊗ . . .⊗Ak) =

k∑
i=1

A1 ⊗ . . .⊗ L(Ai)⊗ . . .⊗Ak,

and

L(A1⊗ . . .⊗Di⊗ . . .⊗Ak) =
k∑

i′=1
i �=i′

A1⊗ . . .⊗Di⊗ . . .⊗L(Ai′)⊗ . . .⊗Ak, i = 1, . . . , k.

Then(
k∑

i=1

A1 ⊗ . . .⊗Di ⊗ . . .⊗ Ak

)⋂
L(A1⊗. . .⊗Ak) =

k∑
i=1

L(A1⊗. . .⊗Di⊗. . .⊗Ak).
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Proof. From the condition Di ∩ L(Ai) = 0 it follows that the sum of this
subspaces is a direct sum Di⊕L(Ai) ⊆ Ai. Since Ai is a vector space, the subspace
Di⊕L(Ai) has a direct complement Ji and we obtain Ai = Ji⊕Di⊕L(Ai). Hence,

L(A1 ⊗ . . .⊗ Ak) =
k∑

i=1

(J1 ⊕D1 ⊕ L(A1))⊗ . . .⊗ L(Ai)⊗ . . .⊗ (Jk ⊕Dk ⊕ L(Ak))

=
k∑

i=1

(
⊕
j

Bj
1 ⊗ . . .⊗Bj

i−1 ⊗ L(Ai)⊗Bj
i+1 ⊗ . . .⊗Bj

k),

where every Bj
i is either Ji, or Di, or L(Ai) and we encounter all possible combi-

nations in the sum. Tensor products that contain more then one member L(Ai)
repeat in the sum. If we take every repeating space only one time, we obtain the
direct sum L(A1 ⊗ . . . ⊗ Ak) =

⊕
j B

j
1 ⊗ . . . ⊗ Bj

k, where every Bj
i is either Ji,

or Di, or L(Ai), we encounter all combinations in the sum, such that at least one

Bj
i = L(Ai). Similarly,

k∑
i=1

A1 ⊗ . . .⊗Di ⊗ . . .⊗Ak

=

k∑
i=1

(J1 ⊕D1 ⊕ L(A1))⊗ . . .⊗Di ⊗ . . .⊗ (Jk ⊕Dk ⊕ L(Ak))

=

k∑
i=1

(
⊕
j

Cj
1 ⊗ . . .⊗ Cj

i−1 ⊗Di ⊗ Cj
i+1 ⊗ . . .⊗ Cj

k),

where every Cj
i is either Ji, or Di, or L(Ai) and we encounter all possible combina-

tions in the sum. Tensor products that contain more then one member Di repeat
in the sum. If we take every repeating space only one time, we obtain the direct

sum
∑k

i=1 A1 ⊗ . . .⊗Di ⊗ . . .⊗ Ak =
⊕

j C
j
1 ⊗ . . . ⊗ Cj

k, where every Cj
i is either

Ji, or Di, or L(Ai), we encounter all combinations in the sum, such that at least

one Cj
i = Di. Hence,(
k∑

i=1

A1 ⊗ . . .⊗Di ⊗ . . .⊗Ak) ∩ L(A1 ⊗ . . .⊗Ak

)
=

⊕
j

Kj
1 ⊗ . . .⊗Kj

k,

where every Kj
i is either Ji, or Di, or L(Ai), we encounter all combinations in the

sum, such that at least one Kj
i = Di and at least one Kj

i = L(Ai). Therefore,(
k∑

i=1

A1 ⊗ . . .⊗Di ⊗ . . .⊗Ak) ∩ L(A1 ⊗ . . .⊗Ak

)

=
k∑

i=1

k∑
i′=1
i �=i′

A1 ⊗ . . .⊗Di ⊗ . . .⊗ L(Ai′)⊗ . . .⊗Ak

=
k∑

i=1

L(A1 ⊗ . . .⊗Di ⊗ . . .⊗Ak).

�
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Using Lemma 4.8, we continue the proof of Lemma 4.7. Assume U is a mono-
mial. Derived monomials of U are defined with the use of certain sequences of
replacements of virtual members of the chart. When we perform replacements that
preserve f -characteristics of monomials, they preserve, roughly speaking, the struc-
ture of the chart. Moreover, there is no interaction between the replaced occurrence
and the separated virtual members of the chart and there is a very small interac-
tion between the replaced occurrence and its neighbours. This kind of behaviour
provides the idea to consider a tensor product of linear spaces that correspond to
each place of the chart of U .

Assume the monomial U has k virtual members of the chart, that is,Kτ (U) = k.
Let a(i) be the virtual member of the chart of U placed on the i-th position from
the beginning of U . Let Ai[U ] be a subspace of Z2F such that

(32) Ai[U ] =
〈
a
(i)
j | a(i) and a

(i)
j are incident monomials, j ∈ N

〉
.

Suppose U = Lia
(i)Ri. We define a subspace Li[U ] ⊆ Ai[U ] by the following rule:

Li[U ] =
〈
a
(i)
j | a(i) and a

(i)
j are incident monomials, j ∈ N,(33)

Lia
(i)
j Ri ∈ L(〈U〉d)

〉
.

Remark 4.2. Suppose U ′ is a derived monomial of U such that U ′ ∈ 〈U〉d \
L(〈U〉d). Let us construct the spaces Ai[U

′] and Li[U
′] ⊆ Ai[U

′] corresponding to
U ′ as above. Then, obviously, the spaces Ai[U

′] are generated by the same sets of
monomials as the spaces Ai[U ] up to shifts of the initial and the final points in the
corresponding v-diagram by ε. Moreover, using Lemma 3.10, one can prove that
the spaces Li[U

′] are also generated by the same sets of monomials as the spaces
Li[U ] up to shifts of the initial and the final points in the corresponding v-diagram
by ε.

Although the precise forms of the spaces Ai[U
′] and Li[U

′] ⊆ Ai[U
′] depend on

the monomial U , in the sequel, we will omit [U ] in the denotation of this spaces
when it does not lead to ambiguity.

We construct a linear mapping

μ[U ] : A1 ⊗ . . .⊗Ak → 〈U〉d.
Elements b(1)⊗ . . .⊗ b(k) ∈ A1⊗ . . .⊗Ak, where b

(i) ∈ Ai are generalized fractional
powers incident to a(i), form a basis of A1⊗ . . .⊗Ak, because generalized fractional
powers incident to a(i) form a basis of Ai. We will define μ[U ] on these basis
elements.

We distinguish between four possibilities:

Case 1 First we define μ[U ] on elements b(1) ⊗ . . .⊗ b(k) such that all b(i) ∈ Ai \
Li. It encodes a sequence of replacements that starts from the monomial
U . Recall that a(1), . . . , a(k) are the virtual members of the chart of U
enumerated from left to right. Let U = L1a

(1)R1. Then we start with the
transformation L1a

(1)R1 �→ L1b
(1)R1. Denote by â(2) the image of â(2)

in L1b
(1)R1. Since Λ(b(1)) > ε, either â(2) = a(2), or â(2) = c(2)a(2), or

â(2) = c(2)
−1

a(2), where Λ(c(2)) � ε. The next step is the replacement of
â(2) in L1b

(1)R1 corresponding to the transformation a(2) �→ b(2). That

is, the replacement â(2) �→ b̂(2) in L1b
(1)R1, where either b̂(2) = b(2) if
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â(2) = a(2), or b̂(2) = c(2)b(2) if â(2) = c(2)a(2), or b̂(2) = c(2)
−1

b(2) if

â(2) = c(2)
−1

a(2). In the same way, we continue transformations for every
position in the chart. Notice that, by Corollary 3.11, we actually can
perform the replacements in any order.

Case 2 Assume 1 � i0 � k is a place in the chart of U . We define μ[U ] on elements
b(1) ⊗ . . . ⊗ b(k) such that b(i0) ∈ Li0 and b(i) ∈ Ai \ Li for i �= i0. First
we replace virtual members of the chart of U in positions different from
i0 as we described above. Then we perform a corresponding replacement
in the position i0 and all the further cancellations if necessary.

Case 3 Assume 1 � i′0 < i0 � n are two places in the chart of U . We define
μ[U ] on elements b(1) ⊗ . . . ⊗ b(k) such that b(i) ∈ Ai \ Li for i �= i′0, i0
and b(i

′
0) ∈ Li′0

, b(i0) ∈ Li0 . First we replace virtual members of the
chart of U in positions different from i′0, i0 as we described above. Then
we perform the corresponding replacement in the position i0. Assume

that as a result we obtain a monomial Lb̂(i0)R. If there are any further

cancellations in Lb̂(i0)R (when b̂(i0) = 1), we do not perform them right
after the replacement. Instead we perform the corresponding replacement
in the subword L or R in the place corresponding to i′0. Then we perform
the cancellations if there are any.

From Lemma 3.9 it follows that we can perform two last transforma-
tions starting from any position i′0 or i0 and obtain the same final result.
From Lemma 4.6 it follows that the resulting monomial is a derived mono-
mial U .

Case 4 For elements b(1) ⊗ . . .⊗ b(k) such that there are more than two b(i) ∈ Li,
we could continue in a similar way. But, in fact, we do not need to
preserve full information about these elements. So, by definition, we put
μ[U ](b(1) ⊗ . . .⊗ b(k)) = 0 in this case.

From Corollary 3.11, it follows that in Case 1 an element μ[U ](b(1)⊗. . .⊗b(k)) ∈
〈U〉d \ L(〈U〉d). From Lemma 4.1 and Lemma 4.6, it follows that in Case 2 and
Case 3 an element μ[U ](b(1) ⊗ . . .⊗ b(k)) ∈ L(〈U〉d).

Let Z be a derived monomial of U such that Z does not belong to L(〈U〉d).
By Lemma 4.1, this means that there exists a sequence of replacements of vir-
tual members of the chart such that every replacement preserves f -characteristics
of monomials. From Corollary 3.11, it follows that the replacements can be per-
formed in any order and after changing the order every replacement still preserves
f -characteristics of monomials. Namely, we can first perform all replacements in
the first position of the chart, then in the second position, etc, in the k-th position.

Assume b̂(1), . . . , b̂(k) are the virtual members of the chart of Z enumerated from

left to right. Then the element b̂(i) may not be incident to a(i) (where a(i) is the
corresponding member of the chart of U). But, clearly, its ends differ only by a

shift by ε. Let b(i) be an incident monomial of a(i), corresponding to b̂(i). Then

Z = μ[U ](b(1) ⊗ . . .⊗ b(k)).

