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lnversion of the scalar and vector attenuated
X-ray transforms in a unit disc

S. G. Kazantsev and A. A. Bukheeim

Abstract. This paper summarizes some of the old results obtained for the problems of inverting
the two-dimensional attenuated X-ray transform and the attenuated vectorial X-ray transform, both
using the fan-beam geometry. These inverse problems are considered on the language ofthe transport
equation and two approaches are described for solving them. The first one, dating back to 1996,
gives the inversion formulae on the basis of the theory of so-called ,A-analytic functions. And the
second method (developed by the authors in200z) yields the inversion formulae for the scalar and
vector attenuated X-ray transforms without using the theory of .4-analytic functions, but merely by
reducing the arising inverse problems to the unattenuated case by the change of vmiables. Numerical
implementation details are also provided.

Key words. A-analyic functions, attenuated X-ray transform, attenuated vectorial X-ray transform,
Radon transform, transport equation, Hilbert transform.
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1. Introduction

The attenuated X-ray transform is a mathematical model for a number of inverse prob-

lems, which arise in different fields (for example, in optics, in the analysis of plasma

and semi-transparent media, in non-destructive testing, in astronomical measurements
and medical applications). The most prevailing problem that is formulated by the at-
tenuated X-ray transform is the problem of single photon emission computerized to-
mography (SPECT): let the unknown function of radioactive sources distribution (rhe

emission map)be given in a unit disc f) on the plane JR.2. An example of such radioac-
tive sources are 7-quanta which propagate in straight lines and are absorbed by the
medium. The task is to reconstructthe unknown emission mnp fromthe known flow of
radioactive particles measured on the boundary of a disc, providedthatthe attenuation
map of the medium is known. The problems of SPECT are mathematically investi-
gated using the attenuated X-ray transform mostly within the framework of either a
parallel-beam or afan-beam scaffitng geometry (the last one is also called a divergent
beam or a cone-beam geometry in 3D case). In the first case parallel line integrals are
determined for a flxed direction and the process is repeated for a number of different
directions. In the second case line inte$als emanating from a given source point (also

called a vertex point) arc computed for different directions and then it's repeated for a
certain number of source points, see Figure la.

In this paper we discuss only the planar (2D) case of tomography. The first result

First author: RFBR 05-01-00250. RFBR-DFG 04-01-04003 and NS-7157.2006.1.



136 S. G. Kazantsev and A. A. Bukhseim

on global uniqueness for 2D integral geometry problems of general form had been
obtained by R. G. Mukhometov l29l by the method of energy estimates. However,
in the presence of attenuation, this result becomes local. For the case of constant at-
tenuation an inversion formula was derived by O. Tretiak and C. Metz in [46]. For
the class of (real) analytic attenuation functions an inversion formula was established
in 1221. And the first explicit inversion formula for Cz attenuation functions was ob-
tained in [3]. Both results 13,221were based on the Cauchy formula for the so-called
A-analytic functions. Then the authors have derived the inversion formulae without
using the theory of A-analytic functions in [10] for the scalar and vector attenuated
Radon transforms. It was done by reducing the arising inverse problems to the unat-
tenuated case by the change of variables. The singular value decomposition (SVD) of
the X-ray transform in a unit disc from our previous work [9, 23] was used.

Another explicit inversion formulae for reconstructing the emission map in the
case of a parallel-beam scanning geometry were derived recently by R. Novikov (see

[36, 37, 38]) and F. Natterer l32l and numerically evaluated by L. Kunyansky in

126, l9l. Another exact inversion formula for the attenuated X-ray transform, closely
related to the Novikov's inversion formula, was derived in[2I,1,4, 5], using a differ-
ent derivation. An implementation of the inversion formula very similar to the filtered
back-projection algorithm of X-ray tomography is given in [49]. And in [20] authors
have shown the equivalence of Novikov's formula to the original approach based on
A-analytic functions by using the transformation between parallel-beam and fan-beam
coordinates.

A good reference on the developments in the field of the attenuated X-ray transform
is the survey articles by D. Finch [17] and P. Kuchment [24]. Some theoretical results
based on the language of the transport equation can be found in [ 1 ] and [39]. In l2l for-
mulae for the general solution of the transport equation were found. P. Kuchment and
I. Shneiberg in [25] have derived an inversion formula of the filtered-backprojection
type for the exponential X-ray transform with angle dependent attenuation map. In

I35,40,411 the problem with incomplete SPECT data was considered and it was shown
that an angular range of 180o is sufficient for the parallel-beam geometry with constant
attenuation.

