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Inversion of the scalar and vector attenuated
X-ray transforms in a unit disc

S. G. Kazantsev and A. A. Bukhgeim

Abstract. This paper summarizes some of the old results obtained for the problems of inverting
the two-dimensional attenuated X-ray transform and the attenuated vectorial X-ray transform, both
using the fan-beam geometry. These inverse problems are considered on the language of the transport
equation and two approaches are described for solving them. The first one, dating back to 1996,
gives the inversion formulae on the basis of the theory of so-called A-analytic functions. And the
second method (developed by the authors in 2002) yields the inversion formulae for the scalar and
vector attenuated X-ray transforms without using the theory of ,A-analytic functions, but merely by
reducing the arising inverse problems to the unattenuated case by the change of variables. Numerical
implementation details are also provided.

Key words. A-analytic functions, attenuated X-ray transform, attenuated vectorial X-ray transform,
Radon transform, transport equation, Hilbert transform.

AMS classification. 44A12, 92C55, 53C635, 35R25, 65R10.

1. Introduction

The attenuated X-ray transform is a mathematical model for a number of inverse prob-
lems, which arise in different fields (for example, in optics, in the analysis of plasma
and semi-transparent media, in non-destructive testing, in astronomical measurements
and medical applications). The most prevailing problem that is formulated by the at-
tenuated X-ray transform is the problem of single photon emission computerized to-
mography (SPECT): let the unknown function of radioactive sources distribution (the
emission map) be given in a unit disc Q on the plane R?. An example of such radioac-
tive sources are y-quanta which propagate in straight lines and are absorbed by the
medium. The task is to reconstruct the unknown emission map from the known flow of
radioactive particles measured on the boundary of a disc, provided that the attenuation
map of the medium is known. The problems of SPECT are mathematically investi-
gated using the attenuated X-ray transform mostly within the framework of cither a
parallel-beam or a fan-beam scanning geometry (the last one is also called a divergent
beam or a cone-beam geometry in 3D case). In the first case parallel line integrals are
determined for a fixed direction and the process is repeated for a number of different
directions. In the second case line integrals emanating from a given source point (also
called a vertex point) are computed for different directions and then it’s repeated for a
certain number of source points, see Figure la.

In this paper we discuss only the planar (2D) case of tomography. The first result
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on global uniqueness for 2D integral geometry problems of general form had been
obtained by R. G. Mukhometov [29] by the method of energy estimates. However,
in the presence of attenuation, this result becomes local. For the case of constant at-
tenuation an inversion formula was derived by O. Tretiak and C. Metz in [46]. For
the class of (real) analytic attenuation functions an inversion formula was established
in [22]. And the first explicit inversion formula for C? attenuation functions was ob-
tained in [3]. Both results [3, 22] were based on the Cauchy formula for the so-called
A-analytic functions. Then the authors have derived the inversion formulae without
using the theory of A-analytic functions in [10] for the scalar and vector attenuated
Radon transforms. It was done by reducing the arising inverse problems to the unat-
tenuated case by the change of variables. The singular value decomposition (SVD) of
the X-ray transform in a unit disc from our previous work [9, 23] was used.

Another explicit inversion formulae for reconstructing the emission map in the
case of a parallel-beam scanning geometry were derived recently by R. Novikov (see
[36, 37, 38]) and F Natterer [32] and numerically evaluated by L. Kunyansky in
[26, 19]. Another exact inversion formula for the attenuated X-ray transform, closely
related to the Novikov’s inversion formula, was derived in [21, 7, 4, 5], using a differ-
ent derivation. An implementation of the inversion formula very similar to the filtered
back-projection algorithm of X-ray tomography is given in [49]. And in [20] authors
have shown the equivalence of Novikov’s formula to the original approach based on
A-analytic functions by using the transformation between parallel-beam and fan-beam
coordinates.

A good reference on the developments in the field of the attenuated X-ray transform
is the survey articles by D. Finch [17] and P. Kuchiment [24]. Some theoretical results
based on the language of the transport equation can be found in [1] and [39]. In [2] for-
mulae for the general solution of the transport equation were found. P. Kuchment and
1. Shneiberg in [25] have derived an inversion formula of the filtered-backprojection
type for the exponential X-ray transform with angle dependent attenuation map. In
[35, 40, 41] the problem with incomplete SPECT data was considered and it was shown
that an angular range of 180° is sufficient for the parallel-beam geometry with constant
attenuation.

Note, that the ideal mathematical solution of the SPECT would be a method for
determining the unknown emission source and attenuation coefficient simultaneously
using the SPECT data only. The first contributions to this problem are due to Y. Censor
et al in [14]. Then F. Natterer in [31] tried to reconstruct the attenuation map using
the SPECT consistency conditions, see also [28]. V. Dicken in [16] formulated this
problem as an optimization problem and solved it via nonlinear Tikhonov regulariza-
tion techniques. More information and references about simultaneous reconstruction
of the unknown emission and attenuation maps can be found in [8, 18, 48, 43, 50]. But
a satisfactory method for determining both unknown functions from the emission data
has not yet been found.

In this paper we summarize some of the old results obtained for the problems of in-
verting the two-dimensional attenuated X-ray transform and attenuated vectorial X-ray
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transform in the fan-beam formulation. The attenuation map is assumed to be known
from additional transmission measurements.

The structure of this article is as follows. After introduction of scalar and vector
attenuated X-ray transforms in Section 2, we consider the problem of inverting them
on the language of the transport equation in Section 3 and describe the method of
A-analytic functions for solving it. In Section 4 we introduce the angular Hilbert trans-
form and study its properties relevant for inversion of attenuated X-ray transforms. In
Sections 5 and 6 we present the inversion formulae for the scalar and vector attenu-
ated X-ray transforms that were developed in our previous work [10]. At the end, we
discuss the implementation details and present some numerical results.