From Corollary 3.11 it follows that every replacement can be moved to the beginning
of the sequence, which starts from U , and it still preserves the f -characteristic of
the monomials. That is, every replacement a(i) �→ b(i) in the monomial U does not
decrease the f -characteristic of the resulting monomial. Hence, b(i) ∈ Ai \ Li.
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Suppose b(1) ⊗ . . . ⊗ b(k) and d(1) ⊗ . . . ⊗ d(k) are different elements such that
b(i), d(i) are generalized fractional powers, b(i), d(i) ∈ Ai \ Li. Since there exists
b(i0) �= d(i0) and two different incident generalized fractional powers can not differ
only by a piece equal to a possible overlap, we obtain

μ[U ](b(1) ⊗ . . .⊗ b(k)) �= μ[U ](d(1) ⊗ . . .⊗ d(k)).

Thus, we have showed that μ[U ] gives a bijective correspondence between elements
b(1)⊗ . . .⊗ b(k) such that generalized fractional powers b(i) ∈ Ai \Li and monomials
from 〈U〉d \ L(〈U〉d).

As above, we denote by Dp(Ai) the subspace of Ai generated by supports
of corresponding elementary multi-turns (see Definition 4.3). Recall that Ai is
generated by generalized fractional powers incident to one generalized fractional
power a(i). Therefore, from the definition of an elementary multi-turn, it follows
that a sum of two supports from Dp(Ai) is again the support of elementary multi-
turn. So, actually Dp(Ai) consists precisely of supports of elementary multi-turns.
Recall that a maximal occurrence of a generalized fractional power of Λ-measure
� τ is always a virtual member of the chart. Hence, applying together (33) and
Proposition 3.1, we obtain Dp(Ai) ∩ Li = 0.

In order to prove Lemma 4.7 it remains to show that

(34) Dp(〈U〉d) ∩ L(〈U〉d) = Dp(L(〈U〉d)).
We already proved that Dp(〈U〉d)∩L(〈U〉d) ⊇ Dp(L(〈U〉d)). So, we will show that
Dp(〈U〉d) ∩ L(〈U〉d) ⊆ Dp(L(〈U〉d)).

Suppose Ts, s = 1, . . . ,m, are the supports of multi-turns coming from mono-
mials of 〈U〉d \ L(〈U〉d) and

m∑
s=1

Ts ∈ L(〈U〉d).

Assume Ts comes from a monomial U
(s)
h ∈ 〈U〉d \ L(〈U〉d). Then there exists an

element b
(1)
h ⊗ . . .⊗ b

(k)
h ∈ A1 ⊗ . . .⊗An such that

μ[U ](b
(1)
hs

⊗ . . .⊗ b
(k)
hs

) = U
(s)
h ,

where b
(i)
hs

are generalized fractional powers such that b
(i)
hs

/∈ Li. Assume this multi-
turn comes from an elementary multi-turn of the virtual member of the chart of

U
(s)
h placed on the is-th position. The element b

(is)
hs

∈ Ais corresponds to this
virtual member of the chart. By the definition of μ[U ] in Case 1 and Case 2, we
obtain

Ts = μ[U ](b
(1)
hs

⊗ . . .⊗ t(is)s ⊗ . . .⊗ b
(k)
hs

),

where t
(is)
s ∈ Dp(Ais) is the support of the corresponding elementary multi-turn of

b
(is)
hs

.
So, we have

m∑
s=1

Ts = μ[U ]

(
m∑
s=1

b
(1)
hs

⊗ . . .⊗ t(is)s ⊗ . . .⊗ b
(k)
hs

)
.

By the assumption, all monomials in the left-hand sum that do not belong to
L(〈U〉d) cancel out. Since μ[U ] gives a bijective correspondence between the ele-
ments b(1) ⊗ . . .⊗ b(k) such that generalized fractional powers b(i) ∈ Ai \Li and the
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monomials from 〈U〉d \ L(〈U〉d), we obtain that all such elements cancel out in the
right-hand sum as well. Then from Lemma 4.8 it follows that

m∑
s=1

b
(1)
hs

⊗ . . .⊗ t(is)s ⊗ . . .⊗ b
(k)
hs

∈
k∑

i=1

k∑
i′=1
i �=i′

A1 ⊗ . . .⊗Dp(Ai)⊗ . . .⊗ Li′ ⊗ . . .⊗Ak,

that is, the sum
∑m

s=1 b
(1)
hs

⊗ . . .⊗ t
(is)
s ⊗ . . .⊗ b

(k)
hs

is equal to a sum of elements of
the form

d(1) ⊗ . . .⊗ d(i
′
0−1) ⊗ d̃(i

′
0) ⊗ d(i

′
0+1) ⊗ . . .⊗ d(i0−1) ⊗ t̃(i0) ⊗ d(i0+1) ⊗ . . .⊗ d(k),

d(1) ⊗ . . .⊗ d(i0−1) ⊗ d̃(i0) ⊗ d(i0+1) ⊗ . . .⊗ d(i
′
0−1) ⊗ t̃(i

′
0) ⊗ d(i

′
0+1) ⊗ . . .⊗ d(k)

for different i0 �= i′0, where generalized fractional powers d(i) ∈ Ai\Li, a generalized

fractional power d̃(i
′
0) ∈ Li′0

, and the support of an elementary multi-turn t̃(i0) ∈
Dp(Ai0). To be precise, assume i′0 < i0.

Assume t̃(i0) =
∑m0

j=1 e
(i0)
j . Let us calculate

μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗

m0∑
j=1

e
(i0)
j ⊗ . . .⊗ d(k)).

From Lemma 3.9 and Corollary 3.11, it follows that in the definition of μ[U ] first we
can do replacements of all positions of the chart except i0 and i′0, then a replacement
in the position i0 and then a replacement in the position corresponding to i′0 (the

exact position may shift if e
(i0)
j ∈ Li0). Suppose Z is a result after the replacement

in the position i0. Then Z = Lê(i0)R, where ê(i0) may differ from e(i0) by shifts of
its ends by ε. For simplicity, we illustrate the case when the virtual members of the
chart on the positions i′0 and i0 are separated, but the other cases are analogous to
this one.

â(i
′
0) ê(i0)

L R

Then the last replacement in Z can be represented as a replacement of the corre-
sponding maximal occurrence in L and the further cancellations if there are any.
Denote the result of the transformation of L by L′.

̂̃
d
(i′0)

ê(i0)

L′ R

Hence, we obtain

μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗ e

(i0)
j ⊗ . . .⊗ d(k)) = L′êj

(i0)R,
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where the word L′êj
(i0)R is possibly non-reduced. So,

μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗

m0∑
j=1

e
(i0)
j ⊗ . . .⊗ d(k)) =

m0∑
j=1

L′ê
(i0)
j R

= L′

⎛⎝m0∑
j=1

ê
(i0)
j

⎞⎠R.

Since
∑m0

j=1 e
(i0)
j is the support of an elementary multi-turn, the sum

∑m0

j=1 ê
(i0)
j is

the support of an elementary multi-turn as well (possibly with shifts of the ends of

the monomials by ε). Therefore, from Proposition 3.2 it follows that
∑m0

j=1 L
′ê

(i0)
j R

is the support of a multi-turn (after the cancellation in the monomials).

Since d̃(i
′
0) ∈ L(Ai), we have

μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗ e

(i0)
j ⊗ . . .⊗ d(k)) ∈ L(〈U〉d).

Then, since μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗

m0∑
j=1

e
(i0)
j ⊗ . . .⊗ d(k)) is the support of a

multi-turn, we have

μ[U ](d(1) ⊗ . . .⊗ d̃(i
′
0) ⊗ . . .⊗

m0∑
j=1

e
(i0)
j ⊗ . . .⊗ d(k)) ∈ Dp(L(〈U〉d)).

Thus,
m∑
s=1

Ts ∈ Dp(L(〈U〉d))

and the equality (34) holds. This concludes the proof of Lemma 4.7. �

Using Lemma 4.7, we obtain the following proposition.

Proposition 4.9. Suppose X,Y are subspaces of Z2F generated by monomials
and closed under taking derived monomials, Y ⊆ X. Then Dp(X) ∩ Y = Dp(Y ).

Proof. Clearly, Dp(Y ) ⊆ Dp(X)∩Y . Let us show that Dp(X)∩Y ⊆ Dp(Y ).
Suppose T1 + . . . + Tm ∈ Dp(X) ∩ Y , where every Ti, i = 1, . . .m, belongs to the
set of generating supports of multi-turns of Dp(X). Consider Ti0 ∈ Y . Since Y is
generated by monomials, we obtain that every monomial of Ti0 belongs to Y . So,
Ti0 is a linear dependence generated by a monomial from Y , that is, Ti0 ∈ Dp(Y ).

So, we may suppose that every Ti /∈ Y , i = 1, . . . ,m. Denote by X ′ the
subspace of X generated by the monomials of Ti, i = 1, . . . ,m, and their derived
monomials. Suppose the filtration on X ′ has N non-zero levels. Let us prove that
T1 + . . .+ Tm ∈ Dp(Y ) by induction on N .

First let us do the step of induction. Assume Ti is generated by a multi-turn of
a monomial Zi. If Zi ∈ L(X ′), then all the monomials of Ti belong to L(X

′) because
L(X ′) is closed under taking derived monomials. Assume Zi ∈ X ′ \ L(X ′). Let Z
be an arbitrary monomial of Ti such that Z ∈ X ′ \ L(X ′). Since Z ∈ X ′ \ L(X ′),
we have Z ∈ 〈Zi〉d \ L(〈Zi〉d). Therefore, from Lemma 4.2 it follows that Zi is a
derived monomial of Z. Assume Z ∈ Y , then all its derived monomials belong to
Y because Y is closed under taking derived monomials. So, we have Zi ∈ Y ; hence,
all the monomials of Ti are contained in Y . This contradicts our assumption that
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Ti /∈ Y . Therefore, the monomials of Ti that are contained in X ′ \ L(X ′) are not
contained in Y .

Since T1+ . . .+Tm ∈ Y , the monomials that are contained in X ′ \L(X ′) cancel
in the sum T1 + . . .+ Tm; hence, T1 + . . .+ Tm ∈ L(X ′). Then from Lemma 4.7 it
follows that

T1 + . . .+ Tm ∈ Dp(L(X ′)).

Therefore, T1 + . . . + Tm = T ′
1 + . . . + T ′

m′ , where T ′
i ∈ L(U ′), i = 1, . . . ,m′, are

supports of multi-turns that come from monomials of L(X ′). We have

T1 + . . .+ Tm = T ′
1 + . . .+ T ′

m′ =
∑
T ′
i∈Y

T ′
i +

∑
T ′
i /∈Y

T ′
i .

