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I. INTRODUCTION

The soliton is one of the fundamental concepts of modern
physics. A solitary wave capable of being formed in nonlinear
dispersive media and possessing the property of elastically in-
teracting with waves similar to itself is customarily called a
soliton. This means that, at some time after two or more sol-
itons collide, they completely recover their original profiles. It
should be once more emphasized here that all this occurs in
a nonlinear medium. Therefore, the superposition principle, as
understood in linear media, is invalid. Solitons interact with
each other, being initially deformed and then recovering their
original parameters. This property reflects the deep mathematical
structure of hyperbolic equations, which possess soliton solu-
tions. Unlike linear equations, no general methods or recipes ex-
ist here. Each equation or system has to be considered separately.

Fairly many equations and systems are currently known
that generate soliton solutions.1 In an applied sense, a good
“supplier” of such equations is nonlinear optics.2 Various
equations have been obtained that describe the propagation
of optical solitons with a width from nano–to femtoseconds.3,4

Both quasi-monochromatic solitons that contain from ten to a
million light oscillations and broad-band solitons with a width
of up to one optical period5 (ultrashort pulses, or USPs) are
considered. Good results have been obtained in the former
case from the approximation of a slowly varying envelope
(SVE).4 However, the given approximation is invalid in the
latter case, and other approaches have to be used that satisfy
the initial equations. Here the most satisfactory approximation
is that of a slowly varying profile (SVP), which makes it pos-
sible, as in the case of an SVE, to reduce the wave equation
from second to first order.1 However, the equation is now writ-
ten not for the envelope of the electric field of the pulse, but
for the field itself. In this case, we neglect the wave reflected
from the deformation of the medium induced by it because
of nonlinearity, and we take into account only the wave that

propagates forward. It is for this reason that the wave equation
is reduced from second to first degree.

Studies devoted to methods of generating terahertz radi-
ation are attracting more and more interest. It is customary to
include electromagnetic frequencies from 0.1 to 10 THz in this
range, and this approximately corresponds to wavelengths in
the 1–0.01-mm interval. The sensitivity of the vibrational, ro-
tational, vibrational–rotational, tunneling, and other quantum
transitions to the terahertz (THz) range creates important pros-
pects in the development of THz spectroscopy. Signals in the
THz range today are finding many applications in image pro-
cessing, security systems, astronomy, biology, medicine, and
other areas.6,7

One of the most efficient generation methods is that based
on the mechanism of optical rectification.8 In this case, the
spectrum of the THz signal is broad-band—i.e., the spectral
pulse width is commensurable with the central frequency of its
spectrum. The width of the generated pulse is such that it en-
compasses about one period of the oscillations of the THz
range. Thus, with the optical method of generation, a THz sig-
nal possesses the properties of a USP. This means that the SVE
approximation is inapplicable in the theoretical treatment of
the interaction of such a pulse with matter.

It should be pointed out that the interaction of THz radi-
ation with matter is less studied by comparison with the radi-
ation of other frequency ranges. It therefore becomes necessary
to construct theoretical models that describe such interaction.
Here it is extremely difficult to construct any universal theory.
One can more likely hope to describe interaction processes in
which the dynamics mainly involve some kind of isolated de-
grees of freedom or quantum transitions. As mentioned above,
tunneling states of the medium, in particular, can be suscep-
tible to intense interaction with THz radiation. Such states
are encountered, for example, in ferroelectrics of the order–
disorder type,9 in polymers that contain organic molecules,10
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metamaterials consisting of quantum dots,11,12 wells, fila-
ments, etc.

The soliton topic in the scientific press has mainly related
to the optical and near-IR frequency ranges and has virtually
avoided the THz range. Meanwhile, because the number of
applications of the THz electromagnetic range is increasing,
it has become necessary to carry out the corresponding studies.

This paper is devoted to a brief discussion of situations in
which it is possible to form broad-band solitons whose spec-
trum lies in the THz range.