Note, that the ideal mathematical solution of the SPECT would be a method for
determining the unknown emission source and attentation coefflcient simultaneously
using the SPECT data only. The first contributions to this problem are due to Y. Censor
et al in [14]. Then F. Natterer in [31] tried to reconstruct the attenuation map using
the SPECT consistency conditions, see also t281. V. Dicken in [16] formulated this
problem as an optimization problem and solved it via nonlinear Tikhonov regulaiza-
tion techniques. More information and references about simultaneous reconstruction
of the unknown emission and attenuation maps can be found in [8, 18, 48, 43, 50]. But
a satisfactory method for determining both unknown functions from the emission data
has not yet been found.

In this paper we summarize some of the old results obtained for the problems of in-
verting the two-dimensional attenuated X-ray transform and attenuated vectorial X-ray
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transform in the fan-beam formulation. The attenuation map is assumed to be known
from additional transmission measurements.

The structure of this article is as follows. After introduction of scalar and vector
attenuated X-ray transforms in Section 2, we consider the problem of inverting them
on the language of the transport equation in Section 3 and describe the method of
A-analytic functions for solving it. In Section 4 we introduce the angular Hilbert trans-
form and study its properties relevant for inversion of attenuated X-ray transforms. In
Sections 5 and 6 we present the inversion formulae for the scalar and vector aftenu-
ated X-ray transforms that were developed in our previous work [10]. At the end, we
discuss the implementation details and present some numerical results.

2. Statements of the problems and preliminaries

Let O : {* : (", y) e lR2 : lxl2 : 12 + y2 < 1} be an open unit disc in R2 with the
boundary AQ : {x : (cosB, sinB), B € l0,2r)} .Let a(x) e Lz(A) be a complex-
valued function defined in the disc Ct. If xr and x2 are two points from a closed disc O,
then

l xz  f  l x2-x l  I

/  
- 
a(x') ldx' l  t :  l '  o(*, a " j f : I f  )6t

Jx, JO . lxZ _ xt l  /

will denote an integral of the function a,(x) along a line segment lxr, xz].
Foreverypointx e Oandadirect ionvectorg: (cos4,sing),  g € [0,2tr)we

define the functions

t$,p) : :  I  *  r12* arccos ((*,0t)) ,

l (x,  p) : -  (cos l (x,  p),s in7(x, cp)),
(2.r)

where 0r : (cos(,p I rl2),sin(rp * "12)). The point l(:l.,p) gives the inter-
section of the boundary AO with the ray emitted from the point x in the direction
-9 : -(cosrp,sinrp), see Figure lb. The function l(*,p) can be defined for any
strictlyconvexregion. If x: (cosB,sinB) representstheboundarypointfromECl,
then

.y(x,p) = ̂ y(P,a : {': 
- g + n for s € l0 - n12' 0 + r1z1'

lP otherwise.

Hereinafter we shall use the following notation: i11 : (cosp, sinB) e dCl and o(.) €
C(O), then we shall imply ,(0 = o(x) and vnte u(B) instead of u(x).

2.1. The attenuated X-ray transform

Let the attenuation map (tissue density) and the emission map (activity distribution) be
described by real-valued functions p(x) and a(x) respectively, both defined in C2.

Definition 2.1. For x € O, ,p € l0,2zr) we put

p(*') ld*'1.lDp16,p) ': I
J tG ,p )

, -;J

The operator 2 is known as the X-ray transform.

(2.2)
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0:(cosg,sinrp

o)fon-beom geometry b) pQection on the boundory

Figure 1. A fan-beam scanning geometry and the projection on the boundary scheme

Remark 2.2. wlnle the classical Radon transform integrates over hyperplanes
in lR' [30], the X-ray transform D integrates over straight lines. Thus, in our case
n :2, Radon transform and X-ray transform differ only in the notation.

Definition 2.3. The attenuated X-ray transform 2, is defined for functions with com-
pact support in Q by

.I'

1+r/2
r((><,0')) X

(2.3)

This integral is the density of particles at a point x traveling in the direction 0 :
(cos,p, sin cp) at a constant speed. In practice we can measure the function (2.3) only
for x € 0C2, so we get SPECT data or the sinogram f (9, p)

IDra](x,r) ,: 
Ilr.,rra(x')e- 

[i, u.-\ld*"1 ldx'1.

f @,p) :: lDral(B,r) : 
ll,*,^a(x)e-tDu)(*',s,+') ldx,l, (2.4)

where x : (cosB,sinB) and 0,p e [0,2n). The function f (p,.) is also called an
attenuatedfan-beamprojectionof o(x) andx: (cosp,sinB) is thevertexpointof
the fan projection, see Figure la. The inverse problem consists in determining the
unknown function a(x) from the measured sinogram f (0,p), provided that p(x) is
known.