As above, every element of the first sum
∑

T ′
i∈Y T ′

i belongs to Dp(Y ). The space

L(X ′) has N − 1 non-zero levels of the filtration; hence the second sum
∑

T ′
i /∈Y T ′

i

belongs to Dp(Y ) by the induction hypothesis, and therefore,

T1 + . . .+ Tm ∈ Dp(W ).

Let us prove the basis of induction. Consider N = 1. As above, we obtain
T1+. . .+Tm ∈ L(X ′). But sinceN = 1, we have L(X ′) = 0; therefore T1+. . .+Tm =
0, and so, it belongs to Dp(Y ).

Thus, we obtain Dp(X) ∩ Y ⊆ Dp(Y ). This concludes the proof. �

Using the mapping μ[U ] that was constructed in the second part of the proof
of Lemma 4.7, we obtain the following statement.

Proposition 4.10. Let U be a monomial with k virtual members of the chart.
Suppose Ai and Li ⊆ Ai, i = 1, . . . k, are defined above by (32) and (33) subspaces
of Z2F corresponding to U . Then we have

〈U〉d/L(〈U〉d) ∼= A1/L1 ⊗ . . .⊗Ak/Lk.

Moreover,

〈U〉d/(Dp(〈U〉d) + L(〈U〉d)) ∼= A1/(Dp(A1) + L1)⊗ . . .⊗Ak/(Dp(Ak) + Lk).

Proof. Recall that in the proof of Lemma 4.7 we constructed a linear mapping

μ[U ] : A1 ⊗ . . .⊗Ak → 〈U〉d
(see page 46). We define a linear mapping

μ1[U ] : A1/L1 ⊗ . . .⊗Ak/Lk → 〈U〉d/L(〈U〉d)
by the following rule:

μ1[U ]((b(1) + L1)⊗ . . .⊗ (b(k) + Lk)) = μ[U ](b(1) ⊗ . . .⊗ b(k)) + L(〈U〉d),
where b(i) ∈ Ai are generalized fractional powers. In Lemma 4.7, we proved (using
Lemma 4.1 and Lemma 4.6) that

(35) μ[U ]

(
k∑

i=1

A1 ⊗ . . .⊗ Li ⊗ . . .⊗Ak

)
⊆ L(〈U〉d).

Hence, the mapping μ1[U ] is well-defined. Since μ[U ] gives a bijective correspon-
dence between elements b(1)⊗ . . .⊗b(k), where b(i) are generalized fractional powers
such that b(i) ∈ Ai \Li, and the monomials from 〈U〉d \L(〈U〉d), the mapping μ1[U ]
is bijective. So, μ1[U ] is an isomorphism of linear spaces.
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In the same way, we define a linear mapping

μ2[U ] : A1/(Dp(A1) +L1)⊗ . . .⊗Ak/(Dp(Ak) + Lk) → 〈U〉d/(Dp(〈U〉d) +L(〈U〉d)
by the following rule:

μ2[U ]((b(1) +Dp(A1) + L1)⊗ . . .⊗ (b(k) +Dp(Ak) + Lk))(36)

= μ[U ](b(1) ⊗ . . .⊗ b(k)) + Dp(〈U〉d) + L(〈U〉d),

where b(i) ∈ Ai are generalized fractional powers. Arguing in the same way as in
Lemma 4.7, it is easy to show that

μ[U ]

(
k∑

i=1

A1 ⊗ . . .⊗Dp(Ai)⊗ . . .⊗Ak

)
⊆ Dp(〈U〉d) + L(〈U〉d).

Using this together with (35), we see that the mapping μ2[U ] is well-defined. Since
μ[U ] gives a bijective correspondence between elements b(1) ⊗ . . .⊗ b(k), where b(i)

are generalized fractional powers such that b(i) ∈ Ai \ Li, and the monomials from
〈U〉d \ L(〈U〉d), one can show that the mapping μ2[U ] is bijective. So, μ2[U ] is an
isomorphism of linear spaces. �

Remark 4.3. In Proposition 4.10, in fact, we used the following construction.
We consider a composition of linear mappings

A1 ⊗ . . .⊗ Ak
μ[U ]−→ 〈U〉d

π1−→ 〈U〉d/L(〈U〉d),

A1 ⊗ . . .⊗ Ak
μ[U ]−→ 〈U〉d

π2−→ 〈U〉d/(Dp(〈U〉d) + L(〈U〉d)),

where π1 and π2 are the canonical homomorphisms. Then, by properties of μ[U ]
established in Lemma 4.7,

ker(π1 ◦ μ[U ]) =

k∑
i=1

A1 ⊗ . . .⊗ Li ⊗ . . .⊗Ak,

ker(π2 ◦ μ[U ]) =

k∑
i=1

A1 ⊗ . . .⊗ Li ⊗ . . .⊗Ak +

k∑
i=1

A1 ⊗ . . .⊗Dp(Ai)⊗ . . .⊗Ak.

Then, using the isomorphism theorem and the definition of a tensor product of
vector spaces, we obtain the result of Proposition 4.10.

4.2. The structure of quotient spaces 〈U1, . . . , Uk〉d/Dp(〈U1, . . . , Uk〉d).
The following statement easily follows from Proposition 4.9.

Corollary 4.11. Let V = 〈U1, . . . , Uk〉d, where U1, . . . , Uk are monomials.

Let V̂ be the corresponding subspace in Z2F/〈T ′〉, that is, V̂ = (V + 〈T ′〉)/〈T ′〉.
Then V̂ ∼= V/Dp(V ).

Proof. From the Isomorphism Theorem, it follows that V̂ ∼= V/(V ∩ 〈T ′〉).
According to Definition 4.3, we have 〈T ′〉 = Dp(Z2F). Therefore, from Proposi-

tion 4.9 it follows that V ∩〈T ′〉 = V ∩Dp(Z2F) = Dp(V ); hence, V̂ ∼= V/Dp(V ). �

The quotient space V/Dp(V ) inherits the filtration from V ,

Fn(V/Dp(V )) = (FnV +Dp(V ))/Dp(V ).
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Suppose V has N non-zero levels of the filtration

V = F0V ⊇ F1V ⊇ . . . ⊇ FN−1V ⊇ FNV = 0.

We have the corresponding graded space

Gr(V/Dp(V )) =
N−1⊕
n=0

(Fn(V/Dp(V ))/Fn+1(V/Dp(V ))).

For any n = 0, . . . , N − 1, we have the mapping grn : FnV → FnV/Fn+1V .

The following theorem establishes the compatibility of the filtration and the
corresponding grading with the linear dependencies on the space V .

Theorem 4.1. Let V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . Then

Gr(V/Dp(V )) ∼=
N−1⊕
n=0

Grn(V )/grn(Dp(FnV )),

where

Grn(V ) = FnV/Fn+1V,

grn(Dp(FnV )) = (Dp(FnV ) + Fn+1V )/Fn+1V.

Proof. Using isomorphism theorems, we obtain

Fn(V/Dp(V ))/Fn+1(V/Dp(V )) ∼= (FnV +Dp(V ))/(Fn+1V +Dp(V ))

= (FnV + Fn+1V +Dp(V ))/(Fn+1V +Dp(V ))

∼= FnV/(FnV ∩ (Fn+1V +Dp(V )))

= FnV/(Fn+1V + FnV ∩Dp(V )).

Hence,

Gr(V/Dp(V )) =
N−1⊕
n=0

FnV/(Fn+1V + FnV ∩Dp(V )).

On the other hand, we have

N−1⊕
n=0

GrnV/grn(Dp(FnV )) =

N−1⊕
n=0

(FnV/Fn+1V )/((Dp(FnV ) + Fn+1V )/Fn+1V )

∼=
N−1⊕
n=0

FnV/(Dp(FnV ) + Fn+1V ).

From Corollary 4.9 it follows that FnV ∩Dp(V ) = Dp(FnV ). Consequently,

N−1⊕
n=0

GrnV/grn(Dp(FnV )) ∼= Gr(V/Dp(V )).

�

Proposition 4.12. Let V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . Assume FnV
is non-zero subspace of the filtration, FnV = 〈Z1, . . . , Zs, . . .〉d, where {Zi}i∈I is
either a finite or infinite set of monomials, and let Vi = 〈Zi〉d. Then
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(1) there exists a subset of indices I ′ ⊆ I such that

FnV/(Dp(FnV ) + Fn+1V ) ∼=
⊕
i∈I′

Vi/(Dp(Vi) + L(Vi)),

where Vi � Fn+1V and the spaces Vi, i ∈ I ′ are pairwise different;
(2) if Z ∈ FnV is a monomial such that Z /∈ Fn+1V , then Z belongs to

precisely one space Vi, i ∈ I ′, and the isomorphism acts as follows

Z +Dp(FnV ) + Fn+1V �→ (0, . . . , 0, Z +Dp(Vi) + L(Vi), 0, . . .).

Proof. Since FnV = 〈Z1, . . . , Zs, . . .〉d, FnV =
∑∞

i=1 Vi if there are infinitely
many Vi and FnV =

∑m
i=1 Vi otherwise. In what following we only discuss the case

of infinitely many Vi, i ∈ I. The other case is similar. So, we have

FnV/Fn+1V =
∞∑
i=1

((Vi + Fn+1V )/Fn+1V ) .

Let us choose a special subset of {Vi}i∈I . We take all the different spaces from
{Vi}i∈I and remove Vi such that Vi � Fn+1V . Since FnV �= 0, from Proposition 4.4
it follows that FnV �= Fn+1V . Hence, we do not remove all Vi in this process and
obtain a non-empty set {Vi}i∈I′ such that

FnV/Fn+1V =
∑
i∈I′

((Vi + Fn+1V )/Fn+1V ) .

Assume Vj is one of the spaces {Vi}i∈I′ , that is, j ∈ I ′, and

(37) ((Vj + Fn+1V )/Fn+1V )
⋂∑

i �=j
i∈I′

((Vi + Fn+1V )/Fn+1V ) �= 0.

Since every Vi, i ∈ I ′, and Fn+1V are generated by monomials, it follows from (37)
that there exist monomials Z ′

j ∈ Vj such that Z ′
j /∈ Fn+1V and a space Vi0 , i0 ∈ I ′,

i0 �= j, such that Z ′
j ∈ Vi0 . Since Z

′
j /∈ Fn+1V , we have Z ′

j /∈ L(Vj) and Z ′
j /∈ L(Vi0).

Then from Lemma 4.2 it follows that Vj = Vi0 . But this contradicts the assumption
that all spaces Vi, i ∈ I ′, are pairwise different. Hence,

((Vj + Fn+1V )/Fn+1V )
⋂∑

i �=j
i∈I′

((Vi + Fn+1V )/Fn+1V ) = 0.