II. OPTICO-TERAHERTZ SOLITONS

The essence of the optical method mentioned above for
generating broad-band THz radiation in quadratically nonlin-
ear media, based on the optical rectification effect, is as fol-
lows: A femtosecond optical pulse whose spectrum contains
frequencies at the difference of which THz radiation can be
generated is fed to a nonlinear medium. The generation con-
dition can be obtained from the laws of the conservation of
momentum and energy for elementary scattering events. The
dispersion law of light for a crystal has the form ω�k�, where
ω is the frequency of the light wave, and k is the wave number
that corresponds to the given frequency. Let the frequency and
the wave vector of the generated THz signal equal, respec-
tively, Ω and q. The law of conservation of energy and
momentum is written in the form ω�k� � ω�k − q� �Ω�q�.
Taking into account that q ≪ k, we have ω�k − q� ≈ ω�k� −
q · ∂ω∕∂k � ω�k� − q · vg, where vg is the group velocity vec-
tor of an optical pulse with wave vector k. Introducing angle φ
between v and q, we get

cos φ � vph∕vg; (1)

where vph � Ω∕q is the phase velocity corresponding to the
frequency Ω of the THz signal.

We have from Eq. (1) that the optical group velocity must
exceed the phase velocity in the THz range—i.e., the gener-
ation has a Cherenkov nature.

Let the width of an input femtosecond pulse with carrier
frequency ω equal τp. Its spectral width is then δω ∼ 1∕τp.
This quantity has the meaning of the distance in frequency
between the “edge” Fourier components of the spectrum of
the pulse or the characteristic frequency Ω of the generated
signal. We thus have Ωτp ∼ 1. It is assumed that the width
of the input optical and generated THz pulses are of the same
order of magnitude. Consequently, the THz signal contains ap-
proximately one vibrational period. Its spectral width in this case
is of the same order as the central frequency of the spectrum.
That is, the given signal possesses the properties of a supercon-
tinuum. Taking τp ∼ 100 fs, we find for the central frequency of
the spectrum of the generated signal ν ≈ δω∕�2π� ∼ 1 THz.

The idea of generating a THz pulse by means of a femto-
second optical pulse was first expressed in a theoretical pa-
per.13 A Cherenkov pulse was recorded experimentally some
time later.14,15

When the propagation is noncollinear because the femto-
second pulse and the generated THz pulse are spatially sepa-
rated, the generation efficiency is not high and equals 10−6–10−5

with respect to energy. It therefore becomes necessary to imple-
ment collinear geometry �φ � 0�. In this case, the condition
given in Eq. (1) takes the form

vg�ω� � vph�Ω�: (2)

Here the parentheses indicate the arguments in order to empha-
size that the group velocity relates to the optical range of
frequencies, while the phase velocity relates to the THz range
of frequencies.

In the theory of nonlinear waves of various physical na-
tures, the condition given in Eq. (2) is called the Zakharov–
Benney resonance (ZBR) condition.1

Nonlinearity that is quadratic in the field is needed for the
generation method described above.

Let the light pulse and the THz signal generated by it
propagate along the z axis, normal to the optical axis of the
crystal. We then write the wave equation and the expansion
of the polarization response P in powers of electric field E,
respectively, in the form

∂2E
∂z2

−

1

c2
∂2E
∂t2

� 4π

c2
∂2P
∂t2

; (3)

P�z; t� �
Z

∞

0

χ�τ�E�z; t − τ�dτ

�
Z

∞

0

dτ2

Z
∞

0

χ2�τ1; τ2�E�z; t − τ1�E�z; t − τ2�dτ1;

(4)

where t is time, c is the speed of light in vacuum, and χ and
χ2 are the linear and quadratically nonlinear susceptibilities,
respectively.