2. Statements of the problems and preliminaries

Let Q = {x = (z,y) € R?: [x|* = 22 + 3% < 1} be an open unit disc in R? with the
boundary 0 = {x = (cos 3,sin3), B € [0,27)}. Let a(x) € Ly(Q) be a complex-
valued function defined in the disc . If x; and x; are two points from a closed disc €,

then | |
12 X3—X| Xy — X
/ a(x")|dx'| := f a(xl B I )ds
" 0 |2 — x|

1
will denote an integral of the function a(x) along a line segment [x1, x2].
For every point x € € and a direction vector 8 = (cos i, siny), p € [0,27) we
define the functions

¥(x,¢) := ¢ + 7/2 + arccos ({x, 0*)),

(2.1)
¥(x, ) 1= (cos y(x, ), siny(x,¢)),

where 84 = (cos(p + 7/2),sin(p + m/2)). The point v(x,¢) gives the inter-
section of the boundary 9Q with the ray emitted from the point x in the direction
—6 = —(cosy,siny), see Figure 1b. The function v(x,¢) can be defined for any
strictly convex region. If x = (cos 3,sin 3) represents the boundary point from 9€Q,
then

2p—p+m forpe(8—mn/2,8+m/2],
Jé] otherwise.

Y(x,0) = (8, ) = {

Hereinafter we shall use the following notation: if x = (cos 3,sin ) € 8Q and v( - ) €

C(€Q), then we shall imply »(3) = v(x) and write v(3) instead of v(x).
2.1. The attenuated X-ray transform

Let the attenuation map (tissue density) and the emission map (activity distribution) be
described by real-valued functions ;(x) and a(x) respectively, both defined in Q.

Definition 2.1. Forx € Q, p € [0, 27) we put

X

DU = [ )] 22)

T(x.0)
The operator D is known as the X-ray transform.
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a) fan-beam geometry b) projection on the boundary

Figure 1. A fan-beam scanning geometry and the projection on the boundary scheme

Remark 2.2, While the classical Radon transform integrates over hyperplanes
in R™ [30], the X-ray transform D integrates over straight lines. Thus, in our case
n = 2, Radon transform and X-ray transform differ only in the notation.

Definition 2.3. The attenuated X-ray transform D,, is defined for functions with com-
pact support in £ by
x
[Dyal(x, ) := f a(x')e™ 2 ) 1] gy, 2.3)
¥(x.)
This integral is the density of particles at a point x traveling in the direction 8 =
(cos,sing) at a constant speed. In practice we can measure the function (2.3) only
for x € 9€Q, so we get SPECT data or the sinogram f(3, )

9

£ (B, ¢) = [Dua](B,¢) = f a(x)e "M 1) gy, 24)
F(xye)

where x = (cos 3,sin3) and 3,4 € [0,27). The function f(3, -) is also called an

attenuated fan-beam projection of a(x) and x = (cos 3, sin 3) is the vertex point of

the fan projection, see Figure la. The inverse problem consists in determining the

unknown function a(x) from the measured sinogram f(8, ), provided that u(x) is

known.

More information and references about these and related transforms are given in
[30, 34].

2.2. Attenuated vectorial X-ray transform

The similar transformation for vector fields was first introduced by K. Strihlen in [45]
for the constant attenuation and was called the exponential vectorial transform.
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During the short history of vector tomography, work has been done with a wide
variety of applications in mind [44]. Acoustic travel-time measurements is the main
field for vector tomography, with a number of applications in medicine and industry.
Doppler measurements on flows by continuous ultra sound can be used to detect cancer
tumours. Around tumours the blood flow is more irregular and more intense than in
normal tissue. It is also used for reconstructing a wind velocity field in the atmosphere.
Optical transmission measurements is an analogue of time-of-flight principle but uses
laser beam as a source of radiation. Oceanography is a mesoscale acoustic tomography
used to estimate fluid velocity. Photoelasticity is a non-destructive method for three-
dimensional stress analysis in transparent specimens. Nuclear magnetic resonance also
gives a way to measure a vectorial X-ray transform.

Definition 2.4. We define the attenuated vectorial X-ray transform D o for a vector
field a(x) = (ai(x), az(x)) with compact support in Q by

[I_Dr“a](x, @) = [ (a1(x") cos p + ay (%) sin ) e~ S #0x")Idx"] |dx’|

Ti(x,¢)

B / L L
Ti(x,

where A 1= (a; — ia3)/2, A := (a) + iaz)/2 and y is the attenuation function.

Again, in practice we may measure the function (2.5) only for x € 9Q, so we get
the sinogram f(3, )

F(B,¢) = {E#a‘J(.ﬁs p) = /X (A(x)e'? + A(x")e1#)e [PHl(x ptn) ldx’|, (2.6)

Jy(x,e)

where x = (cos,sinf3); B, € [0,27) and D is the X-ray transform (2.2). The
inverse problem here consists in determining the unknown vector field a(x) from the
measured sinogram f(8, ¢), provided that the attenuation map j(x) is a known real-
valued function.

It should be stated that in the unattenuated case (when u(x) = 0) we can restore only
the solenoidal part of the vector field (see [9, 23, 42, 45]). In another words, since for
arbitrary square integrable vector field we have the Helmholtz decomposition into the
potential and solenoidal parts, L, (Q) = VH; () @ H(Q;div = 0) (see [15, p. 216]),
then in the case 1(x) = 0 we can only determine the component H(Q;div=0).

3. Inverse problems for the transport equation

In this section we restate the problems of inverting the transforms (2.4) and (2.6) as the
inverse problems for the transport equation and briefly display the formal scheme of the
A-analytic functions method for its solution. The idea of this approach was suggested
by A. L. Bukhgeim [11] in 1987, see also [3. 12, 13, 22] for more details.
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We will utilize the language of complex variables and identify R? with the complex
plane C in the usual way

x = (z,y) — 2=z + iy, it =1,
Hence, _ .
0 = (cos g, sin @) — e'¥, x = (cos 3,sin B) = t = €',

In moving to the complex variable z we shall keep the old notation for functions,
namely that a(z,Z) = a(x), u(z2,%,¢) = u(x,0) and so on. For brevity we shall
write a(z), u(z, ) instead of a(z, Z), u(z, z, ») and so on. Also, for t = e’ we have
u(B, ¢) = ult, p).