More information and references about these and related transforms are siven in
[30,34].

2.2. Attenuated vectorial X-ray transform

The similar transformation for vector fields was first introduced by K. Strehlen in t45l
for the constant attenuation and was called the exponential vectorial transform.
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During the short history of vector tomography, work has been done with a wide
variety of applications in mind [44]. Acoustic travel-time measurements is the main
field for vector tomography, with a number of applications in medicine and industry.
Doppler measurements on flows by continuous ultra sound can be used to detect cancer
tumours. Around tumours the blood flow is more irregular and more intense than in
normal tissue. It is also used for reconstructing a wind velocity fie1d in the atmosphere.
Optical transmission measurements is an analogue of time-of-flight principle bui uses
laser beam as a source of radiation. Oceanography is a mesoscale acoustic tomography
used to estimate fluid velocity. Photoelasticity is a non-destructive method for three-
dimensional stress analysis in transparent specimens. Nuclear magnetic resonance also
gives a way to measure a vectorial X-ray transform.

Definition 2.4. we define the attenuated vectorial x-ray transfo*d, for a vector
field a(x) : (ar (x), "r(*)) with compact support in e by

ld ral(x,r),: [" (o,(*')cosrp * a2(x') sinrp) s- Ii ue')F*"| 10r.,1
Jt(* ,p)

fx
: 

Jrr*,rr(o(x')eiv 
a n121)s-iv)e- Ii p6")ld*" 1 ldx'1, (2'5)

where ,4, :: (or - ia2) l2,A :: (at + ia2) 12 and p is the attenuation function.

Again, in practice we may measure the function (2.5) only for x € 0c), so we get
the sinogram f(0,p)

f @,e) p [d ra](o,r, : 
I)o,.,(A(x')siv 

* A(x)e-i\e-tou)6',,c+") 1ax,;, 12.6;

where x : (cosB,sin6); 0,p € [0,2n) andD is the X-ray transform (2.2). The
inverse problem here consists in determining the unknown vector field a(x) from the
measured sinogram f (0,p), provided that the attenuation map p(x) is a known real-
valued function.

It should be stated that in the unattenuated case (when p(*) = 0) we can restore only
the solenoidal part of the vector field (see [9,23, 42, 45)).In anoiher words, since for
arbitrary square integrable vector field we have the Helmholtz decomposition into the
potential and solenoidal parrs, tz(O) : VH;(O) e H(O;div:0) (see [15, p.216l),
then in the case ir(x) = 0 we can only determine the component H(cl; alv : 0).

3. Inverse problems for the transport equation

In this section we restate the problems of inverting the transforms (2.4) and (2.6) as the
inverse problems for the transport equation and briefly display the formal scheme of the
"4-analytic functions method for its solution. The idea of this approach was suggested
by A. L. Bukhgeim [1 1] in 1987, see also [3, 12, 13,22] for mori details.

739
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We will utilize the language of complex variables and identify IR2 with the complex
plane C in the usual way

* :  ( n , A ) *  z : r + i y .  i 2  :  - 1 .

Hence,
B : (cos 9, sin p) ,--, eis , x : (cos B, sin B) r-+ t : ei? .

In moving to the complex variable z we shall keep the old notation for functions,
namely that a(2,2) : o(x), u(2,2,g) : u(*,4) and so on. For brevity we shall
wite a(z), u(r,p) instead of a(z,z), u(z,Z,p) and so on. Also, for f : eif we have
u(0 , p) : u(t, e) .

The directional derivative

in complex variables has the form

06:  s tef l  *  e- tv0, (3 .1)

where 0 and D are the brief notations for the formal partial derivatives with respect to
variables z andz respectively

^ a aoa :: cos I U 
+ srnp 

AA

^  A  I r 0  . 6 ro =  
a r ' : t \ r o - ' a o ) , , = &,:;(**,&)

Using the directional derivative (3.1), the problems of inverting the fransforms (2.4)
and (2.6) are reduced to the following inverse problems for the transport equation

ei* Au(z , 9) + e-iv AuQ , p) + 1.r(z)u(2, p) : a(z , p) , (3.2)

where the right-hand side

^ / .- . ̂ \ f "Q) for attenuated X-ray transforma \ z ' ? ) :  \  /  \
Iot(r) cos rp * a2(z) sing for attenuated vectorial X-ray transform.