We represent the field in the form of a sum of the THz ET

and an optical component with a slowly varying envelope ψ ,

E � ET � Ψ�z; t� exp�i�ωt − kz�� �Ψ��z; t� exp�−i�ωt − kz��:
(5)

Substituting Eq. (5) into Eq. (4), we take into account
the linear group dispersion of the light signal by means of the
expansion

Ψ�z; t − τ� ≈ Ψ�z; t� − τ
∂Ψ
∂t

� τ2

2

∂2Ψ
∂t2

−

τ3

6

∂3Ψ
∂t3

: (6)

However, in the terms of the nonlinear part of the re-
sponse given in Eq. (4), we set ψ�z; t − τ1� ≈ ψ�z; t − τ2� ≈
ψ�z; t�, ET �z; t − τ1� ≈ ET �z; t − τ2� ≈ ET �z; t�. Moreover, be-
cause jψ j2 ≫ E2

T , we neglect the intrinsic nonlinearity of the
THz component. This nonlinearity is determined by the square
of the electric field ET . We also throw away the last term in the
expansion given in Eq. (6). Then, applying the SVE approxi-
mation to ψ and the SVP approximation to ET and using the
condition given in Eq. (2), we arrive at the Yajima–Oikawa
(YO) system16,17

i

�
∂Ψ
∂z

� 1

vg

∂Ψ
∂t

�
� −

k2
2

∂2Ψ
∂t2

� aETΨ; (7)
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∂ET

∂z
� 1

vg

∂ET

∂t
� −σ

∂
∂t
�jΨj2�; (8)

where the group velocity is defined by vg � c�1�
2π�χω � ω∂χω∕∂ω��−1, k2 � 2π�2∂χω∕∂ω� ω∂2χω∕∂ω2�∕c
is the second-order group-velocity dispersion (GVD) coeffi-
cient, and parameters a and σ characterize the quadratic linear-
ity; in this case, a � 4πωχ�2��ω; 0�∕c, σ � 4πχ�2��ω;−ω�∕c,
χ�2��ω1; ω2� � R

dτ2
R
χ2�τ1; τ2� exp�−1�ω1τ1 � ω2τ2��dτ1,

and χω � R
χ�τ� exp�−iωτ�dτ.

The YO system is integrable.1 Its soliton solution has the
form

Ψ � jk2j
τp

ffiffiffiffiffi
Ω
aσ

r
exp�−i�Ωt − qz��sech

�
t − z∕v
τp

�
; (9)

ET � −

k2
aτ2p

sech2
�
t − z∕v
τp

�
; (10)

where Ω is the nonlinear red shift of the carrier frequency of
the optical pulse, τp is the duration of the soliton, v and q are its
velocity and a nonlinear additive to the wave number, deter-
mined by the expressions

1

v
� 1

vg
− k2Ω; q � k2

2
�τ−2p − Ω2� � Ω

vg
: (11)

It follows from Eqs. (11) that the red shift is proportional
to the intensity of the optical component of the soliton. This
conclusion has been confirmed experimentally.18

Numerical experiments carried out with the YO system of
Eqs. (7) and (8) show that, along with the unipolar half-wave
soliton of Eq. (10), a similar half-wave surge appears with po-
larity opposite to that of the soliton of Eq. (10). When k2 is
positive, this surge lags behind the optico-terahertz soliton of
Eqs. (9) and (10); otherwise it outruns it. In both cases, the
velocity of the given surge equals the linear velocity vg. This
is understandable, since there is no optical component in the
region of the given surge. Then, as can be seen from Eq. (8),
the ET dynamics obey a linear unidirectional wave equation.
On the other hand, as the combined THz surge considered here
propagates, the intrinsic nonlinear and dispersion effects
should build up. The system of Eqs. (7) and (8) should be
modified accordingly in order to take these effects into ac-
count. In this case, the intrinsic nonlinearity of the THz res-
ponse discarded above should be taken into account in Eq. (4),
and ET �z; t − τ� ≈ ET �z; t� − τ∂ET∕∂t � 0.5τ2∂2ET∕∂t2 should
be used in its linear parts. Besides this, we take into account
the last term in the expansion given in Eq. (6) and the inertia-
less cubic nonlinearity of the optical component, setting
ψ�z; t − τ1;2� ≈ ψ�z; t� − τ1;2∂ψ∕∂t in the quadratically nonlin-
ear part of the response. We then arrive at the following gen-
eralized system of Eqs. (7) and (8):

i

�
∂Ψ
∂z

� 1

vg

∂Ψ
∂t

�
� −

k2
2

∂2Ψ
∂t2

� i
k3
6

∂3Ψ
∂t3

� aETΨ

− ibΨ
∂ET

∂t
− iμET

∂Ψ
∂t

� εjΨj2Ψ; (12)