The directional derivative

Op = Ccosw — + 8ing —
’ dr ay
in c0mplex variables has the form

g = €0+ e 1¥p, (3.1)

where 3 and 9 are the brief notations for the formal partial derivatives with respect to
variables z and Z respectively

=5=im gy =m=i(mtiz)

Using the directional derivative (3.1), the problems of inverting the transforms (2.4)
and (2.6) are reduced to the following inverse problems for the transport equation

e'?Au(z, ¢) + e ¥du(z, ) + p(2)u(z, ) = a(z, @), (3.2)
where the right-hand side

ol a(z) for attenuated X-ray transform
oF ay(z)cosp + ay(z)sing  for attenuated vectorial X-ray transform.
(3.3)

Inverse problem. Determine the right-hand side a(z, p) of the transport equa-
tion (3.2), (3.3), provided that j(z) is a known real-valued function in a disc Q, and
the solution u(z, p) which is real-valued and 2r-periodic in o is defined on the mani-
fold X := 8Q x [0,2r), and satisfies the boundary condition

'D}(t, '(P) — f(ﬁa {p)s t= Ei'G € 0Q.

Note that the condition f(7y(8,),¢) = 0 and consequently f(v(x,¢),¢) =0 hold
for the function f(j3, ¢), which means there is no incoming radiation.
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3.1. A-analytic functions
In this subsection we briefly review the .4-analytic functions method for solving the
inverse problems for the 2D transport equations (3.2), (3.3).

3.1.1 Unattenuated case

Firstly we consider the unattenuated case and let us denote the X-ray transform (2.2)
of a real-valued function u by

m(x, ) := [Dp](x, p).

Then, the function m(z,w) = m(x, ) represents the solution of the transport equation
in complex form

e¥0m(z, p) + e790m(2,0) = u(z),  (2,9) € Q x [0,27) (3.4)
with the boundary condition
m(t, p) = £(8,p), t=¢e', (t, ) € OQ x [0, 27).
Expanding m in a Fourier series with respect to ¢,
m(x, ) = Z m(x)e ", (3.5)
k=—o0

and substituting it into the transport equation (3.4), we obtain the infinite system of
elliptic differential equations after matching terms with the same exponents

am_y + 0my = pu(x) (inversion formula), (3.6)
Brnpd-Bms =0, Sl 3.7)

Since m is real-valued, the Fourier coefficients {my(z)} will be complex-conjugate
quantities m_ = 7. This implies that for determining m uniquely, it is sufficient to
find the complex-valued vector

m(z) := (mp(z), mi(z), ma(2),...).
By virtue of (3.7), the vector function m satisfies the Beltrami-iype equation
Om — A3m = 0, zell (3.8)
with the operator coefficient .4 acting by the rule
A (mg,my,my,...) = —(ma, ma,ma,...).

Correspondingly, for boundary points we have

= ifk(t)e‘““ﬂ £(t) := (folt), (L), fo(D),...),  teoQ,
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and thus for m(z) we have the boundary condition
m(t) = f(t), t € 0Q. 3.9

If we determine the vector function m uniquely from equation (3.8) and boundary
conditions (3.9), then the unknown function u(z) can be derived from (3.6) by the
formula

p(2) = 2R[0my(2)]. (3.10)

The operator A is defined on the Hilbert space I, of square summable sequences and
its Sobolev subspaces 15

= {(mo,ml,mz,‘. ) : Z(l + kzp)imkiz < oo}

k:{]

Definition 3.1. Solutions m € C(Q; ;) N C'(Q;1)) of the equation (3.8) are called
A-analytic functions and satisfy an analog of Cauchy’s integral formula, see [12, 13]

)= L_/(m (=) -G=2A) " ([t +ADEE), z€Q,

2ri
where I is the identity operator.

The inversion formula (3.10) can be further simplified. Let us consider the well-
known in the complex analysis Pompeiu integral operator [47)

[T (= f f ”(C

where z = x + iy, { = £ + in. Putting { — 2 = pe'?, we have

[ |s—s(z, )| ,
Tl = [ eedp [ u(z + pei®) dp
™ Jo 0

ey 2= (=) : i . :
L[ iy | uz—pe)ap= [ eteap [ )i
T Jo 0 ™ Jo ¥(z:9)

1

2T )
= —f e m(z, o) de =2m_1(2).
mJo

Substituting the last expression for [T'u] into the Cauchy-Pompeiu formula [47]
= 0[Tu)(=
we simplify the inversion formula (3.10) into
Omi(z) = Bm_1(2) = p(2)/2, @.11)
where both 9m(z) and 9m_,(z) are real-valued.
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3.1.2 Attenuated case
Following the same scheme, the attenuated X-ray transform
u(x, ¢) := [Pua](x, %),
represents the solution of the transport equation
e0u(z, ) + e 0u(z, p) + p(2)u(z, ) = a(z), (z,0) € Qx[0,2m) (3.12)
with the boundary condition
ult,p) = f(Bp), t=¢€", (L)€ IQx[0,27).

Substituting a Fourier series representation

u(xp) = Y ulx)e ke

k=—oc

into (3.12) and matching terms with the same exponents, we get the infinite system of
equations

Qu_y + pug + duy = a(z) (inversion formula), (3.13)
Aug + pugyy + Oupys =0, k#—1. (3.14)
Due to (3.14), the vector function
u(z) = (uo(2),u1(2),u2(2), . ..)
satisfies the generalized Beltrami-type equation
du — Adu + pBu = 0, z€Q (3.15)
with the operator coefficients .4 and B, where B acts by the rule
B (ug, u,uz,...) — (u,us, ua,...).

Definition 3.2. Such functions u(z) are called generalized A-analytic functions.