(3.3)

Inverse problem. Determine the right-hand side a(z,p) of the transport equa-
tion (3.2), (3.3), provided that p,(z) is a known real-valued function in a disc Q" and
the solution u(2, p) which is real-valued and 2r-periodic in g is defined on the mani-
fold2:: 0C) x 10,2r), and satisfies the boundary condition

u( t ,p ) :  f (0 ,p ) ,  t :  e io  e  ld t .

Note that the condition f (l@,p),p) = 0 and consequently f (1(cr-,p),p) = 0 hold
for the function f (A,d, which means there is no incoming radiation.
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3.1. " -analytic functions

In this subsection we briefly review the "4-analytic functions method for solving the
inverse problems for the 2D transport equations (3.2), (3.3).

3.1.1 Unattenuated case

Firstly we consider the unattenuated case and let us denote the X-ray transform (2.2)
of a real-valued function p by

m(x,p) : :  lDpl(x,p).

Then, the function m(z,p) : *(*, cp) represents the solution of the transport equation
in complex form

eirA*(r,g) + e- iv6m(",p):  p(r) ,  (" ,p) eQ x [0,22r) (3.4)

with the boundary condition

rn(t ,p) :  f (g,p),  t  :  e i9,  ( t ,p) e ldlx[o,2tr) .

Expanding m in a Fourier series with respect to g,

*(*,p):  i  mr"(x)e- ikv, (3.5)
ft:-o

and substituting it into the transport equation (3.4), we obtain the infinite system of
elliptic differential equations after matching terms with the same exponents

6*-t + 0m1 : p,(x) (inversion formula), (3.6)

6 * n + 0 m p ' , 2 : 0 ,  k + - I .  ( 3 . 7 )

Since rn is real-valued, the Fourier coefficients {**(")} will be complex-conjugate
quantities rn _;" : rn6. This implies that for determining rn uniquely, it is sufficient to
find the complex-valued vector

n(z )  : :  ( *o ( " ) , ^ t ( " ) ,mz(z) , .  .  . ) .

By virtue of (3.7), the vector function rn satisfies the Beltrqmi-type equation

6rn - Alrn: O, z € dt (3.8)

with the operator coefficient A acting by the rule

A'.  (mg,rnt,rny,.  .  . )  r-- l  - (*r ,rnZ,rM,.  .  . ) .

Correspondingly, for boundary points we have

6

f ( t ,p) :  t  f * ( t )e- i r 'e ,  f ( r ) : :  ( /o( t ) ,  he) , fz( t ) , . . . ) ,  te}dt ,
k : -o

741
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and thus for m(z) we have the boundary condition

m(t) :911;, t  €. An-. (3.e)

If we determine the vector function rn uniquely from equation (3.8) and boundary
conditions (3.9), then the unknown function p,(z) can be derived from (3.6) by the
formula

t  Q):2w. lam1Q)1. (3.10)

The operator "4 is defined on the Hilbert space 12 of square summable sequences and
its Sobolev subspaces lf

f r :  {@o,rnt , rn2, I  ,  i t r  + k2\Vnklz.  * i .
k:o

Definition 3.1. Solutions rn € C(d;I) n C1(O; ll) of the equation (3.8) are called
A-analytic functions and satisfy an analog of Cauchy's integral formula, see [12, 13]

1 t
rn(z) : + | ((t - z)r -OAA)-' 1at+" di)f(r), z e {t,

z 7 r 1  J 6 g 2 ' '

where .I is the identity operator.

The inversion formula (3.10) can be further simplified. Let us consider the well-
known in the complex analysis Pompeiu integral operator f47l

I  f  f  , , / t \

l rp l ( r \ , :  -1  l l  ! \ t '  Aar ,
r J J a e - z

where z : r * iy, C : € * iq. Putting C *, : peie, we have

1  fZn  r l . - t ( z , p+n ) l
- _ l  " - i * d s l  p Q + p e i e ) d p

1r Jo Jo

e-irds 
1ot'-tt"'v)t t e - p"1e) dp : + fo'" 

.-,ra, 
Irr",^/r(c) rd(l

=  :  [ ' "  e - i r * ( " , p )  dp  :2m-1 (z ) .
T J o

Substituting the last expression tor ff p,] into the Cauchy-Pompeiuformula f47f

pQ) :6 l rp l (z )

we simplify the inversion formula (3.10) into

0m1(z) :6m-r(r) :  pQ) 12,

where both 0m1(z) and,6ma(z) are real-valued.