Thus, we obtain a direct sum

(38) FnV/Fn+1V =
⊕
i∈I′

((Vi + Fn+1V )/Fn+1V ) .

Let Z ∈ FnV be a monomial, Z /∈ Fn+1V . Notice that, by the same argument
as above, we obtain that Z belongs to precisely one of the spaces Vi, i ∈ I ′.

Let T be the support of a multi-turn Uh �→
∑k

j=1
j �=h

Uj , where Uh ∈ FnV \Fn+1V .

Hence, Uh belongs to a space Vi0 , i0 ∈ I ′. Then every Uj also belongs to Vi0 and
T ∈ Dp(Vi0). Therefore, we have

(Dp(FnV ) + Fn+1V )/Fn+1V =
⊕
i∈I′

((Dp(Vi) + Fn+1V )/Fn+1V ) .
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Hence,

FnV/(Dp(FnV ) + Fn+1V ) ∼= (FnV/Fn+1V )/ ((Dp(FnV ) + Fn+1V )/Fn+1V )

(39)

=

(⊕
i∈I′

((Vi + Fn+1V )/Fn+1V )

)
/

(⊕
i∈I′

((Dp(Vi) + Fn+1V )/Fn+1V )

)
∼=

⊕
i∈I′

((Vi + Fn+1V )/Fn+1V )/((Dp(Vi) + Fn+1V )/Fn+1V )

∼=
⊕
i∈I′

(Vi + Fn+1V )/(Dp(Vi) + Fn+1V ).

By the Isomorphism Theorem, we obtain

(Vi + Fn+1V )/(Dp(Vi) + Fn+1V ) = (Vi +Dp(Vi) + Fn+1V )/(Dp(Vi) + Fn+1V )

(40)

∼= Vi/((Dp(Vi) + Fn+1V ) ∩ Vi) = Vi/(Dp(Vi) + Fn+1V ∩ Vi)

Since Vi, i ∈ I ′, is not contained in Fn+1V , from Lemma 4.5 it follows that Fn+1V ∩
Vi = L(Vi). Thus, from (39) and (40) it follows that

FnV/(Dp(FnV ) + Fn+1V ) ∼=
⊕
i∈I′

Vi/(Dp(Vi) + L(Vi)).

So, the first statement is proved.
Assume Z ∈ FnV is a monomial, Z /∈ Fn+1V . We noticed above that Z belongs

to one space Vi0 , i0 ∈ I ′. Then from the definition of the canonical isomorphisms
in (39) and (40), it easily follows that the final isomorphism maps Z +Dp(FnV ) +
Fn+1V to the corresponding quotient space Vi0/(Dp(Vi0) + L(Vi0)), namely,

Z +Dp(FnV ) + Fn+1V �→ (0, . . . , 0, Z +Dp(Vi0) + L(Vi0), 0, . . .).

So, the second statement is proved. �

5. Description of a basis in Z2F/I
Let us enumerate all the monomials from F , namely, F = {U1, U2, . . . , Uk, . . .}.

Consider an increasing sequence of subspaces of Z2F
〈U1〉d ⊆ 〈U1, U2〉d ⊆ . . . ⊆ 〈U1, . . . , Uk〉d ⊆ . . .

Clearly, the union of all these subspaces gives the whole ring Z2F . Consider the
corresponding increasing sequence of subspaces of Z2F/〈T ′〉 = Z2F/I

(〈U1〉d + 〈T ′)/〈T ′〉〉 ⊆ (〈U1, U2〉d + 〈T ′〉)/〈T ′〉 ⊆ . . .(41)

⊆ (〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉 ⊆ . . . .

The union of all these subspaces gives the whole ring Z2F/〈T ′〉. By Corollary 4.11,
we obtain

(〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉 ∼= 〈U1, . . . , Uk〉d/Dp(〈U1, . . . , Uk〉d).
In Section 5.2, we will construct a basis Bk in every subspace (〈U1, . . . , Uk〉 +

〈T ′〉)/〈T ′〉 such that we obtain the increasing sequence

B1 ⊆ B2 ⊆ . . . ⊆ Bk ⊆ . . . .
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Since the union of the subspaces (41) gives the whole ring Z2F/〈T ′〉, the union⋃
k Bk is a basis of Z2F/〈T ′〉 = Z2F/I.
As above, assume V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . Let the filtration on the

space V have N non-zero levels. Putting together the results from Section 4.2, we
obtain

(V + 〈T ′〉)/〈T ′〉 ∼=
N−1⊕
n=0

⊕
i∈I′

n

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )),

where V
(n)
i = 〈Z(n)

i 〉d, Z
(n)
i is a monomial from FnV . In Section 5.1 we will

characterize non-trivial quotient spaces V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i ). In Section 5.2

we will construct a basis in every space V
(n)
i /(Dp(V

(n)
i )+L(V

(n)
i )) and, using this,

we will explicitly describe a basis in the whole ring Z2F/I.

5.1. λ-semicanonical words. Fix a constant 1
2 � λ � 1 (� on the ε-scale).

For example, one can use λ � 2
3 . We introduce λ-forbidden words. Recall our

notation v = vivmvf , where vi is some initial part, vm is some middle part and vf
is some final part of v (any part is allowed to be empty). A word of the form v−1

m

is called λ-forbidden if Λ(vm) > λ.

(42) v−1
m ,Λ(vm) > λ.

Definition 5.1. A word is called λ-semicanonical if it does not contain occur-
rences of λ-forbidden words.

We are motivated by an informal analogue for small cancellation groups. Let
G = 〈X | R〉, where R satisfies small cancellation conditions [7] with a certain
measure Λ on the relators Ri. That is Λ(Ri) = 1 and Λ(P ) � ε for any small
piece P . We call a subword S of R±1

i λ-forbidden if Λ(S) > λ, where λ as above is
between 1

2 and 1. A word U is λ-semicanonical if it does not contain λ-forbidden
words. In the Cayley graph of G any λ-semicanonical word is a quasigeodesic [3],
[4].

A small cancellation group (with appropriate constants) is hyperbolic. Recall
that if the elements of a hyperbolic group are represented by quasigeodesics, then
their product takes the form of a thin triangle ([5]). In our case, first we will
construct a special basis of Z2F/I with the use of λ-semicanonical words. Then in
Section 6, we will construct a special set of linear generators of Z2F/I (not linearly
independent) such that it contains the basis and we can express the product of two
elements of this set as a sum of elements of this set that form thin triangles with
the factors.

Proposition 5.1. Let ah be a generalized fractional power, W = 〈ah〉d. Then
ah is either λ-semicanonical, or is equal modulo Dp(W ) to a sum of λ-semicanonical
generalized fractional powers from W . Namely, either ah is λ-semicanonical, or

there exists an elementary multi-turn ah �→
∑k

j=1
j �=h

aj such that aj, j = 1, . . . , k,

j �= h, are λ-semicanonical generalized fractional powers and they have shorter
word length in F and less Λ-measure than ah.
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Proof. Let ah contain a λ-forbidden subword bh, ah = LbhR. Returning to
forbidden words (42), we consider the following relation in Z2F/I:

(43) v−1
m = vfwvi + vfvi.

Multiplying the relation v−1 = 1 + w by vf on the left side and by vi on the right
side, we get (43). By definition, the words vfwvi and vfvi are non λ-forbidden. If
v−1
m is a λ-forbidden word, that is, Λ(v−1

m ) > λ, then we obtain

Λ(vfvi) = Λ(vfwvi) = Λ(vf ) + Λ(vi) < 1− λ < λ < Λ(v−1
m ).

Moreover, since |w| � |v|, we obtain |vfvi| < |vfwvi| < |v−1
m |, where | · | is word

length in F .
By Definition 2.4, the transformation v−1

m �→ vfwvi + vfvi is an elementary
multi-turn and according to the above, it gives the reduction of λ-forbidden words
to sums of shorter (in word length in F and in Λ-measure) λ-semicanonical words.

So, bh can be substituted by a sum of λ-semicanonical generalized fractional
powers

∑n
j=1
j �=h

bj = vfwvi + vfvi. Since Λ(bh) > ε, it appears in v−1 only once and,

therefore, has fixed initial and fixed final point in the corresponding v-diagram.
Since ah = LbhR is itself a generalized fractional power, we obviously obtain that
every word LbjR is a generalized fractional power, possibly after cancellations, with
the same initial point and the same final point in the corresponding v-diagram as
the word ah has. So, since v−1

m �→ vfwvi + vfvi is an elementary multi-turn,
ah �→

∑n
j=1
j �=h

LbjR is an elementary multi-turn as well. Hence, LbjR are derived

monomials of ah and ah =
∑n

j=1
j �=h

LbjR modulo Dp(W ).

If the obtained word LbjR contains a λ-forbidden subword, we repeat the pro-
cess and reduce it using the transformation (43). Successive elementary multi-turns
match to addition of the corresponding expressions (9)–(14). Thus, applying sev-
eral elementary multi-turns consecutively, we obtain an elementary multi-turn as a
result. So, we obtain an elementary multi-turn of ah after each step of the reduction
process.

From (43) it follows that after every transformation that reduces λ-forbidden
subword of a monomial, the word length in F of the resulting monomials is strictly
smaller than of the initial monomial. Thus, the reduction process finishes and we

obtain the result as an elementary multi-turn ah �→
∑k

j=1
j �=h

aj , where j = 1, . . . , k,

j �= h, are λ-semicanonical generalized fractional powers with shorter word length
in F and less Λ-measure than ah. �

Corollary 5.2. Assume V = 〈U1, . . . , Uk〉d, U1, . . . , Uk ∈ F . Let U ∈ V be
a monomial. Then U is equal to a sum of λ-semicanonical words from V modulo
Dp(V ). In particular, U is equal to a sum of λ-semicanonical words from 〈U〉d
modulo Dp(〈U〉d).

Proof. Suppose U ∈ F and ah is a maximal occurrence of a generalized
fractional power in U , U = LahR. Suppose ah contains a λ-forbidden word. Then,
clearly, ah is a virtual member of the chart of U . From Proposition 5.1, it follows

that there exists an elementary multi-turn ah �→
∑k

j=1
j �=h

ai, where j = 1, . . . , k,
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j �= h, are λ-semicanonical generalized fractional powers with the word length in F
strictly smaller than the word length of ah. Then LajR are derived monomials of
U and

U = LahR =

k∑
j=1
j �=h

LajR mod Dp(〈U〉d),

where the word length in F of all monomials appearing in the right-hand side is
strictly smaller than the word length of U . We continue the reduction process for
the obtained monomials if necessary. Since word length of the monomials strictly
decreases after each step of the reduction, the process finishes and we obtain the
result as a sum of λ-semicanonical words.