∂ET

∂z
� 1

vg

∂ET

∂t
� η

∂3ET

∂t3
− λET

∂ET

∂t
− σ

∂
∂t
�jΨj2�

� ig
∂
∂t

�
Ψ� ∂Ψ

∂t
−Ψ

∂Ψ�

∂t

�
: (13)

Here k3 � 2π�3∂2χω∕∂ω2 � ω∂3χω∕∂ω3�∕c is the third-order
optical GVD parameter, η � π�∂2χ∕∂ω2�jω�0∕c is the THz
dispersion parameter, b � 4πχ�2��ω; 0�∕c, μ � 4π�χ�2��ω; 0��
ω∂2χ�2��ω; 0�∕∂ω2�∕c, λ � 4πχ�2��0; 0�∕c, coefficient g is de-
termined exclusively by the dispersion of the quadratic non-
linearity: g � 4π�∂χ�2�∕∂ω�∕c, ε � 6πχ�3��ω;ω;−ω�∕c, and
χ�3��ω;ω;−ω� is the nonlinear cubic susceptibility that corre-
sponds to the carrier frequency of the optical pulse.

The last term in Eq. (13) determines the effect of the
phase of the optical pulse on the generation of the THz radi-
ation. The idea of this effect was suggested to the author by
A. P. Sukhorukov in 2013. A study in the fixed-field approxi-
mation of the optical pulse was carried out in Ref. 19.

With the definite relationships between the coefficients in
Eqs. (12) and (13) established in Ref. 20, the given system
turns out to be integrable and generates solitons in the strict
sense, which experience elastic interaction with each other.
In this case, the one-soliton solution of Eqs. (12) and (13)
coincides with the solution of Eqs. (9) and (10). However,
parameters v and q, unlike Eq. (11), are now determined by
expressions of the form

1

v
� 1

vg
− k2Ω� k3

6

�
3Ω2

−

1

τ2p

�
;

q � Ω
vg

−

�
k2 �

k3Ω
3

�
Ω2

2
� k2 − k3Ω

2τ2p
: (14)

It can be seen from this that the soliton’s velocity now
depends on its duration. Moreover, the qualitative character
of this dependence is determined by the sign of the third-order
group dispersion: When k3 > 0, the soliton’s velocity increases
as its duration gets shorter, and it decreases when k3 < 0.

Shortening the width τp of a light pulse strengthens the
role of its phase. Taking typical values of the carrier frequency
of a light signal that corresponds to the visible region, it is easy
to conclude that what has been said occurs for widths of the
order of 10 fs. For even shorter widths, the validity of the SVE
approximation and, as a consequence, the validity of the sys-
tem of Eqs. (12) and (13) can be in doubt for the optical signal.

Thus, to describe the self-consistent generation regime of
THz radiation as the width of the optical pulse decreases to
10 fs, it is necessary to modify the YO system, in which the
influence of the phase of the given pulse is neglected. This is
especially important in the neighborhood of small values of
the second-order GVD parameter. The system of Eqs. (12) and
(13) solves the given problem.

III. EXCLUSIVELY TERAHERTZ SOLITONS

If Ω � 0 is formally set in Eq. (9), we get ψ � 0.
Then, from Eq. (13), we have for ET the Korteweg–de Vries
equation
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∂ET

∂z
� 1

vT

∂ET

∂t
� η

∂3ET

∂t3
− λET

∂ET

∂t
; (15)

which has a soliton solution of the form

ET � −

3η

λτ2p
sech2

�
t − z∕v
2τp

�
; (16)

where the soliton velocity v is determined by

1

v
� 1

vg
−

η

τ2p
: (17)

It follows from what was explained in the preceding sec-
tion that, after an optical pulse is supplied to a crystal, con-
nected optico-terahertz soliton states and exclusively THz
solitons can be formed virtually simultaneously in the process
of the dynamics.

The THz soliton given in Eq. (16) is formed in a quad-
ratically nonlinear medium in the spectral region lying below
the frequencies of the THz absorption (η > 0).