[ rp]("):

:+1,*

( 3 . 1 1 )



l i t  I

Inversion of attenuated X-rav transforms 743

3.1.2 Attenuated case

Following the same scheme, the attenuated X-ray transform

u(* ,p ) : :  lDra ] (x ,g ) ,

represents the solution of the transport equation

e1'Au(2,9) + e-tv4u(",p) + 1-r(z)u(z,p):  o(r) ,  (" ,p) e C2 x [0,2r) (3.12)

with the boundary condition

u(t ,g) :  f (0,p),  t  :  e io,  ( t ,p) e 0ex[0,2r).

Substituting a Fourier series representation

u(x,e): i uu1*1"-to,
l c : -o

into (3.12) and matching terms with the same exponents, we get the infinite system of
equations

6u-t + lruo * 0u1 : q1.1 (inversion formula), (3.13)

6ur + ltun+r * 0up',2 :0, k + -L (3.I4)

Due to (3.14), the vector function

u(z )  : :  (uo( r ) ,  u1(z ) ,  u2(z ) ,  .  .  . )

satisfies the generaliTed B eltrami-typ e equation

6u - A}u * pBt: O, z e dl (3.15)

with the operator coefficients Aand B, where 6 acts by the rule

B  :  ( u g , ' t ! I t ' t t r 2 t . . .  )  r *  ( u t , u r , u l , . . . ) .

Definition 3.2. Such functions u(z) are called generalized A-analytic functions.

If we determine the vector function u uniquely from the equation (3.15) and the
boundary condition

u(r)  :  f (r)  : :  ( /o(t) ,  h(t) ,  fz(t) , . .  . ) ,  r  € 0Cl,  (3.16)

then in view of (3.13) the unknown function o(z) will be defined by the formula

a(z) :zwlau1Q)l + p,(z)us(z).



r*
7M S. G. Kazantsev and A. A. Bukhgeim

The solution of the boundary problem (3.15), (3.16) was constructed inl22l for the

class of (real) analytic functions p and in [3] for c2 functions p and is given by

u(z) : + f K6(t,z)(dt+, di)f(t), z e d2,
zlrr J69.

K6(t ,z) :  ( ( t  -  z \  - (=/ / ) - r "G( ' ) -c1t1,  Q'17)

where the operator G is defined via the odd-rank Fourier coefficients of @ pl

G(z) : zi*-1**rt4)B2k+r '
k:o

Here we use coefficients rnl, from the Fourier expansion (3'5) of lD p'l(2, p) : *(", p)'

3.1.3 Attenuated vectorial case

Considering the attenuated vectorial X-ray transform

u(x, p) 7 lB *al(x, e) = lD r(eie l + e-ieA)l(x, p)

instead of @rol(*,g) and applying the same scheme, we get two special equations and

a system t:.iOif"r a generalized A-anatytic function u(z) : (ut('),u2(z),q(z), " ')

6u-,  + l tus * 0u1: O, (3.18)

6ro + t-rw * \uz: 1(4, (3'19)

6 u r + F u t + t l 0 u P 1 2 : 0 ,  k : 1 , 2 , " "  ( 3 ' 2 0 )

Equations (3.18) and (3.19) lead us to the inversion formula. Firstly, we obtain

Ius(z): - i62nlau1Q)l

from (3.18) and then substitute it into (3.19) and get the inversion formula

A(4:  -U( . , . . | ,zn[anr(z) ] )  +  p, (z)u1Q) *  0u2(z) .

The function s u1(z) and u2(z) are corresponding components of the "A-analytic vector

u(z) : (ur,ur,uz,. . .), which is defined by the Cauchy-type integral

u(z):  :  t  Ks4,z)(dt+,Adi) f ( r ) ,  ze{t ,
ZTtr J AA

where K6(t,z) is defined as previously by (3.17)'
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4. The X-ray transform and the angular Hilbert transform

The analysis of the X-ray transform (2.2) is important not only for determining the
attenuation map p, from transmission data but also for understanding the attenuated
X-ray transform (2.3). ln this section we derive some formulae involving Ihe angular
Hilbert transform of the X-ray hansform. The singular value decomposition (SVD) of
the X-ray transform in a unit disc from our previous work [9,23] will be used in proofs
of these formulae.

As it is known [31], in the parallel-beam tomography the Hilbert transform

(4 .1)

plays the basic role. In the fan-bam case we deal with the angular Hilbert transform

lrlhl(s) ,:: I*flut, s € rR,

I  l 2 n  i l t - R

tfrl(B) ,: zn Jo 
cteLZLr(rb)d',|t, 0 elO,ztr).