Assume U ∈ V = 〈U1, . . . , Uk〉d. Since V is generated by monomials and closed
under taking derived monomials, Dp(〈U〉d) ⊆ Dp(V ). Hence, U is equal to the
same resulting sum of λ-semicanonical monomials as above modulo Dp(V ). �

The most important property of λ-semicanonical word for us is the following.

Proposition 5.3 (Non-degeneracy). Suppose ah is a λ-semicanonical gener-

alized fractional power, ah �→
∑l

j=1
j �=h

aj is an elementary multi-turn. Then there

exists aj, j �= h, such that Λ(aj) � τ .

Proof. Let I and F be the initial and the final points of the paths correspond-
ing to aj , j = 1, . . . , l, in the v-diagram. There are the following possible positions
of I and F :

Case 1 The points I and F lie on the v-arc.
Case 2 The points I and F lie on a w-arc.
Case 3 The point I lies on the v-arc, the point F lies on a w-arc.
Case 4 The point I lies on a w-arc, the point F lies on the v-arc.

Consider Case 1 for a1, . . . , al. Assume the contrary, that is, Λ(aj) < τ , j =
1, . . . , l, j �= h. Recall possible forms of monomials of Λ-measure less than τ (we
enumerated them in the proof of Proposition 3.1). We denote the smallest path
from I to F by b′, the smallest path from I to O by b1, and the smallest path from
O to F by b2. Since Λ(aj) < τ for j �= h, the smallest path between I and F is
necessarily of Λ-measure less than τ . Then there are the following possibilities (for
a graphical illustration see Proposition 3.1).

1.1 b′ contains the point O;
1.2 b′ does not contain the point O and Λ(b1) + Λ(b2) < τ ;
1.3 b′ does not contain the point O and Λ(b1) + Λ(b2) � τ .

We will study the following particular configuration in 1.1 in detail. Recall that
we use the notation v = vivmvf .
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vi

vm

vf
O

I
F

wk

w−k

b1 = v−1
i , b2 = v−1

f ,

b′ = v−1
i v−1

f ;

Returning to pictures (5), we obtain that the following list of generalized fractional
powers corresponds to the above picture:

vmvfM(v, w)v−1
f ,

vmvfM(v, w)vivm,

v−1
i M(v, w)vivm,

v−1
i M(v, w)v−1

f .

So, every aj , j = 1, . . . , l, is of the above form. Denote possible forms of ah by

vmvfMh(v, w)v
−1
f ,

vmvfMh(v, w)vivm,

v−1
i Mh(v, w)vivm,

v−1
i Mh(v, w)v

−1
f .

Since ah is λ-semicanonical, the monomial Mh(v, w) does not contain negative
powers of v. By the assumption, Λ(aj) < τ for j �= h; hence,

aj = v−1
i wkjv−1

f .
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So, there are the following possible forms of the elementary multi-turn ah �→∑l
j=1
j �=h

aj depending on the form of ah:

vmvfMh(v, w)v
−1
f �→

l∑
j=1

v−1
i wkjv−1

f ,

vmvfMh(v, w)vivm �→
l∑

j=1

v−1
i wkjv−1

f ,

v−1
i Mh(v, w)vivm �→

l∑
j=1

v−1
i wkjv−1

f ,

v−1
i Mh(v, w)v

−1
f �→

l∑
j=1

v−1
i wkjv−1

f .

We transform every elementary multi-turn above to an elementary multi-turn
of a monomial over v, w, multiplying every expression above by corresponding gen-
eralized fractional powers:

vMh(v, w) �→
l∑

j=1

wkj ,

vMh(v, w)v �→
l∑

j=1

wkj ,

Mh(v, w)v �→
l∑

j=1

wkj ,

Mh(v, w) �→
l∑

j=1

wkj .

That is, we obtain an elementary multi-turn of the form

(44) M̃h(v, w) �→
l∑

j=1

wkj ,

where the monomial M̃h(v, w) does not contain negative powers of v. Since all
monomials on the right-hand side are of zero Λ-measure, by Proposition 3.1,

Λ(M̃h(v, w)) � τ . Hence, the monomial M̃h(v, w) contains at least one positive
power of v. Then, clearly, the polynomial

P (v, w) = M̃(v, w) +

l∑
j=1

wkj

does not satisfy condition (8), so, (44) can not be a multi-turn. We obtain a
contradiction.

All the rest of the configurations in Case 1–Case 4 are processed in the same
way. �
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Using Corollary 5.2, Proposition 4.10 and Proposition 5.3, we obtain the fol-
lowing important statement.

Corollary 5.4. Assume W = 〈Z〉d, where Z is a monomial. Then the space
W/(Dp(W ) + L(W )) is non-trivial if and only if there exists a λ-semicanonical

monomial Z̃ ∈ W such that W = 〈Z̃〉d. Moreover, if X is a λ-semicanonical
monomial such that X ∈ W \ L(W ) (and then W = 〈X〉d), then X + Dp(W ) +
L(W ) �= 0 as an element of W/(Dp(W ) + L(W )).

Proof. Assume the quotient space W/(Dp(W ) + L(W )) is non-trivial. Con-
sider the set of all monomials from W \ L(W ). If every monomial from this set
belongs to Dp(W ) + L(W ), then the quotient space W/(Dp(W ) + L(W )) is trivial.
Hence, there exists a monomial Z ′ ∈ W \ L(W ) such that Z ′ /∈ Dp(W ) + L(W ).
From Corollary 5.2 it follows that

Z ′ =
l∑

i=1

Zi mod Dp(W ),

where Zi ∈ W are λ-semicanonical monomials. Since Z ′ /∈ Dp(W ) + L(W ), there
exists a monomial Zi0 ∈ W \ L(W ) in this sum. Hence, from Lemma 4.2 it follows
that W = 〈Zi0〉d.

Assume W = 〈Z̃〉d, where Z̃ is λ-semicanonical monomial. Then, by Proposi-
tion 4.10, we have

W/(Dp(W ) + L(W )) ∼= A1/(Dp(A1) + L1)⊗ . . .⊗Ak/(Dp(Ak) + Lk),

where A1, . . . , Ak are spaces generated by generalized fractional powers and cor-

responding to each place in the chart of Z̃ by formula (32). In particular, if

a(1), . . . , a(k) are all virtual members of the chart of Z̃ enumerated from left to
right, then a(1) ∈ A1, . . . , a

(k) ∈ Ak.
Recall that Dp(Ai) consists of supports of elementary multi-turns. Therefore,

by Proposition 5.3, we obtain a(i) /∈ Dp(Ai) + Li, i = 1, . . . , k. Hence,

(45) (a(1) +Dp(A1) + L1)⊗ . . .⊗ (a(k) +Dp(Ak) + Lk) �= 0.

Then, by definition of the isomorphism

μ2[Z̃] : A1/(Dp(A1) + L1)⊗ . . .⊗Ak/(Dp(Ak) + Lk) → W/(Dp(W ) + L(W )),

we have

μ2[Z̃]((a(1) +Dp(A1) + L1)⊗ . . .⊗ (a(k) +Dp(Ak) + Lk))

= μ[Z̃](a(1) ⊗ . . .⊗ a(k)) + Dp(W ) + L(W ) = Z̃ +Dp(W ) + L(W ).

Then, by (45), we obtain that Z̃ + Dp(W ) + L(W ) �= 0. Thus, the quotient space
W/(Dp(W ) + L(W )) is non-trivial.

Let X be a λ-semicanonical monomial from W \ L(W ). Then, by Lemma 4.2,
we have W = 〈X〉d. Therefore, by the same argument as above, we obtain that
X +Dp(W ) + L(W ) �= 0. This completes the proof. �
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5.2. How to calculate a basis in Z2F/I using λ-semicanonical words.
As before, we denote the space 〈U1, . . . , Uk〉d, where U1, . . . , Uk are monomials,
by V . Putting together the results of Corollary 4.11, Theorem 4.1 and Proposi-
tion 4.12, we obtain

(46) (V + 〈T ′〉)/〈T ′〉 ∼=
N−1⊕
n=0

⊕
i∈I′

n

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )),

where V
(n)
i = 〈Z(n)

i 〉d, Z(n)
i is a monomial from FnV , V

(n)
i � Fn+1V and the spaces

V
(n)
i are pairwise different.

Proposition 5.5. Assume{
W

(i,n)

j | W (i,n)

j ∈ V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )), j ∈ N

}
,

is a basis of V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )), where n = 0, . . . , N − 1 and i ∈ I ′n. Let

W
(i,n)
j ∈ V

(n)
i be an arbitrary representative of the coset W

(i,n)

j . Then

N−1⋃
n=0

⋃
i∈I′

n

{
W

(i,n)
j + 〈T ′〉 | j ∈ N

}
is a basis of (V + 〈T ′〉)/〈T ′〉.

Proof. While the statement is pretty obvious, we prefer to give a proof to
recollect the previously stated facts.

In Proposition 4.12 we proved that there exists an isomorphism

ϕ : FnV/(Dp(FnV ) + Fn+1V ) →
⊕
i∈I′

n

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i ))

that acts as follows

(47) ϕ(U +Dp(FnV ) + Fn+1V ) = (0, . . . , 0, U +Dp(V
(n)
i ) + L(V

(n)
i ), 0, . . .),

where U is a monomial, U ∈ FnV \ Fn+1V . Suppose{
W

(i,n)

j | W (i,n)

j ∈ V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )), j ∈ N

}
is a basis of V

(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )). Then from (47) it easily follows that⋃

i∈I′

{
W

(i,n)
j +Dp(FnV ) + Fn+1V | j ∈ N

}
,

where W
(i,n)
j ∈ FnV is an arbitrary representative of the coset W

(i,n)

j , is a basis of

FnV/(Dp(FnV ) + Fn+1V ).
Recall that

Fn(V/Dp(V )) = (FnV +Dp(V ))/Dp(V )

and, by the isomorphism theorems, we have the following canonical isomorphisms:

π1 : Fn(V/Dp(V ))/Fn+1(V/Dp(V )) → (FnV +Dp(V ))/(Fn+1V +Dp(V )),

π2 : (FnV +Dp(V ))/(Fn+1V +Dp(V )) → FnV/(Fn+1V +Dp(V ) ∩ FnV ).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONSTRUCTION OF A QUOTIENT RING OF Z2F 63

Let us recall that from Proposition 4.9 it follows that Dp(V ) ∩ FnV = Dp(FnV ).
Therefore, we have

Fn(V/Dp(V ))/Fn+1(V/Dp(V ))
π1−→ (FnV +Dp(V ))/(Fn+1V +Dp(V ))
π2−→ FnV/(Fn+1V +Dp(FnV )).