We now consider the situation in which the spectrum of
the THz signal covers the resonance frequencies of the medium.
It was pointed out above that the THz region includes, for ex-
ample, the frequencies of the tunnel transitions. Therefore, be-
low we study the nonlinear propagation of a broad-band THz
pulse in a medium formed by tunnel transitions.

The characteristic frequency ω21 of a transition between
tunnel states is of the order of 1012 sec−1. Let the characteristic
time scale tp of a THz pulse be of the order of 10

−13 sec . Then
we have the small parameter

μ1 ≡ ω21tp ≪ 1: (18)

In the case of a broad-band pulse of USP type, tp has the
meaning of its width. Then the meaning of Eq. (18) is that the
spectral pulse width is δω ∼ 1∕tp ≫ ω21. That is, the spectrum
of the pulse significantly overlaps the 1↔2 quantum transition
considered here, and this causes them to strongly interact with
each other. On the other hand, such a broad signal spectrum is
capable of entraining into interaction with it quantum transi-
tions to states that lie above, both from levels 1 and 2. We
designate these states, respectively, as levels 3 and 4, thus
restricting ourselves to the approximation of a four-level
medium (Fig. 1). We shall assume that frequencies ω31 and
ω42 of the allowed transitions 1↔3 and 2↔4 satisfy the con-
ditions of transparency, contrary to the conditions of Eq. (18),

μ1.2 ∼ �ω31tp�−1 ∼ �ω42tp�−1 ≪ 1: (19)

In the case of hydrogen-containing ferroelectrics, ω31 ≈
1014 sec−1, and this completely agrees with the approximation
of Eq. (19). We neglect the transitions between states 3 and 4
as higher-order effects.

As applied to questions of the propagation of USPs in
various media, the approximations given by Eqs. (18) and
(19) were first used in Refs. 21 and 22.

In accordance with the diagram of allowed transitions in
Fig. 1, we write a system of equations for the elements of the
corresponding density matrix ρ

∂ρ21
∂t

� −iω21ρ21 � iΩ21�ρ11 − ρ22� � Ω42ρ41 − iΩ31ρ
�
32;

∂ρ31
∂t

� −iω31ρ31 � iΩ31�ρ11 − ρ33� − iΩ21ρ32;

∂ρ42
∂t

� −iω42ρ42 � iΩ42�ρ22 − ρ44� − iΩ21ρ41; (20)

∂ρ32
∂t

� −iω32ρ32 � i�Ω31ρ
�
21 −Ω21ρ31 − Ω42ρ

�
43�;

∂ρ41
∂t

� −iω41ρ41 � i�Ω42ρ21 −Ω31ρ43 − Ω21ρ42�;
∂ρ43
∂t

� −iω43ρ43 � i�Ω42ρ
�
32 −Ω31ρ41�; (21)

∂ρ11
∂t

� iΩ21�ρ21 − ρ�21� � iΩ31�ρ31 − ρ�31�;
∂ρ22
∂t

� −iΩ21�ρ21 − ρ�21� � iΩ42�ρ42 − ρ�42�;
∂ρ33
∂t

� −iΩ31�ρ31 − ρ�31�;
∂ρ44
∂t

� −iΩ42�ρ42 − ρ�42�: (22)

Here Ωjk � djkE∕ℏ, djk are the dipole moments of the allowed
quantum transitions, assumed to be real, and ℏ is the reduced
Planck’s constant.

Equations (20) and (21) describe the dynamics of the off-
diagonal elements of ρ for allowed and forbidden transitions,
respectively. The system of Eqs. (22) corresponds to the pop-
ulation dynamics of the quantum levels.