If we determine the vector function u uniquely from the equation (3.15) and the
boundary condition

u(t) = £(t) == (fo(t), (2), f2(2),.-.), t € 9Q, (3.16)
then in view of (3.13) the unknown function a(z) will be defined by the formula

a(z) = 2R[0u1(z)] + u(z)uo(z).
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The solution of the boundary problem (3.15), (3.16) was constructed in [22] for the
class of (real) analytic functions j and in [3] for C? functions p and is given by

u(z) = 5:: [6&‘3 Kg(t, z) (dt + Adt)f(t), z €L,

Ka(t,z) = ((t — 2)I - - 2) A)1eFD~C0), (3.17)
where the operator G is defined via the odd-rank Fourier coefficients of [Dy]
[=+]
G(z) =2 m_gue)(2) B>
k=0

Here we use coefficients m;, from the Fourier expansion (3.5) of [Dy](z, ) = m(z, ).
3.1.3 Attenuated vectorial case
Considering the attenuated vectorial X-ray transform
.3 . -
u(x, ) := [Daal(x, ) = [Du(e¥ A+ e P A)|(x, 0)

instead of [D, a](x, v) and applying the same scheme, we get two special equations and
a system (3.20) for a generalized A-analytic function u(z) = (w1 (2), ua(2),us(z),...)

u_y + pug + Ouy =0, (3.18)
Bug + puy + Oup = A(z), (3.19)
Buy + puks1 + Ougyy =0, P B - (3.20)

Equations (3.18) and (3.19) lead us to the inversion formula. Firstly, we obtain

sl = -ﬁzm[aul(z)]

from (3.18) and then substitute it into (3.19) and get the inversion formula

A(z) = —5(;(-12—} 23?[3u1(z)]) + p(2)u1(2) + Oua(z).

The functions v (z) and ua(2) are corresponding components of the .A-analytic vector
u(2) = (u1,uz,us, ...), which is defined by the Cauchy-type integral
1 o
u(z) = ——f Kg(t, z) (dt + Adt)f(t), 2 €Q,
2mi Jan

where K5(t, z) is defined as previously by (3.17).
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4. The X-ray transform and the angular Hilbert transform

The analysis of the X-ray transform (2.2) is important not only for determining the
attenuation map u from transmission data but also for understanding the attenuated
X-ray transform (2.3). In this section we derive some formulae involving the angular
Hilbert transform of the X-ray transform. The singular value decomposition (SVD) of
the X-ray transform in a unit disc from our previous work [9, 23] will be used in proofs
of these formulae.

As it is known [31], in the parallel-beam tomography the Hilbert transform

L1 [ ki)
[Hh](s)._;fms__gdt, sER, @.1)

plays the basic role. In the fan-beam case we deal with the angular Hilbert transform

2’[ _
To)(8) := %fo g Luw)ay,  pelon). (4.2)

All integrals in (4.1) and (4.2) are understood in the Cauchy principal-value sense. We
will treat the transform I" as an operator L,([0,27)) — L([0, 2x)) and for the Fourier
basis functions {e*!"%} the following mappings take place

[1)(8) =0, [[e™](B) =ie™, [[e i™](B)=—ie ™™ n>0. (4.3)

Let us define the following operators
l li 23
(D) ] (x, @) := 5 ([DHl(x, %) — [Dul(x, ¢ + 7)),  the “odd” part of D,

[P u](x, ) := = ([Pul(x, ) + [Du](x,¢ + 7)), the “even™ part of D,

b | =

[DH p](x, ) := [%

where I is the identity operator.
If we expand the function [Dpul(x, ¢) into the Fourier series with respect to the
angular variable

(L% iDDPpi(x, )] (o), (44)

o0

[Dul(x,0) = Y ma(x)e ™,
k==—00

then from the definitions we get

POl(x,0) = 3 manr(x)e= i,

k=—oc
[DENpu)(x,0) = Y mar(x)ei,
k=—oa
o0
DB p)(x,0) =Y mrapsry(x)eEEHDe, (4.5)

k=0
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We’ve used (4.4) and (4.3) for obtaining (4.5). The following evident properties take
place for these operators

[Dp](x, ) = [P p](x, ) + [P (x, ),
[P 4](x, ) = [P p)(x, ) + [PTp](x, ), (4.6)

(D), ) = % [T’u](‘r(x,sa+ﬂ)a o)

[P u](x, ) = [Du](x, ) - [D#] (v(x, 0+ 7), #), @7

D)) (x, ) = [DH)u](x, @) (for real-valued p). (4.8)

Other important properties that will be used later are formulated in the following lem-
mata.

Lemmad.1. Let u(x) € Ly(2), then
[CD®) u](x, ))(p) = £i[DFp(x, @), 4.9)
LD 9))(8) = Fi[DE (8, ). (4.10)
Here I is the angular Hilbert transform (4.2).

Proof. Formula (4.9) follows directly from (4.5) and (4.3). Formula (4.10) follows
from the singular value decomposition (SVD) of the operator D(®4) being considered
as an operator from L>(Q) to Ly([0,27) x [0,27)), see [9, 23]. If we expand the
function p(x) into the series of Zernike polynomials Z™*

u(x) = i i en k2K (%), (4.11)

n=0 k=0
then the SVD yields the representation

[DCD ) (B, )

o N
_ ZZ Cﬂ, k -1(2k+l)gpei(n+l}ﬁ 4 (_ I)nei(?,(n—k]+l)gae-i(n-f—l)ﬁ)_ (412)

As soon as the function p(x) is real-valued, the coefficients ¢, 5 satisfy the rela-
tion ;5 = (—1)"¢pn—k due to the property of Zemike polynomials Zn*%(x) =
(—1)nZnn—k(x). Using (4.5) with (4.12) we obtain

[P(H}JI(,B, E Z o Cn, k (—1)® el (2n—k)+1)p e—i(n+l)ﬁ, (4.13)
n=0 k=0

[POu(B,¢) = ZZ 2(0" O (4.14)
=0 k=0

Then (4.10) follows from properties (4.3) and representations (4.13), (4.14). |




Inversion of attenuated X-ray transforms 747

Remark 4.2. Combining (4.9) applied to x = (cos /3, sin ) and (4.10), we get

[T ul(8, )] (¢) = = [TIDFu](-, )] (8). (4.15)

If we know decompositions (4.11) or (4.12) then we can analytically evaluate the an-
gular Hilbert transforms of (4.12), (4.13) and (4.14) using formulae (4.3).