All integrals in (4.1) and (4.2) are understood in the Cauchy principal-value sense. We
will treat the transform I as an operator L2(lO,2n)) --+ L2(l0,2tr)) and for the Fourier
basis functions {e+i'l1 the following mappings take place

[f1](B) : 0, lf"i"' l(p) : iein?, [fe-i' ' l(p) : -i.-ine, n > 0. (4.3)

Let us define the following operators

1a('dd)pl(x, e) ,: \ (Iop)(*,e) - lDpl(x,e + n)), the "odd" partof D,

12("'"n)p](x, d,: I (opl(*,p) + lDpl(x,9 + n)), the "even" part of D,

[D(*)p](*, ,) ,: l ;(1a ir)[ai"aa)p](*, .)](e),

(4.2)

(4.4)

where 1 is the identity operator.
If we expand the function lDpl6,rp) into the Fourier series with respect to the

angular variable g

Wtl1,-,r) : i mr"(x)e-*iv,
fr:-m

then from the definitions we get

1zr("a0)p11x, p) : I m21"a1(x)e-(2k+r)ie,
/c:-m

€

[a@*dp](", d: D m2r"(x)e-2kiv,
ft:-o

@

loe) p]$,e) : t rnalx+ry (x) e+Qk+r)is.
k:0

(4.s)



746 S. G. Kazantsev and A. A. Bukfigeim

We've used (4.4) and (4.3) for obtaining (4.5). The following evident properties take
place for these operators

Other important properties that will be used later are formulated in the following lem-
mata.

Lemma 4.1. Let p(x) e L2({2),then

[r[2(+)p](x,' ) l(e) : *ifDe) pl(x, e),

lf[zt+)r11 ' ,d]@) :7i[o$) p'l@,d.

Here I is the angrilar Hilbert transform (4.2).

Proof. Formula (4.9) follows directly from (4.5) and (4.3). Formula (4.10) follows
from the singular value decomposition (SVD) of the operator 2(odd) being considered
as an operator from l2(f,1) to .L2([0,2r) x [O,2tr)), se.e [9,231. If we expand the
function p(x) into the series of Tnmke polynomials Z"'k

p(x ) : t I cn ,kzn ,k (x ) ,
n:0 k:0

then the SVD yields the representation

lD\'*il 61U,r,

: i i =P+^ (e-i(2k+r)eei(n+r)B I (11^";{21*-k)+\ee-i(n+r)B). 6tZ)4 ? 2 ( n 1 -  t \  \
n:0 ft:O

As soon as the function p(x) is real-valued, the coefficients cu,k satisfy the rela-
tion dii : (-I)ncn,,-1, due to the property of Zernike polynomials 2n,x(x) :
(- 17' 7^,' -k (x). Using (4.5) with (4.12) we obtain

lD pl(*, e) : lD@'") A(J-, d + [D(*o)p] (*, p),

1a("aa)p11x, e) : foft) ,l(", p) + lDe) p,l(x,e),

1D("'"o)pl(x, ,) : : lDpl(t6,p t n),p),

1a('ao)p1 1x, p) : lD pl(*, d - 
rlD pl(t 6, e * r), e),

1O() p11x,d : lDG p\*,d (for real-valued p).

lo{+tr1r1,e) : t Lif,+T(11n "itz1n-k)+1)e e-i(n+L)o,
n:0 k:0

@ n

lo{-l r1r\,e) : I D#Te-i(2k+r)s "i(n+t)B.
n:O k:O

(4.6)

(4.7)

(4.8)

(4.e)

(4.10)

(4 .11)

(4.13)

(4.r4)

Then (4.10) follows from properties (4.3) and representations (4.13), (4.14). tr
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Remark 4.2. Combining(1.9) applied to x : (cosB, sinp) and (4.10), we get

lrlor+t r11u, )l(e) : - [r1o(+) p](. ,d)@). (4.rs)

If we know decompositions (4.11) or (4.12) then we can analytically evaluate the an-
gular Hilbert transforms of (4.I2), (4.13) and (4.14) using formulae (4.3).