The polarization response in the case under consideration
has the form

P � n�d21�ρ21 � ρ�21� � d31�ρ31 � ρ�31� � d42�ρ42 � ρ�42��;
(23)

where n is the concentration of tunnel centers.
The conditions given in Eqs. (18) and (19) make it pos-

sible to express in first approximation in parameters μ1 and μ2
the density-matrix elements in terms of the electric field of the
pulse, as is done in Refs. 21 and 22 for two-level atoms. These

FIG. 1. Quantum model of the medium. The arrows indicate the allowed
transitions, and the corresponding frequencies are designated.
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calculations become more burdensome in the four-level case
considered here, but do not differ in principle from those in the
papers mentioned above. Then we get

P � P�0� � P�1�: (24)

In this case,

P�0� � 2n

ℏ

�
d231
ω31

�
1

2
−W∞

�
� d242

ω42

�
1

2
�W∞

��
E; (25)

∂P�1�

∂t
� − 2nW∞

�
d21

�
ω21 �

1

ℏ2

�
d231
ω31

−

d242
ω42

�
E2

�
sin θ

−

2

ℏ
∂
∂t

��
d231
ω31

−

d242
ω42

�
E sin2

θ

2

��
; (26)

whereW∞ � �ρ22 − ρ11�∕2jt�−∞ is the normalized initial pop-
ulation difference of the tunnel states, while

θ � 2d21
ℏ

Z
t

−∞
ETdt

0:

Substituting Eqs. (24)–(26) into the right-hand side of
wave Eq. (3), after using the SVP approximation, we get

∂2θ
∂z∂t

� 1

v0

∂2θ
∂t2

−4β
∂2θ
∂t2

sin2
θ

2

�
α − β

�
∂θ
∂t

�
2
�
sin θ � 0: (27)

Here α � −8πd221nω21v0W∞∕�ℏc2�, β � −2πv0W∞�d231∕ω31−

d242∕ω42�∕�ℏc2�, and v0 is the linear velocity, determined from

1

v0
� 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8πn

ℏ

�
d231
ω31

�
1

2
−W∞

�
� d242

ω42

�
1

2
�W∞

��
:

s

(28)

Substituting β � 0 into Eq. (27), we arrive at the well-
known sine-Gordon equation, which has soliton solutions.

It can be seen from Eq. (27) that, in the approximation
used in deriving it, linear dispersion is created only by the tun-
nel transition 1↔2 (coefficient α). However, transitions 1↔3

and 2↔4 alter the linear, inertialess part of the refractive index
of the medium, determined by the square root in Eq. (28), and
create additional nonlinearity, taken into account in Eq. (27)
by coefficient β.

We especially emphasize that Eq. (27), generally speak-
ing, cannot be regarded as a weakly perturbed sine-Gordon
equation. Actually, the ratio of the second term in brackets
in Eq. (27) to the first is of the same order of magnitude as
�d∕d21�2�μ2∕μ1�, where d ∼ d31; d42. It can be seen from this
that the given terms can be in an arbitrary quantitative ratio
with respect to each other, including being of the same order
of magnitude. Consequently, transitions 1↔2, 1↔3, and 2↔4

in the approximation considered here can introduce compa-
rable contributions into the pulse-propagation dynamics.

The solitonlike solution of Eq. (27) for the electric field of
the pulse has the form

ET � ℏ

d21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2p � 4β∕α

q sech ξ; (29)

where τp is a free parameter associated with the pulse width
(see below), while the dynamic variable ξ when β∕α > 0 is
determined from the transcendental equation

ξ� 2

τp

ffiffiffi
β

α

r
arctan

�
2

τp

ffiffiffi
β

α

r
tanh ξ

�
� t − z∕v

τp
: (30)

However, if β∕α < 0, we have

ξ −
2

τp

ffiffiffiffiffiffiffi
−

β

α

r
arctanh

�
2

τp

ffiffiffiffiffiffiffi
−

β

α

r
tanh ξ

�
� t − z∕v

τp
: (31)

In this case, the propagation velocity v of the USP is asso-
ciated with τp by

1

v
� 1

v0
� ατ2p: (32)

When β � 0, as expected, the solution in both cases results in
a soliton of the sine-Gordon equation.

It can be seen from Eqs. (29), (30), and (31) that the
“area” of the solitonlike pulse in both cases (β∕α > 0 and
β∕α < 0) is

A � 2d21
ℏ

Z �∞

−∞
Edt � 2π:

It follows from this that, during its propagation, the pop-
ulations of the levels of the 1↔2 tunnel transition experience
complete inversion, after which they return to their initial val-
ues. Below we present an analysis of the solution of Eqs. (29)–
(32) separately for β∕α > 0 and β∕α < 0.