Lemma 4.3, Let ji(x) € Ly(Q), then the functions [D'° ), [DF) ), and @4
represent the solutions of the transport equations

96 ([P p]) (x, ) = p(x), (4.16)
o ([D™F) ]} (x,0) = %,u,[x), (4.17)
Bo (2P HED) (x, ) = u(x) HPIHEO), ) e CHQ),  (@18)

where 8 = (cos @, sin ). Also we have
X
f p(x") [dx"| = 2[DF) ) (x,¢) — 2P (X', ), X, x€Q,  (4.19)

[Dul(x, %) = 2[DF) ] (x, ) — 2[DP ] (v(x, ©), ). (4.20)

Proof. Formula (4.16) is obtained from definitions of 9 and [D(°%) 4] and the fact that
e [Dup = p. Let’s prove (4.17) for [D{~) 4] first. Applying dg to the representation
of [D7)y] (4.5), we get

8 ([Dp]) = (198 + e 98) (m1e 1'% + mae 1% + mse 3% 4 ,..)
— ' _ - 1
= 0my + (Om; + 8ma)e 2% + (Oms + Oms)e ™9 + ... = 3 4.21)

Here dm; = %,u due to (3.11) and expressions of the form (8my + dmy,2) are all
equal to zero according to (3.7). By analogy, property (4.17) is proved for [D(*)y].
Then (4.18) is obtained from (4.17) by applying the chain rule and (4.19) is obtained
by integrating (4.17). At last, substituting x’ = ~(x, ) into (4.19) we get (4.20). O

5. Inversion formula for the attenuated X-ray transform

In this section we derive an explicit inversion formula for the attenuated X-ray trans-
form in a unit disc without using the theory of .4-analytic functions.

The essence of this approach (developed in our previous work [10]) can be described
in a couple of sentences. Firstly, we perform the change of variables and reduce the
inverse problem for the attenuated X-ray transform to the unattenuated case. We con-
sider it on the language of the transport equation. Then we take the D'~/ part of the
X-ray transform D and get the special form (containing only negative harmonics) of
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the solution to the same transport equation without attenuation. At last, we perform the
inverse change of variables and come to the original attenuated problem, but with the
special form of the solution to the corresponding transport equation (again, containing
only negative harmonics). This special form then yields a simple inversion formula for
the attenuated X-ray transform.

This derivation relies on the results obtained in the previous section.

Theorem 5.1. Let the real-valued functions a(x) € L,(Q) and p(x) € C*(Q) be
respectively the emission map and the attenuation map for the attenuated X-ray trans-
form (2.4) and let

f(8,) := [Dual(8, ¢)

be a known function. Then the following inversion formula takes place

i =2 (2 [ es[riopn e e ) ag), )

where
v (89) = (=D (v 0) - 30000+ 1.0) |6, 62
v(8,9) = 2P THER £(5, o), 5.3)

and T is the angular Hilbert transform (4.2). I denotes the identity operator:

Proof. Let’s denote u(x,y) := [D,a(-)](x, ¢). Substituting (4.19) into the definition
of D, (2.3) we get

* {— ‘
u{x, {p) = f( ) ﬂ,(x!) E_EED‘ _J#}(K.ﬁo}-i"z['[)" ’p,](x ,np} |dx!|
T2

. B—ZIDE_]#}(X,W) /}l a(x!) eZ[Df-}”](x*‘P) fdx’|.
¥(x,9)

Thus, introducing the change of variables

(%, ) 1= P M=)y (x, ), (5.4)
b(x, o) i= 2P Hlx0)g () (5.5)

we obtain )
o(%, ) = ] B ) 6] = (D ) ), (5.6)

and consequently
Fav(x,¢) = b(x, ). (5.7)
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Note, that substituting the representation of D(~) (4.5) into the Taylor series for the ex-
ponent e* = 3 17 (¥ /k!) we get a series expansion for €2 (x.¢) which contains
only non-positive harmonics

2Pl () Z My (x)e 1k, (5.8)
k=0

The series expansion for e=2P' 1%} 3150 contains only non-positive harmonics.
Substituting (5.8) into (5.5) and then into (5.6), we get the following expansions

b(x, @) = Z e by (%), v(x,0) = Ze_ik*"[ﬂbd(x, ®). (5.9
k=0 k=0

Using (4.20) and denoting

V(% 0) =23 e "D (x, ), (5.10)
k=0
we rewrite (5.9) as
v(x,¢) = v*(x,9) — v*(7(x, ), ©). (5.11)

From (5.10) and (4.5) it follows that the Fourier series decomposition of v*(x, ) con-
tains only negative harmonics

vt(x,9) =) vp(x)e ke, (5.12)
k=1
Since v* (7(x, @), ) is fully determined by its boundary values, it satisfies the equation
Ov*(v(x, %), ©) = 0. Thus, from (5.7) and (5.11) we get
aﬁ'v* (xr "r”) = b(xa Lp)- (5.13)
Applying the inverse change of variables
u*(x,9) = e_QED[_J“H"”}v‘(x, ©), (5.14)

a(x) = ,«3—2[9'_}#1(3&@}5(){’ ©)

We come to the new function u*(x, ), which by virtue of (5.13) and (4.18) satisfies
the equation

Iou” (X, p) + pu*(x, ) = a(x) (5.15)
and has a Fourier series expansion
o -
u*(x,0) = Y uj(x)e ke, (5.16)
k=1

The latter follows from (5.14), (5.12) and (5.8).
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Substituting the expansion (5.16) into the equation (5.15) and matching terms with
the same exponents, we come to the system of equations

oul = a, (5.17)
pui +8u; =0, (5.18)
Buf, + puf .y + Bupy, =0, k=1,2,.... (5.19)

The equation (5.17) gives the inversion formula for obtaining the unknown a(x) from
the first Fourier coefficient of u*

* 1 - $i 1 2 i 2 .
i =5 [ eurbne)de =5 [ (g - w ) do.

Here we've used the fact that u*(x,¢) does not contain negative harmonics due to

(5.16), thus foz" e'?u*(x, ) dyp = 0. So, for obtaining a(x) we get the inversion for-
mula

a(x) = 3(-;- /O:hr e [u*(x, )] d‘P)‘ (5.20)

The last step is to express S[u*(x,y)] from the sinogram f(3,¢) = u(8, ¢) and
transmission measurements [Dp( - )](3,¢). According to (5.11), (5.14) and (5.4), we
have

0 (Y(%,0), ) = v (%, ) —v(x,0) = (u"(x, 9) — u(x, @) P Hxe).