Let W be an arbitrary element of FnV (not necessarily a monomial). Then, by
the well known construction of the canonical isomorphisms in the isomorphism
theorems, we have

π2 ◦ π1(W +Dp(V ) + Fn+1(V/Dp(V )))

= π2(W +Dp(V ) + Fn+1V ) = W + Fn+1V +Dp(FnV ).

So, since ⋃
i∈I′

{
W

(i,n)
j +Dp(FnV ) + Fn+1V | j ∈ N

}
is a basis of FnV/(Fn+1V +Dp(FnV )), we obtain that

(48)
⋃
i∈I′

{
W

(i,n)
j +Dp(V ) + Fn+1(V/Dp(V )) | j ∈ N

}
is a basis of Fn(V/Dp(V ))/Fn+1(V/Dp(V )).

We have the graded space

Gr(V/Dp(V )) =

N−1⊕
n=0

Fn(V/Dp(V ))/Fn+1(V/Dp(V )),

where Fn(V/Dp(V )) = (FnV +Dp(V ))/Dp(V ). Assume that{
Z

(n)

j | Z(n)

j ∈ Fn(V/Dp(V ))/Fn+1(V/Dp(V )), j ∈ N
}

is a basis of Fn(V/Dp(V ))/Fn+1(V/Dp(V )), n = 0, 1, . . . , N − 1. Then one can
easily show that

N−1⋃
n=0

{
Z

(n)
j | Z(n)

j ∈ Fn(V/Dp(V )), j ∈ N
}
,

where Z
(n)
j is an arbitrary representative of the coset Z

(n)

j , forms a basis of V/Dp(V ).

Hence, using this observation together with (48) and Corollary 4.11, we obtain that

N−1⋃
n=0

⋃
i∈I′

n

{
W

(i,n)
j + 〈T ′〉 | j ∈ N

}
is a basis of (V + 〈T ′〉)/〈T ′〉. �

Proposition 5.6. Let {Xj} be all the λ-semicanonical monomials of V . Then
there exists one-to-one correspondence between all the different spaces 〈Xj〉d and

all the spaces V
(n)
i from (46) such that V

(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )) is non-trivial.

Namely,

(1) every space V
(n)
i such that V

(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )) �= 0 is equal to

some space 〈Xj〉d;
(2) every space 〈Xj〉d is equal to some space V

(n)
i such that V

(n)
i /(Dp(V

(n)
i )+

L(V
(n)
i )) �= 0.
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Proof. Consider a space V
(n)
i such that V

(n)
i /(Dp(V

(n)
i )+L(V

(n)
i )) �= 0. Then

from Corollary 5.4 it follows that there exists a λ-semicanonical monomial Xj0 ∈
V

(n)
i such that V

(n)
i = 〈Xj0〉d.

Let Xj ∈ V be a λ-semicanonical monomial. Since FNV = 0, there exists a
number n0 such that Xj ∈ Fn0

V and Xj /∈ Fn0+1V . Then, by Proposition 4.12,

Xj ∈ V
(n0)
i for some i ∈ I ′n0

. Since Xj /∈ Fn0+1V , we have Xj /∈ L(V
(n0)
i ). Then,

by Lemma 4.2, V
(n0)
i = 〈Xj〉d. It remains to notice that, by Corollary 5.4, we have

V
(n0)
i /(Dp(V

(n0)
i ) + L(V

(n0)
i )) �= 0. �

The next theorem follows from Proposition 5.5 and Proposition 5.6.

Theorem 5.1. Let {Xj}j∈N be all λ-semicanonical monomials from F . Let
{Vi}i∈N be all the different spaces {〈Xj〉d}j∈N (Vi1 �= Vi2 for i1 �= i2). If{

W
(i)

j | W (i)

j ∈ Vi/(Dp(Vi) + L(Vi)), j ∈ N
}

is a basis of Vi/(Dp(Vi) + L(Vi)), then⋃
i∈N

{
W

(i)
j + I | j ∈ N

}
is a basis of Z2F/I, where W

(i)
j is an arbitrary representative of the coset W

(i)

j . In
particular,

Z2F/I ∼=
⊕
i∈N

Vi/(Dp(Vi) + L(Vi))

as vector spaces, and the right-hand side is explicitly described in Proposition 4.10.

Proof. Let us enumerate all the monomials from F , namely,
F = {U1, U2, . . . , Uk, . . .}. Then, evidently,

Z2F/I =

∞⋃
k=1

((〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉) .

Consider spaces 〈U1, . . . , Uk〉d ⊆ 〈U1, . . . , Uk, Uk+1〉d. For the quotient space
(〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉 we have decomposition (46), that is,

(〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉 ∼=
Nk−1⊕
n=0

⊕
i∈I′

n

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )),

where Nk is the number of non-zero levels of the filtration on 〈U1, . . . , Uk〉d.
Let {Xj} be all the λ-semicanonical monomials from 〈U1, . . . , Uk〉d. Then,

obviously, the set of all λ-semicanonical monomials from 〈U1, . . . , Uk+1〉d can be
represented as

{Xj} ∪ {X̃j},

where {X̃j} collects the additional λ-semicanonical monomials that contain in

〈U1, . . . , Uk, Uk+1〉d but do not contain in 〈U1, . . . , Uk〉d (in particular, the set {X̃j}
may be empty). Then from Proposition 5.6, it follows that decomposition (46) for
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(〈U1, . . . , Uk+1〉d + 〈T ′〉)/〈T ′〉 can be written as

(〈U1, . . . , Uk+1〉d + 〈T ′〉)/〈T ′〉 ∼=

⎛⎝Nk−1⊕
n=0

⊕
i∈I′

n

V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i ))

⎞⎠
⊕⎛⎝Nk+1−1⊕

n=0

⊕
h∈I′′

n

Ṽ
(n)
h /(Dp(Ṽ

(n)
h ) + L(Ṽ

(n)
h ))

⎞⎠ ,

where Nk+1 is the number of non-zero levels of the filtration on 〈U1, . . . , Uk, Uk+1〉d.
The set I ′′n collects the additional spaces Ṽ

(n)
h , not appearing in I ′n, that correspond

to additional monomials {X̃j}.
From Corollary 5.4, it follows that the spaces V

(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )) and

Ṽ
(n)
h /(Dp(Ṽ

(n)
h ) + L(Ṽ

(n)
h )) are non-trivial. We will choose a basis in every di-

rect summand V
(n)
i /(Dp(V

(n)
i ) + L(V

(n)
i )) and Ṽ

(n)
h /(Dp(Ṽ

(n)
h ) + L(Ṽ

(n)
h )) inde-

pendently. Then from Proposition 5.5, it easily follows that there exists a basis
Bk+1 of (〈U1, . . . , Uk+1〉d + 〈T ′〉)/〈T ′〉 such that it expands the previously chosen
basis Bk of (〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉. Therefore, finally, we will construct the
increasing sequence of basis

B1 ⊆ B2 ⊆ . . . ⊆ Bk ⊆ . . . .

Since the ring Z2F/〈T ′〉 is a union of the subspaces (〈U1, . . . , Uk〉d + 〈T ′〉)/〈T ′〉,
the union

⋃∞
k=1 Bk is a basis of Z2F/〈T ′〉 = Z2F/I. �

From Theorem 5.1 we obtain the claim that served as the main motivation.

Corollary 5.7. The quotient ring Z2F/I is non-trivial.

Remark 5.1. It is possible to choose a basis in every direct summand
Vi/(Dp(Vi) + L(Vi)), where Vi = 〈Zi〉d, Zi is a λ-semicanonical monomial, in the
following way. In Proposition 4.10, we have proved that Vi/(Dp(Vi) + L(Vi)) is
isomorphic to a tensor product of spaces that corresponds to each virtual member
of the chart of Zi. Namely, there exist spaces A1, . . . , Aki

defined by (32) and the
isomorphism

μ2[Zi] :A1/(Dp(A1) + L(A1))⊗ . . .⊗Aki
/(Dp(Aki

) + L(Aki
))

→ Vi/(Dp(Vi) + L(Vi))

defined by (36). So, if we choose a basis in all the different spaces Aj/(Dp(Aj) +
L(Aj)), this enables us to construct the corresponding basis in every direct sum-
mand Vi/(Dp(Vi) + L(Vi)).

From Proposition 5.2 it follows that Aj/(Dp(Aj)+L(Aj)) is generated by cosets
of λ-semicanonical generalized fractional powers that belong to Aj . We choose a
basis of Aj/(Dp(Aj) + L(Aj)) that consists of such cosets. Let

(b
(1)
l +Dp(A1) + L(A1))⊗ . . .⊗ (b

(ki)
l +Dp(Aki

) + L(Aki
)), l ∈ N,

be the basis elements, where b
(1)
l , . . . , b

(ki)
l are λ-semicanonical generalized fractional

powers. Then their images

μ2[Zi](b
(1)
l +Dp(A1) + L(A1))⊗ . . .⊗ (b

(ki)
l +Dp(Aki

) + L(Aki
))

= μ[Zi](b
(1)
l ⊗ . . .⊗ b

(ki)
l ) + Dp(Vi) + L(Vi)
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form a basis of Vi/(Dp(Vi + L(Vi)).
We put

(49) W
(i)
l = μ[Zi](b

(1)
l ⊗ . . .⊗ b

(ki)
l ).

Then from Theorem 5.1 it follows that

(50)

∞⋃
i=1

{W (i)
l + I | l ∈ N}

is a basis of Z2F/I. Notice that, by definition of μ[Zi], W
(i)
l are monomials. From

the description given in Section 3.1, it follows that the monomials W
(i)
l are (λ+2ε)-

semicanonical.
Notice that the constructed basis satisfies the following property. Assume U is

a monomial and there is the base decomposition

U + I =
∑
i,l

W
(i)
l + I.

Then every W
(i)
l in this decomposition is a derived monomial of U , in particular,

f(W
(i)
l ) � f(U).

6. Geometry of the multiplication

The linear span of all λ-semicanonical words is denoted by Sλ. However, it

turns out that that it is more convenient to define a subspace S̃λ for which Sλ ⊆
S̃λ ⊆ Sλ+2ε that contains all the elements of the basis of Z2F/I. The cosets

of elements of S̃λ linearly generate Z2F/I, and they display nice multiplication
properties. Namely, the result of the multiplication can be represented as a sum of

monomials from S̃λ that form thin triangles with the factors.