Lemma 4.3. Let p(x) e Lz(A), then the functions lD@aa) 11, lOt+) ,1, on[ "lD\-)u)
represent the solutions ofthe transport equations

0e (lo@aat ,11 (*, p) : p(*) , (4.16)

ae(lo{+) r111x, e) : } r(*), (4.17)

ae(ezlDt+)t"l(*,e))(x, p) : t @) "2lD\-)pl@,e-), p(x) € C2(gr), (4.1g)

where 0 : (cos g, sin 9). Also we have

fx

I p6") ld*"| : 2lDe) p,l(x,d - zlot+t rl(*', p), x',x e O, (4.19)
J x l

lD p1&^, d : z[ot+t p]&, p) - zlD@ d0 (*, p), p). (4.20)

Proof. Formula (4.16) is obtained from definitions of de and [2('dd)p] and the fact that
Ae(lOpl) : p. Let's prove (4.17) tor lO\-t 11first. Applying 0s to the representation
ot lOr-t 11(4.5), we get

Ae(lo\- t  r11 :  (eiv7 + e- ied)(m1s-r ie * m3e-\ iv * m5s-5iv + .  .  .  )

: , m r - t  ( 6 m t * 0 m 3 ) e - 2 i v  - t  ( 6 m 3 * } m 5 ) e - a i v  * . . . : I  r .  6 . 2 1 )

Here 0m1 : lp, due to (3.11) and expressions of the form (6*r + 0**+z) are all
equal to zero according to (3.7). By analogy, property @.17) is proved for [at+tr1.
Then (4.18) is obtained from (4.17) by applying the chain rule and (4.19) is obtained
by integrating @.I7). At last, substituting x' : -t(x,g) into (4.19) we get (4.20). n

5. Inversion formula for the attenuated X-ray transform

In this section we derive an explicit inversion formula for the aftenuated X-ray trans-
form in a unit disc without using the theory of "4-analytic functions.

The essence ofthis approach (developed in our previous work [10]) can be described
in a couple of sentences. Firstly, we perform the change of variables and reduce the
inverse problem for the attenuated X-ray transform to the unattenuated case. We con-
sider it on the language of the transport equation. Then we take the pt-) part of the
X-ray fransformD and get the special form (containing only negative harmonics) of

,,1
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the solution to the same transport equation without attenuation. At last, we perform the
inverse change of variables and come to the original attenuated problem, but with the
special form of the solution to the corresponding transport equation (again, containing
only negative harmonics). This special form then yields a simple inversion formula for
the attenuated X-ray transform.

This derivation relies on the results obtained in the previous section.

Theorem 5.1. Let the real-valued functions a(x) e Lz(A) and p,(x) e C2(A) be
respectively the emission map and the attenuation map for the attenuated X-ray trans-
form (2.4) and let

f (0,d :: lDra)(B,e)
be a knownfunction. Then the following irwersionformula takes place

0  ' i  f z n  r
o(x) : 

;G J, 
eieslu.(7(x,p),p) "-z[Dt-)p]1x,e,] or),

where

u* (0 ,  p) :  l ( t  
-  i r )  ( r (  . ,  s )  -  

| rOt . ,  e  *  n) ,  e) ) l@),

u (0, p) : e2lDe) Pl@,s) f (p, p),

andf is the angular Hilbert tansform (4.2). I denotes the identity operator

Proof. Let's denote u(*,p) :: lDra(.)](*, p). substiruting (4.19) into the definition
of Dr(2.3) we get

u (x, p) : 
I l r_, ̂a 

(xt ) s- 2[Dt -'l pl(x,'p) +zloer p] (*" g' ) | dx' I

- "-zloe)plft,r, [* a(xt) s2loeu](*,,c,) ldx,l.Jt&,p\

Thus, introducing the change of variables

u (*, p)' - "2[D\- 
) 1l(x,o) u(*, g),

b(*, p)' - "zlDt- 
) Pl(x,s)a(x)

fx:  
Jre,r tb(* ' ,P) ld* ' l  :  lDb( ' ,p) l (x,p),

1su(x,p) :  b(x,p).

we obtain

u(*,P)

and consequently

(5 .1 )

(5.2)

(s.3)

(5.4)

(s.s)

(5.6)

(s.7)
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Note, that substituting the representation of 2(-) (4.5) into the Taylor series for the ex-
ponent "" : ILo(rk /trt) we get a series expansion for e2lDe)pl6,e), which contains
only non-positive harmonics

ozlD 
'1rl1x,e) 

- $ n, r--t  * ikac .  :  
Z _ i u t k \ x ) e  

- - - .

lc:0

The series expansion for e-2lD\*)u1(*,e) 4so contains only non-positive harmonics.
substituting (5.8) into (5.5) and then inro (5.6), we get the ronowing expansions

6 €

b(*,p) :  Ie- ikrb*(x),  u(*,p):  )_-e-f tv,JDb1"](x,9).  (5.9)

(s.8)

(5.10)

(s .11)

(s.r2)

(s.15)

k:0

Using (4.20) and denoting

u* (x, g) - i xv lpG)U* ] ( * ,  
p ) ,

we rewrite (5.9) as
u ( x , p ) :  o * ( x ,  p )  -  u - ( 1 ( x , p ) , p ) .