Since the function u(x, ) is real-valued, we can eliminate it by taking imaginary part

3wt (x, )] = S (2(x, @), p) e 2P T Hllxe)], (5.21)

Substituting (5.21) into (5.20), we get the required inversion formula (5.1).
The boundary values of v* in (5.21) can be expressed in terms of the boundary values
of v. Firstly, we apply the definition (4.4) of D) to (5.10)

v*(B,9) = Y_ e R [(I +i)[DD](B, -)] (#)-

k=0

Then, using properties (4.6) and (4.15), we change the action of I' from ¢ to 3

=]

v (B,9) = Y_ e *e[(I - i) [DCDy]( -, ¢)] (),

k=0

which allows us to factor it out of the sum

(8,9) = [~ D)2 e D4, )] 8)
k=0
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Applying (4.7) we finally get

,8, = [(I — lr)(z _ikw([pbkl(‘vip] = % [pbk]('Y('?‘P_{'ﬂ)a{P)))} (;3)!

k=0

which yields (5.2) due to (5.9). The values of v(3,¢) in (5.2) are evaluated by (5.3)
due to (5.4) and the boundary condition f(3, ¢) = u(83, ¢). Theorem 5.1 is proved. O

Remark 5.2. One can derive infinitely many different inversion formulae from the
system of equations (5.17)—(5.19), which are not necessarily better for numerical com-
putations though. For instance, we can first express u} (x) from (5.18)

* o 1 0
u‘l(x)_ (X)a 24X )

and then substitute it into (5.17) thus getting an inversion formula
1 1 U e
— ¢ s _— — o ® = — — — k * d .
a(x) = duj(x) d(p(x) duz[x)) 3(p(x) 6(?1' fo ¢S [u* (x, )] ga))

6. Inversion formula for the attenuated vectorial X-ray transform

In this section we derive an explicit inversion formula (first obtained in [10]) for the
attenuated vectorial X-ray transform in a unit disc using the same approach as in the
previous section. As a matter of fact, the derivation will closely follow the proof of
Theorem 5.1. Another exact inversion formulas for the attenuated vectorial Radon
transform was derived by G. Bal [4] and by F. Natterer [33]. In [6] J. Boman investi-
gated the injectivity for a weighted vectorial Radon transform.

Recall, that in the unattenuated case (when p(x) = 0) we can restore only the
solenoidal part of the vector field. In the next theorem we derive the inversion for-
mula for the full reconstruction of the vector field from its attenuated vectorial X-ray
transform.

Theorem 6.1. Let the real-valued vector functions a(x) = (a1(x),a2(x)) € L2(Q)
and p(x) € C*(Q) be the vectorial “emission map” and the scalar attenuation map
for the attenuated vectorial X-ray transform (2.6) respectively. The SPECT data

1(8,0) == [Dal(8,¢)

is known. Then the following inversion formula takes place for points x such that

u(x) #0

Fio . a;(x) —2iag(x)

1 : 2 7
= —3(m6(%/(; .9“"’3‘[11*(*}(()(, p),cp)e‘zw{ J"’“](""“’)] dw)), 6.1)
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where .
v'(B,0) = [(I=i0)(v(+,0) = 50(v(-, 0+ 7),4)) ] (8), (6.2)

v(B, p) = HPTHERIf(5, ), ©63)
and I is the angular Hilbert transform (4.2). I denotes the identity operator.
Proof. By analogy with Theorem 5.1, let’s denote
u(x, @) = [Da( - ))(x,9) = [Du(ePA(-) +e7PA(-))] (x, 9)-

After the change of variables

v(x, ) = AP MRy (x, o), (6.4)
b(x, ) := 2P MO (P A(x) + e~ A(K)) (65)
we obtain that v(x, p) satisfies
v(x, p) = [Db(-, p)](x, ), (6.6)
and consequently
dgv(x, @) = b(x, ). (6.7)
Substituting (5.8) into (6.5) and then into (6.6), we get the following expansions
b . 2 .
b(x,p) = Z e * i (x), v(x, ) = Z e [Db](x, ).
k=—1 k=-1

Then, following the same arguments as in Theorem 5.1, the function
2 .
v'(x,0) =2 Y e Db (x, ), (6.8)
k=—1

also satisfies
Ppv*(x, ) = b(x,¢) (6.9)

and, due to (6.8) and (4.5), has a Fourier series expansion that contains only non-
positive harmonics

s =]
v*(x,0) = Zv;{x) e (6.10)
k=0
Then, applying the inverse change of variables
u*(x, @) i= e 2P T Hltxelyt (% ) (6.11)

¢ A(x) + e~ Ax) = e Py, )
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we come to the new function u*(x, ), which by virtue of (6.9) and (4.18) satisfies the
equation

Bou™ (X, ) + pu*(x, ) = el? A(x) + e P A(x) (6.12)

and has a Fourier series expansion with only non-positive harmonics
S5 4
u*(x,p) = Zui(x)e"k‘”. (6.13)
k=0

The latter follows from (6.11), (6.10) and (5.8).
Substituting the expansion (6.13) into the equation (6.12) and matching terms with
the same exponents, we come to the system of equations

dud = A, (6.14)

pug -+ du = 0, (6.15)

Ouy + pui + dus =4, (6.16)

Oup + pup 4+ 0ub, =0,  k=1,2,.... (6.17)

Unfortunately we can’t use the first equation (6.14) of this system for determining A(x)
immediately, because it would require the knowledge of uj(x), whereas we can only
find 3[ug(x)]. By analogy with Theorem 5.1, the following relation takes place

Hu’(x, )] = S[o" (v(x, ), ) e~ 4P THlxie)].

So, in order to get an inversion formula, we first express uj(x) from (6.15)

1

uy = 5 duj
and then substitute it into (6.14)

A(x) = _a(;(lx—) au’;(x)).