6.1. Definition of the space S̃λ. Let U be a (λ + 2ε)-semicanonical word
and a be a virtual member of its chart. Assume l and r are virtual members of
the chart of U such that l and r are the left and the right neighbour of a in the
chart, respectively. Let al be an overlap between a and l (possibly empty), ar be
an overlap between a and r (possibly empty). Then a = alamar.

U l al am ar
r

U l al am
ar is empty

U am ar
r

al is empty

U am
both ar and al are
empty

Definition 6.1 (S̃λ-condition). We say that a virtual member of the chart a

satisfies S̃λ-condition if the subword am of a defined above is λ-semicanonical.

We denote by S̃λ a linear span of words such that each virtual member of the

chart of a word satisfies the S̃λ-condition. Clearly, every monomial that belongs to

S̃λ is (λ+ 2ε)-semicanonical.
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Notice that unlike words from Sλ, words from S̃λ may contain subwords that

do not belong to S̃λ.
Recall that in the previous section we constructed a linear basis in Z2F/I,

see (50). By formula (49) (since b
(1)
l , . . . , b

(ki)
l are λ-semicanonical), we obtain that

the monomials W
(i)
l (the fixed representatives of the basis elements) belong to S̃λ.

Assume a monomial Uh = LahR ∈ S̃λ and let ah be a virtual member of its
chart. Let Uh �→

∑m
j=1
j �=h

Uj be a multi-turn that comes from an elementary multi-

turn ah �→
∑m

j=1
j �=h

aj such that aj are λ-semicanonical generalized fractional powers.

Consider monomials Uj = LajR such that aj is a virtual member of the chart of
Uj . Then, by Corollary 3.7, we obtain that the images of all virtual members of
the chart of U are virtual members of the chart of Uj . Hence, by the definition of

the space S̃λ, we immediately obtain that these monomials belong to S̃λ even if the
neighbours of ah are prolonged in Uj .

Assume a monomial Uh = LahR is a λ-semicanonical word and we perform a
multi-turn of ah as above. If again we consider monomials Uj = LajR such that aj
is a virtual member of the chart of Uj , then Uj is not necessarily λ-semicanonical,
because the neighbours of ah may prolong in Uj and become λ-forbidden. That is

why the space S̃λ is more convenient in our further proofs.

6.2. Behaviour of S̃λ with respect to multi-turns. As above, assume

Uh = LahR ∈ S̃λ, ah is a virtual member of its chart, Uh �→
∑m

j=1
j �=h

Uj is a multi-

turn that comes from an elementary multi-turn ah �→
∑m

j=1
j �=h

aj such that aj are

λ-semicanonical generalized fractional powers. Let us describe in detail monomials
Uj such that aj is not a virtual member of the chart of Uj . We split these monomials
into three groups in the same way as we did in Section 3.1.

(1) LajR, where Λ(aj) > ε;
(2) LajR, where aj = 1;
(3) LajR, where Λ(aj) � ε, aj �= 1.

Being a λ-semicanonical word depends only on the Λ-measure of every vir-
tual member of the chart. Hence, a resulting monomial of a multi-turn of a
λ-semicanonical word may become non-λ-semicanonical only if the Λ-measure of
some virtual members of the chart increases and λ-forbidden subwords appear in

this monomial. One can see that the S̃λ-condition depends on a virtual member of
the chart itself and on its neighbours and the notion of virtual member of the chart

depends on the whole monomial. Hence, the S̃λ-condition on a virtual member of
the chart may not be hold in a resulting monomial of a multi-turn not only when
the virtual member of the chart changes itself, but when the virtual member of the
chart stay unchanged but some other maximal occurrence becomes shorter. Let us
study the possibilities in detail.

Consider monomials of type 1. Let us use notations from Section 3.1. We
assume that bh is the left neighbour of ah in the chart of Uh, bj is a maximal
occurrence of a generalized fractional power corresponding to bh in the chart of Uj .

(1) If bh and ah are separated or touch at a point and Λ(bh) < τ , then bj may

become not a virtual member of the chart and the S̃λ-condition may not
hold for its left neighbour.
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Uh

d

bh
ah

Λ(d) = λ + ε, d is
λ-forbidden

Uj

d

bj
aj

(2) If we have configurations 1.3 or 1.4 (page 13) for bj , then bj may become

not a virtual member of the chart and the S̃λ-condition may not hold for
its left neighbour.

Uh

d

bh
ah

Λ(d) = λ + ε, d is
λ-forbidden

Uj

d

bj
aj

(3) Suppose we have configurations 1.1, 1.2 (page 12) or bj = bh. If bj contains

a λ-forbidden subword d that has an overlap with aj , then the S̃λ-condition
may not hold for bj (because aj is not a virtual member of the chart).

Uh

d

bh ah

Λ(d) = λ + ε, d is
λ-forbidden

Uj

d

bj aj

Obviously, the effects for the right neighbour of ah in the chart are the same.
Consider monomials of type 2. First we do cancellations in Uj = LR if possible,

after that we obtain U ′
j = L′R′. Recall that we suppose that a is a maximal

occurrence of a generalized fractional power that is a terminal subword of L′, b is
a maximal occurrence of a generalized fractional power that is an initial subword
of R′, a′ and b′ are generalized fractional powers that prolong a and b in L′R′

respectively.

(1) In any configuration except 2.1, there may be a maximal occurrence bh,
Λ(bh) < τ , fully contained in the subword L′ that becomes not a virtual

member of the chart of L′R′. Then the S̃λ-condition may not hold for its
left neighbour.

R′L′

d

bh

Λ(d) = λ + ε, d is
λ-forbidden

The same may happen in the subword R′.
(2) Suppose we have configuration 2.2 (page 14). Then a′ or b′ may contain a

λ-forbidden subword and do not satisfy the S̃λ-condition. We may obtain
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this situation if the right neighbour of a′ in the chart of L cancels out up
to the end of a′ or if the left neighbour of b′ in the chart of R cancels out
up to the beginning of b′.

L′ R′

d

a′
b′

Λ(d) = λ + ε, d is
λ-forbidden

(3) Suppose we have configuration 2.2 or 2.3 (page 14). In this case, a′ may
become too short after cancellations and may not be counted as a virtual
member of the chart. If the left neighbour of aj contains a λ-forbidden
subword d that has an overlap with a′, then the word L′R′ may not belong

to S̃λ.

L′ R′

d

a′
b′

Λ(d) = λ + ε, d is
λ-forbidden

We may obtain a similar effect for the right neighbour of b′.
(4) If we have configuration 2.3 (page 14), then a′ or b′ may contain a λ-

forbidden subword that does not satisfy the S̃λ-condition. For example,
we may obtain this case when b′ is not a virtual member of the chart and
a′ contains a λ-forbidden subword d that has an overlap with b′.

L′ R′

d

a′
b′

Λ(d) = λ + ε, d is
λ-forbidden

(5) Suppose we have configuration 2.4 (page 14) and ab is not a virtual mem-
ber of the chart. If the left or the right neighbour of ab contains a λ-
forbidden subword d that has an overlap with ab, then the word L′R′ may

not belong to S̃λ (similar to 3).

L′ R′

d

ab

Λ(d) = λ + ε, d is
λ-forbidden

(6) If we have configuration 2.4 (page 14), the S̃λ-condition may not hold for
ab.

Consider monomials of type 3. Recall that we suppose that a is a maximal
occurrence of a generalized fractional power that is a terminal subword of L, b is
a maximal occurrence of a generalized fractional power that is an initial subword
of R, a′ and b′ are generalized fractional powers that prolong a and b in LajR,
respectively.

(1) In any configuration except 3.1 there may be a maximal occurrence bh,
Λ(bh) < τ , fully contained in the subword L that becomes not a virtual

member of the chart of Uj . Then the S̃λ-condition may not hold for its
left neighbour.

Uj

d

bh
aj

Λ(d) = λ + ε, d is
λ-forbidden
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The same may happen in the subword R.
(2) If we obtain configuration 3.2 (page 15), then a′ may be too short to be

counted as a virtual member of the chart. In this case, the S̃λ-condition
may not hold for its left neighbour.

L R

d

a′ aj

Λ(d) = λ + ε, d is
λ-forbidden

Clearly, we may obtain a similar effect for the right neighbour of b′.
(3) Suppose we have configuration 3.3 or 3.4 (page 15). Then a′ or b′ may

contain a λ-forbidden subword d that does not satisfy the S̃λ-condition.

L R

d

a′ aj

Λ(d) = λ + ε, d is
λ-forbidden

L R

d

a′
b′aj

Λ(d) � λ + ε, d is
λ-forbidden

(4) If we obtain configuration 3.5 (page 16), the S̃λ-condition may not hold
for the virtual member aajb.

6.3. Multiplication of words from S̃λ. In Proposition 5.1 we showed one
possible way of transformation of an arbitrary generalized fractional power into a
sum of λ-semicanonical generalized fractional powers. But some of the obtained
elements may have Λ-measure less than the given threshold τ . In the further
argument in Section 6.3, it is more convenient to deal with multi-turns such that
all the resulting λ-semicanonical generalized fractional powers are of Λ-measure not
less than τ . In the following proposition, we construct an elementary multi-turn
with this property.

Proposition 6.1. Suppose ah is a generalized fractional power. Then there

exists an elementary multi-turn ah �→
∑k

j=1
j �=h

aj such that aj are λ-semicanonical

generalized fractional powers and Λ(aj) � τ , j �= h, i.e., aj is always counted as a
virtual member of the chart (possibly with greater word length and Λ-measure than
ah).

Moreover, one can choose this multi-turn such that every aj, j �= h, does not
contain subwords of v−1 of Λ-measure greater than ε.

Proof. Let us construct this elementary multi-turn directly using Defini-
tion 2.4. If we consider v as an element of the field Z2(w) such that v−1 = 1 + w,
then in Z2(w) we have 1 = vw + v and

(51) v−1 = 1 + w = (vw + v) + (vw + v)w = v + vw2.