1. The β∕α > 0 case. A graph of the dependence of the
electric field on the “running time” is shown in Fig. 2 for vari-
ous τp values. For comparison, the same figure has a dotted
line that shows for the same value of τp the corresponding
dependence when β � 0, when only the tunnel quantum tran-
sition 1↔2 participates in the interaction with the field; this
corresponds to a soliton of the sine-Gordon equation. It can
be seen that the “soliton” in the case under consideration is
less sharp and more spread out in time than the sine-Gordon

(a) (b)

FIG. 2. Profiles of the “soliton” of Eq. (20) for β∕α > 0; the thickness of the
curves increases as the pulse width tp decreases (a). Profiles of a sine-Gordon
soliton (1) and the soliton of Eq. (27) (2) for β∕α > 0 and the same value of
free parameter τp (b).
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soliton. The given difference becomes more and more promi-
nent as the free parameter τp decreases, and the electric field
profile takes a rectangular form when τp � 0 (Fig. 2). The
trend to a “limiting soliton” as τp → 0 thus becomes compre-
hensible in the approximation used here.

In general, we define the pulse width tp as the interval
between the times at a fixed zwhere the electric field is a factor
of e ≈ 2.718 less than the amplitude. Then

t�p � 3.315τ�p � 2 arctan

�
0.930

τ�p

�
: (33)

Here and below, t�p � 0.5tp � �jα∕βj�1∕2, and τ�p �
0.5τp � �jα∕βj�1∕2.

Figure 3 shows the t�p�τ�p� dependence. It can be seen from
the figure that the minimum width t�min�

p is reached when τp �
0 and corresponds to a “limiting soliton” of rectangular profile
in Fig. 2 with maximum amplitude Em � 0.5�ℏ∕d21��α∕β�1∕2
and propagation velocity v � v0. The minimum width is de-
termined from

t�min�
p � 2π

ffiffiffiffiffiffiffiffi
β∕α

p
: (34)

Let us present numerical estimates of the parameters of
the “limiting soliton.” It follows from the definitions of coef-
ficients α and β that jαj ∼ ω�21�

c ω21 and jβj ∼ ωc∕�cω0�, where
ω�21�
c � 4πd221n∕ℏ and ωc � 4πd231n∕ℏ ∼ 4πd242n∕ℏ are the

collective frequencies at the transitions 1↔2, 1↔3 and
2↔4, respectively, ω0 ∼ ω31 ∼ ω42. Taking d21 ∼ d31 ∼ d42 ∼
10−18 esu, and n ∼ 1022 cm−3, we get ω�21�

c ∼ ωc ≈ 1014 sec−1,
v ≈ v0 ∼ c. Moreover, Ω31 ∼ d31Em∕ℏ ∼ �ω21ω0�1∕2, and
tp ∼ �ω21ω0�−1∕2. Let d31 ∼ d21, ω21 ∼ 1012 sec−1, and
ω0 ∼ 1014 sec−1. Then Ω31 ∼ 1013 sec−1 and tp ∼ 10−13 sec ,
which agrees well with the conditions given by Eqs. (18) and
(19), if as the time scale of the pulse is used its width tp. Using
the values given above, we find for the pulse intensity
I ≈ cE2∕�4π� � c�ℏΩ31∕d31�2 ∼ 1010 W∕cm2. It is expected
that such intensities of the THz signals can be obtained in the
next few years by using various methods of focusing them.23–25

2. The β∕α < 0 case. After determining the width of the
soliton, as in the preceding case, we write

t�p � 3.315τ�p − 2 arctanh

�
0.930

τ�p

�
: (35)