This gives us an inversion formula (6.1). Theorem 6.1 is proved. a

7. Reconstruction algorithm

We have developed an application in C++ for solving the two-dimensional SPECT
problem in scalar and vector cases. We reconstruct a scalar emission map a(x) (or
a vectorial “emission map” a(x)) while the attenuation map p(x) is assumed to be
known. In practice it can be determined from additional transmission measurements,
i.e. from the X-ray transform Dp.
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Using our previous works [9, 23] we represent the attenuation map p as a polynomial
of degree N using the series of Zernike polynomials

N n
=3 Y enrB (%),  eag =onp+ b (7.1)

n=0 k=0

Note, that this is a truncated version of the representation (4.11). Hereinafter, we shall
need to evaluate functions [D(*) 4] (43, ¢). Due to property (4.8) we can denote

2DV u)(B, @) :=U(B, p) +iV(8,¢), (7.2)
2D (B, ¢) :=U(B,9) — iV(8,9)- (7.3)

The functions U(3, ¢) and V (3, ¢) can be computed from the corresponding truncated
versions of representations (4.13-4.14) by formulae

Impale cos [(n+ 1)(8 — ¢)] cos [(n — 2k) ]
U(B,¢) = ZZ +1 Z A k { —sin [(n+ 1)(8 — )] sin [(n — 2k) ]

b xd o8 [(n+ 1)(8 — )] sin [(n — 2k)¢]
" sin [(n 4+ 1)(8 — p)] cos [(n — 2k)y]

n—D

(7.4)

N |n 2]+ y
Ve =23 3 an,kx{ sin [(n+1)(8 — ¢)] cos [(n - 2k)q]

2k)
ﬂ=0ﬂ+1 e cos[(n—l—l)(ﬁ—ga)]sin [(n—2k)(p]

by x { —sin [(n+ 1)(8 — ¢)] sin [(n — 2k)¢] S

cos [(n+ 1)(B — @) cos [(n — 2k)¢]

where the top line should be used in the case of even n, and bottom line — in the case
of odd n, and the sign = near by the second sum denotes that in the case of even n, coef-
ficient a,, |,,s2) should be divided by 2 and b,, |5, /7) should be set to 0. Computation of
functions U and V' on a regular 2D grid can be performed in O(N?1og, N) operations.

An implementation of the inversion formulae (5.1), (6.1) consists of the following
steps.

» Computation of the modified sinogram v(5, ¢) by the change of variables (5.3),
(6.3).

- Computation of its D(~) part v*(8, ¢) by formulae (5.2), (6.2), which involve the
angular Hilbert transform.

« Performing the inverse change of variables in the integrands (5.1), (6.1), and sub-
sequent numerical integration and differentiation.
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Computation of the modified sinogram. At the first step, we transform a real-
valued sinogram f(8,¢) into the complex-valued modified sinogram v(8,¢) us-
ing (7.2) and previously determined functions U (83, ¢) and V/(3, ). This corresponds
to formulae (5.3) and (6.3).

v(B,¢) = HPTHBR) (5, ) = VB (cos(V(B,0)) + i sin(V (B, 9))) £ (B, ©).

Evaluation of the angular Hilbert transform. Evaluation of the function v* (3, ©)
in (5.2) and (6.2) employs the angular Hilbert transform (4.2)
1 [ -8
[Tv](B) := 5 ctg v(1p) dop, B € [0,2m). (7.6)
iy o 2
We use the quadrature formula from [27] for evaluation of this singular integral. It is

based on the fact that a periodic function v(¢) can be approximated by the trigonomet-
ric polynomial of degree n

n v(yr) sin[(2n—+1)(p — Vi) /2]
rar In+1 sin[(‘t,i' = ’.bk)/z] 1

which satisfies the conditions
2k

Un(Vr) = v(Yr), Yk = 1 ,
In order to verify this fact it is sufficient to notice that sin[(2n + 1)a/2] = 0 when
a=2kr/(2n+1),k=0,1,...,2n and
i S (?fn + 1)a/2
a—0  sin(a/2)

Substituting v, (4) instead of v(¥) into (7.6) and making use of trigonometric iden-
tities

v (9) =

k=0,1,...,2n.

=2n+1.

sin[(2n + 1)y/2]

=14 2(cosp+ ...+ cosnip),

sin[¢/2]
os[(2n + 1)9/2 ; ;
ctg% " [Si:[tb/Z] ] =2(sin¢ + ...+ sinny)

and the relation (4.3) in the form

2

one gets the quadrature formula

2 _
: / ctngﬁcos(krﬁ;)dtb=—sin{kﬁ), k=0,1,...,
0

2T _
(501(8) 1= 5 [ e ¥ 52 v a0

n
=S 2() [, Yk =B cos[(2n+ 1) (4 — B)/2]
X1

3 2n+1 2 sin[(vx — 5)/2] - o
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This formula is exact for every trigonometric polynomial of degree n, as in this case
v, (¥) = v(1) and formula (7.7) gives the exact value of the integral (7.6). When this
formula is considered at the points

ﬁm=¢m+f2;ﬁa m 011:- ,Zﬂ.,
then (7.7) simplifies into
2n
- U{/t'bk) Q.bk s ﬁm
[5v)(Bm) = ;} R (7.8)

as in this case cos[(2n+1)(1x — B )/2] = 0and sin| (¢ — Bm) /2] # Ofor all k,m =
B 1. o D

For implementation of computations by this formula it is significant that the circle
should be partitioned into the odd number (2n + 1) of angles and the values of ()
in (7.8) should be taken right in the middle between the knots 3,, where the func-
tion [Sv| (which is an approximation of [I"v]) is evaluated.