Therefore, in Z2(w) we have v
−m = (v+vw2)m. Hence, the non-commutative Lau-

rent polynomial x−m
1 +(x1+x1x

2
2)

m, m > 0, satisfies (8). Hence, the transformation
in Z2F
(52) v−m �→ (v + vw2)m,m > 0,

is an elementary multi-turn.
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Suppose Mh(v, w) is a non-commutative monomial in v, w, that is,

Mh(v, w) = wk1vl1 · · ·wknvln ,

where ki, li ∈ Z. Again consider Mh(v, w) as an element of the field Z2(w) such that
v−1 = 1+w. Then, since v and w commute in Z2(w), we have wk1vl1 · · ·wknvln =
wkvl, where k =

∑n
i=1 ki, l =

∑n
i=1 li. Hence, the non-commutative Laurent

polynomial xk1
2 xl1

1 · · ·xkn
2 xln

1 + xk
2x

l
1 satisfies (8). Therefore, the transformation in

Z2F

(53) wk1vl1 · · ·wknvln �→ wkvl, k =

n∑
i=1

ki, l =

n∑
i=1

li,

is an elementary multi-turn. If l =
∑n

i=1 li < 0, from (52) it follows that

(54) wk1vl1 · · ·wknvln �→ wk(v + vw2)−l

is an elementary multi-turn. Since 1 �→ v + vw is an elementary multi-turn, if
l =

∑n
i=1 li = 0, we obtain that

(55) wk1vl1 · · ·wknvln �→ wk(v + vw)

is an elementary multi-turn. Using (53)–(55), for every l =
∑n

i=1 li we obtain a
multi-turn

(56) Mh(v, w) �→
s∑

j=1
j �=h

Mj(v, w),

where every Mj(v, w), j �= h, does not contain negative powers of v and contains
at least one positive power of v.

By definition, a generalized fractional power is a subword in a non-commutative
monomial over the words v and w. Recall that the types of generalized fractional
powers are enumerated in (5) – (7). Clearly, if we consider generalized fractional
powers with the possibility of cancellations, we obtain that ah before cancellations
has one of the following forms:

vfMh(v, w)vi,

vmvfMh(v, w)vivm,

wfMh(v, w)vi,

vfMh(v, w)wi,

wfMh(v, w)wi,

wmwfMh(v, w)wiwm,

where Mh(v, w) is a monomial over the words v and w.
Suppose ah = vfMh(v, w)vi, where vfM(v, w)hvi may have cancellations. From

(56) it follows that the transformation vfM(v, w)hvi �→
∑s

j=1
j �=h

vfMj(v, w)vi is an

elementary multi-turn after all possible cancellations in monomials are done. That
is,

(57) ah �→
s∑

j=1
j �=h

vfMj(v, w)vi

is an elementary multi-turn.
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Let us check that (57) satisfies the conditions of Proposition 6.1. Since every
Mj(v, w), j �= h, contains only positive powers of v and v has no cancellations with
w and w−1, every monomial in the right hand side of this multi-turn is of Λ-measure
not less than 1, that is, it is especially of Λ-measure not less than τ . Since wk can
not contain subwords of v and v−1 of Λ-measure greater than ε, every monomial in
the right hand side does not contain subwords of v−1 of Λ-measure greater than ε.
Thus, multi-turn (57) satisfies the conditions of Proposition 6.1.

In a similar way we deal with ah of the other form and we obtain multi-turns

ah �→
s∑

j=1
j �=h

vmvfMj(v, w)vivm, ah �→
s∑

j=1
j �=h

wfMj(v, w)vi,

ah �→
s∑

j=1
j �=h

vfMj(v, w)wi, ah �→
s∑

j=1
j �=h

wfMj(v, w)wi,

ah �→
s∑

j=1
j �=h

wmwfMj(v, w)wiwm,

(58)

possibly after cancellations in the right hand sides. Notice that only subwords of w
may be involved in cancellations. By the same argument as (57), it is proved that
multi-turns (58) satisfy the conditions of Proposition 6.1. �

Let U1 and U2 be monomials from S̃λ. Then their product U1U2 may not

belong to S̃λ. According to Corollary 5.2, every monomial is equal to a sum of
words from Sλ modulo I. Moreover, every monomial is equal to a sum of words

from S̃λ modulo I, since Sλ ⊆ S̃λ. We will represent U1U2 as a sum of monomials

from S̃λ. In this section, we analyse the process of reduction of the word U1U2

to a sum of words from S̃λ modulo I in detail. In parallel we will describe the
multiplication diagram that encrypts the history of this process.

The process of the reduction of U1U2 is as follows.

Step 1 Cancel U1U2 if possible. The multiplication diagram that encrypts can-
cellations is of the form

U ′
1 U ′

2

U ′−1
U ′

P

U1 = U ′
1U

′

U2 = U ′−1
U ′
2

U = U ′
1U

′
2 has no further cancellations

Let U = U ′
1U

′
2. Now we consider the chart of U . As we described in Section 3.1,

we have one of configurations 2.1–2.4 (pages 14–14). If we have configuration 2.4
and the generalized fractional power that is obtained as a result of merging does

not satisfy S̃λ-condition, then we go to Step 2 of the reduction process. So, let us
first describe this case.

Denote the generalized fractional power that is obtained as a result of merging
by ah, U = LahR.
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L R

U ′

ah P

Suppose ah does not satisfy the S̃λ-condition. Then the next step of the multipli-
cation process is as follows.

Step 2 According to Proposition 6.1, a λ-forbidden virtual member ah can be
reduced to a sum of λ-semicanonical generalized fractional powers using

an appropriate elementary multi-turn ah �→
∑k

j=1
j �=h

aj , Λ(aj) � τ . So,

perform the multi-turn U = LahR �→
∑k

j=1
j �=h

LajR, which comes from this

elementary multi-turn.

Since Λ(aj) � τ , the resulting monomials LajR belong to S̃λ.
The monomial ah corresponds to a unique path in the v-diagram (see Defini-

tion 2.3 is Section 2) with the initial point I and the final point F . The monomials
aj , j = 1, . . . , k, correspond to certain paths in this v-diagram with the same initial
point I and the same final point F . Then we add this v-diagram to the bottom of
the multiplication diagram, gluing the point I with the end of L and point F with
the beginning of R. The previous part of the multiplication diagram is glued to the
added v-diagram at the same point on ah as before.

L R

I F

P

U ′

So, one can read the monomials LajR, j = 1, . . . , k, in the low level of the obtained
diagram. So far for Step 2.

Now consider configurations 2.1–2.3 in U = U ′
1U

′
2 after Step 1. Then the

monomial U also may not belong to S̃λ. According to the classification given in

Section 6.2, U contains at most two subwords that do not satisfy the S̃λ-condition,
one comes from the chart of U1 and the other comes from the chart of U2 (see
analysis of monomials of type 2, page 68; although here we deal with a product of

two words from S̃λ, this analysis is still applicable).
First assume that U contains only one virtual member of the chart that does

not satisfy the S̃λ-condition. To be precise, assume that it comes from the chart of
U1, denote it by bh. Then there are the following possible configurations depending
on the position bh with respect to the point P :

U bh P

U bh P

U bh P

As above we perform a multi-turn LbhR �→
∑k

j=1
j �=h

LbjR from Proposition 6.1 that

reduces bh. Since Λ(bj) � τ , the resulting monomials LbjR belong to S̃λ.
We add a new v-diagram to the multiplication diagram as we described above

and obtain the final multiplication diagram.
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L RP

L RP

L RP

L RP

Now assume that U contains two virtual members of the chart that do not
satisfy the S̃λ-condition, denote them by bh and ch. Then there are the following
possible configurations depending on the position of bh and ch with respect to the
point P .

U bh P ch

U bh P ch

U bh P ch

U bh P ch

U bh P ch

U bh P ch

U bh P ch

U bh P ch

U bh P ch

Then first, as above, we perform a multi-turn LbhR �→
∑k

j=1
j �=h

LbjR from Propo-

sition 6.1 that reduces bh. Since Λ(bj) � τ , in every monomial LbjR the image of

ch is the only virtual member of the chart that does not satisfy the S̃λ-condition.

Denote the image of ch in the monomial LbjR by c
(j)
h . So, in every monomial LbjR

we perform a multi-turn from Proposition 6.1 that reduces c
(j)
h . As a result, we

obtain a sum of monomials from S̃λ.

After the reduction of c
(j)
h , we glue a new v-diagram to the multiplication dia-

gram obtained after the reduction of bh and obtain the final multiplication diagram.
Let us illustrate the first three configurations of bh and ch. The multiplication di-
agrams for the remain configurations are constructed similarly.

L R
P
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L R

P

L RP

So, finally we obtain the multiplication diagram as a thin triangle. The result

of the multiplication is a sum of words from S̃λ that correspond to certain paths in
the low level of the obtained thin triangle.

Thereby, we proved the following theorem.

Theorem 6.1. Assume U1+I, U2+I ∈ Z2F/I, where U1 and U2 are monomi-

als from S̃λ. Then there exist monomials Z1, . . . , Zk from S̃λ such that U1U2+I =∑k
i=1 Zi + I, and U1, U2 and Zi form a thin triangle consists of v-diagrams for

every i = 1, . . . , k.

Remark 6.1. If we use not an elementary multi-turn from Proposition 6.1, but

rather an arbitrary elementary multi-turn ah �→
∑k

j=1
j �=h

aj in order to reduce ah at

Step 2, some aj may be of Λ-measure � ε. In this case, we may obtain further
merging of virtual members of the chart of LajR. Namely, the cases 2.4 and 3.5
(pages 14, 16), in which the neighbours of aj in the chart merge, are possible. For
example, for 3.5 we have

l aj

U ′

r

merged virtual
member of the chart

If there exists aj = 1, we may obtain cancellations in the resulting monomial that
contain aj = 1.

So, when we reduce U1U2, we obtain a sequence of Steps 1 and 2. We can
think of it as of a branching process, starting from the monomial U1U2. After each
execution of Step 1 we obtain one monomial, after each execution of Step 2 we
obtain a sum of monomials. Each monomial in the sum is treated independently
and potentially gives us a new branch of the process. Since we may obtain merging
of virtual members of the chart or cancellations at most in one resulting mono-
mial, the process stops in all branches except at most one after each step. From
Proposition 4.4, it follows that finally the process stops in all branches.

For every branch of the process, we can construct a multiplication diagram in
the same way as above. If we do an arbitrary multi-turn in order to reduce the
monomials obtained after the end of the sequence of Steps 1 and 2 in a branch, we
may obtain a multiplication diagram that is not a thin triangle, but has a form of
tree. Nevertheless, the reduction of these monomials can be done using multi-turns
described in Proposition 6.1, and in this case the multiplication diagram for every
branch of the process again is a thin triangle but of more complicated form
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...

So, we obtain the multiplication diagram of the whole multiplication process as a

set of thin triangles. The result of the multiplication is a sum of words from S̃λ

that correspond to certain paths in the low levels of the obtained thin triangles.

References

[1] G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218,
DOI 10.1016/0001-8708(78)90010-5. MR506890

[2] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319,
Springer-Verlag, Berlin, 1999. MR1744486

[3] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes: Les groupes
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