The corresponding dependence is shown in Fig. 4. As fol-
lows from this, as well as from Eqs. (29) and (31), t�p >
2�jβ∕αj�1∕2 (or τ�p > 1). As τp decreases (and with it also
tp), the soliton becomes even sharper, and, when
τp → 2jβ∕αj1∕2, its amplitude sharply increases, the width
tp sharply decreases in the same way. With the equilibrium
initial population of tunnel states, α > 0. Consequently, β <
0 and v < v0. However, in the nonequilibrium case, β > 0, and
therefore v > v0. Note that, in the unidirectional-propagation
approximation used here, the soliton velocity insignificantly
differs from v0. Therefore, the situation for which v is negative
is excluded here. It can be seen from Fig. 5 that the “soliton,”
in contrast to the case β∕α > 0, is higher and sharper here than
the sine-Gordon soliton for the same value of τp. It can there-
fore be called a “sharpened soliton.”

In both cases, when τp ≫ t�min�
p , the solitonlike solutions

considered here approximate those of a sine-Gordon soliton in
their properties.

As the “soliton” propagates, the populations are totally
exchanged between the tunnel levels, with a final return to
their original values. However, here the influence of the re-
mote states on the population dynamics of the tunnel states
can be fundamental. When β∕α > 0, the inverted population
difference of the tunnel states is long-lived by comparison
with the sine-Gordon case. When a “sharpened soliton”
(β∕α < 0) propagates, however, the population difference
of the tunnel states, on the contrary, is short-lived.

IV. CONCLUSION

This paper has thus discussed various cases of the forma-
tion in nonlinear media of optico-terahertz and exclusively

FIG. 3. Pulse width tp of a “soliton” versus parameter τp for β∕α > 0. For
convenience, both parameters are made dimensionless by normalizing them by
the quantity 2�jβ∕αj�1∕2.

FIG. 4. Pulse width tp of a “soliton” versus parameter τp for β∕α < 0. The
parameters are made dimensionless by the same rule as in Fig. 3.

FIG. 5. Profiles of a sine-Gordon soliton (1) and a soliton of Eq. (27) (2) for
β∕α < 0 and the same value of free parameter τp.
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THz solitons. A fairly complete review of the questions of the
optical generation of THz radiation, including soliton regimes,
is contained in Ref. 26. Besides this, a model has been pro-
posed of a medium that contains tunnel transitions and expe-
riences interaction with pulses of THz radiation. We especially
emphasize that, to adequately describe the given interaction,
all the quantum transitions considered here are important,
since they can cause contributions that are commensurable
with each other to interact with the pulse. Therefore, the gen-
eralized sine-Gordon Eqs. (27) should not be regarded as just a
correctional modification of the sine-Gordon equation, where
only the tunnel transition 1↔2 is taken into account. That is
why the solitonlike solutions of Eq. (27) found here can be
fundamentally different from sine-Gordon solitons. The ques-
tion of whether or not these solutions are solitons in the strict
sense of the word remains open and is obviously of interest.
An answer can be obtained here after a comprehensive study
of the mathematical structure of Eq. (27).

It may be that the theoretical model involving the inter-
action of THz pulses with tunnel transitions used in this paper
can be adapted to modify the transfer processes of electrons
and excitation quasi-particles in the system of quantum dots
considered in Ref. 12. These processes may be effective dur-
ing the action of broad-band THz signals.

In the light of what was said above in this paper, the ques-
tion also arises of studying the nonlinear dynamics of broad-
band THz pulses in a system not only of tunnel processes but
also of other degrees of freedom of the medium, including vi-
brational, rotational, etc. Vibrational degrees of freedom were
considered, for example, in Ref. 27, but only in the linear
approximation. In this connection, there is interest in con-
structing a very simple but universal theoretical model of
nonlinear propagation of broad-band THz pulses in dielectric
media, taking into account all the main interaction mecha-
nisms. There is also interest in studying the diffraction of
broad-band THz signals in nonlinear media. As shown by
the theoretical studies of Ref. 28, spatiotemporal and spectral
distortions that are absent in the case of quasi-monochromatic
pulses already show up here in the linear approximation.

The investigation presented in this paper, stimulated by
the significant growth in recent years of the efficiency with
which THz radiation is generated and by the increase in its
intensity, makes it urgently necessary to develop nonlinear
terahertz optics as a separate area of working on the interac-
tion of radiation with matter.
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