Evaluation of the integrand. In the integrals (5.1), (6.1) we encounter an expression

of the form

v (7(x, ), ) € 2P HlGe),

where v(x, @) is given by the formula (2.1). Recall, that from (7.2), (7.3) we have
(DO u(B,9) + [P (B, 0) = U(B, ), (7.9)
[DOp)(B, ) — [DPul(B, @) = iV(B,¢). (7.10)

In order to evaluate —2[D(~)u|(x, ¢) at the interior point x of a disc, we make use of
the Lemma 4.3. The formula (4.20) yields

[DEl(x, ©) = 2[D ](x, ) = 2[DH pl(v(x, ¥), ©), (7.11)
(D] (%, ) = 2[D)p](x, ) — 2[D )l (v(x, 9), ). (7.12)
Subtracting (7.12) from (7.11), we get
[P p](x, ) — [Pl (x,9) = (PPl (v(x, 0), ) — [Pl (v(x, %), )
or, using (7.10), it can be rewritten as
[DH ul(x, ¢) — [PTp)(x, 0) = —iV(¥(x,9), ¢))- (7.13)

Applying the angular Hilbert transform I" with respect to the angle ¢ to the both sides
of (7.13)

[FDDul(x, )](@) - [MPOul(x, ))(@) = =i [TV(r(x, ), )](9)
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and using (4.9) from the Lemma 4.1 for the left hand side, we get

i([PM)(x, ) + [P (x, ) = =i [TV (¥(x, -), )] (p),

or, dividing by i,
(D) (%, ) + [POp)(x,0) = = [TV (7(x, -), )] (). (7.14)

Subtracting (7.14) from (7.13) we get a required expression for —2[D(~)y|(x, ¢)

—2[Dp](x,0) = [TV(x(x, -), )](9) —iV(v(x,0),0)).  (7.15)

In the same manner we can derive an expression for [Du](x, ) by adding (7.11)
together with (7.12) and using (7.14) and (7.9)

[Dul(x, ) = (DD (x, ) + [P p](x, 0))
— (PP ul(v(x, ). ©) + [P (v(x, 9), )
= =[TV(v(x, ), )] (%) = U(x(x,9), ). (7.16)

For computation of (7.15) and (7.16) we use previously evaluated functions U/ (3, ¢)
and V (8, ¢).

7.1. Numerical examples

Figures 2-3 illustrate reconstructions of scalar source functions (emission maps) under
the presence of a variable attenuation. Both, in Figures 2 and 3, panel (a) represents the
unknown source function, panel (b) shows the known attenuation map, panels (¢)—~(d)
show reconstructions of the source function using different number of fan projections
without adding noise, and panels (¢)—(f) show the reconstruction from the sinogram
contaminated by noise (with Poisson distribution). Noise levels (5% for panel (e) and
10% for panel (f)) are given in the L,-norm. Black color in the images corresponds to
the value 0, and white color — to the value 1, both for the attenuation map and for the
source distribution.

Figures 4-5 show the full (not only solenoidal part) reconstructions of vector fields
(smooth in Figure 4 and discontinuous in Figure 5) under the presence of a con-
stant nonzero attenuation. Panels (a) depict original vector fields (vectorial “emission
maps”) and panels (b) show reconstructions. The vector field being reconstructed in
Figure 4 is given by formulae

ay 2zy cos(a? + y?) + cos(6ay) — 6zy sin(6xy)
o _ . 7.17
al=) (ag) (— sin(z? + y?) — 22 cos(z? + y?) + 632 sin(6zy) Uk

: (wa cos(r(z? + yz))) (7.18)

2y cos(m(z? +y?))
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recnnstrudjon —
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Figure 2. Reconstructions of a scalar function (a) from its attenuated Radon transform
with a known attenuation map (b) without (c,d) and with (e.f) added noise
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(b)
known
attenuation

(d)
512 proj.
reconsfruction

()
128 praj.
reconstruction

(€) \_
512 proj.
reconstruction

5% noise
in sinogram

reconstruction in sinogram

Figure 3. Reconstructions of a scalar function (a) from its attenuated Radon transform
with a known attenuation map (b) without (c,d) and with (e.f) added noise
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(a) original vector field (b) reconstucted vector field

Figure 4. Full reconstruction (b) of a smooth vector field (a), given by formulae (7.17)-
(7.18), from its vectorial attenuated Radon transform using 128 fan-projections

L3

(a) criginal vector field [b) reconsiructed vector field

Figure 5. Full reconstruction (b) of a discontinuous vector field (a) from its vectorial
attenuated Radon transform with a constant attenuation using 256 fan-projections

Figure 6. Attenuation map for Figure 7
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ay(xy)
original

(e)
a,(x.y)
reconstructed

(d)
a,(xy)
reconstructed

without noise
in sinogram

0.1% noise
in sinogram

axy) -
reconstructed

reconstructed

Figure 7. Full reconstructions of a vector field (b,c) from its vectorial attenuated Radon
transform with a known attenuation map (Figure 6) without (d,e) and with (f,g) added
noise
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(a)
known
attenuation

@) N
a,(x.y)

< without noise
reconstructed

in sinogram =" reconstructed

Figure 8. Full reconstruction (d,e) of a vector field (b,c) from its vectorial attenuated
Radon transform with a known attenuation map containing zero values (a)
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and contains solenoidal (7.17) and potential (7.18) parts. Figures 6. 7 and = illustrate
full reconstructions of vector fields under the presence of vanable amemuanon mars
Figure 6 contains the attenuation map for the experiment on the Figare 7 I vane

are separated from zero. On the Figure 7, panels (b) and (c) depact st amd second
components of the original vector field (vectorial “emission map™ . pamels (&) a2

show the components of the reconstructed vector field without adding mosse o Se
sinogram. Panels (f), (g) show the reconstruction from the sinogram contamssated =
a small amount of noise. Noise level of 0.1% is given in the L,-norm. Inversiom of &
vectorial attenuated Radon transform is more sensitive to a noise in the mput data has
inversion of the scalar attenuated Radon transform. Figure 8 shows another example of
reconstruction of a vector field (b), (c) from its vectorial attenuated Radon transform.
Note, that in the panel (a) the values of the attenuation map attain zero in some places.
which forbids from normal reconstruction. So, some values remain undefined in the
reconstructed vector field, see panels (d), (e).

These numerical examples show that the presented method can indeed be used for
the full reconstruction of a vector field (not only its solenoidal part) from its vectorial
attenuated Radon transform in the case of an arbitrary nonzero attenuation coefficient.
Further numerical examples can be found in [10].
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