From (5.10) and (4.5) it follows that the Fourier series decomposition of ,u*(x, 
9) con-

tains onJy negative harmonics

@

' -  ?  \ - .'  - / J -

&:0

Since o* (7(x , p), p) is fully determined by its boundary values, it satisfies the equation
1su*(1(x,p),p):0.  Thus, from (5.7) and (5.11) we get

) su * ( x ,p )  *  p ,u * ( x ,p ) :  a ( x )
and has a Fourier series expansion

m

- . * / -  r  \ -  * /  \  -  i L , ^u  \ X , Q ) :  )  u ; l x l e - ' ^ v .
2

)su* (x, p) : b(x, p).

Applying the inverse change of variables

(5.13)

u* (x ,g ) : :  " - 2 l o t - t r 16 ,du* (x ,g ) ,  ( 5 .14 )

a(x)  :  " -z [ot  
- )  

PIQ'e)a(* ,  p)

we come to the new function u*(x,g), which by virtue of (5.13) and (4.1g) satisfies
the equation

The latter follows from (5.14), (5.12) and (5.gt.

(5.16)
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Substituting the expansion (5.16) into the equation (5.15) and matching terms with
the same exponents, we come to the system of equations

)u l :  a '

pui  + }ui :  g,

dui + ltui+r -l 0ul*2: 0, k, : 1,2, . . . .

(s.17)

(s.18)

(s.1e)

The equation (5.17) gives the inversion formula for obtaining the unknown a(x) from
the first Fourier coefficient of z*

ui(x):  * Ir ' "  
eipu*(x,p)dp: * l r^

e'e (u* (x, p) - u* (x, d) de.

Here we've used the fact that u*(x,g) does not contain negative harmonics due to

(5.16), ttrus ff' u;v111x,9) dp : O. So, for obtaining o(x) we get the inversion for-
mula

a(x) : u(: 
lr '  

eie$[u*(x,,p)] oe)

,*  (0, p):  [(r  
-  t f)  ( i  "- txv1p@u)6-1(, r)) ]  (r) .

k:0

(5.20)

The last step is to express S[z*(x,9)] from the sinogram f (0,d = u(p,d arrd
transmission measurements IDp(.)](0,d.According to (5.11), (5.14) and (5.4), we
have

,*(7(*, p), p) : r" (*, p) - u(x, 1p) : (u*(x, p) - u(x, 9)) ez?\-) d@'v).

Since the function u(x,p) is real-valued, we can eliminate it by taking imaginary part

s [u. (x, p)] : s [r. ( l(x, p), 11 e-zlo\-'j d&'v)1. (s.21)

Substituting (5.21) into (5.20), we get the required inversion formula (5.1).
The boundary values of u* in (5.21) can be expressed in terms of the boundary values

of tr. Firstly, we apply the definition (4.4) of Dr-tto (5.10)

,*(g,p) : i"-t*r[(r + ir;1ar'dd)bk)(l i, )](e)
/c:0

Then, using properties (4.6) and (4.15), we change the action of I from I to P

u* (0, p) : i "-r*t[(r - ir;1ot"ad)br]( ., e)l@),
k:0

which allows us to factor it out of the sum
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Applying (4.7) we finally get

u* (0,  p) :  f ( ,  -  t r )  (  i  " - ix ,  (1ouo1(. ,  p)  -  \  t , r l t^ ,  { . ,  e t  r ) , r l )  ) ]  to l ,L '  ' \ 7 _ o  \ '  z ' ,

which yields (5.2) due to (5.9). The values of u(8,9) in (5.2) are evaluated by (5.3)
due to (5.4) and the boundary condition f (0,d = u(P,g). Theorem 5.1 is proved. n

Remark 5.2. One can derive infinitely many different inversion formulae from the
system of equations (5.17)-(5.19), which are not necessarily better for numerical com-
putations though. For instance, we can first express ui(x) from (5.18)

* /  \  I
u i (x ) :  -p ,  )u ) (x )

and then substitute it into (5.17) thus getting an inversion formula

o(x) : aui(x) : -r(# aui(x)) : -u(# u(+ l, e2i's[,*(*,,p1] ae))

6. Inversion formula for the attenuated vectorial X-ray transform

In this section we derive an explicit inversion formula (first obtained in [10]) for the
attenuated vectorial X-ray transform in a unit disc using the same approach as in the
previous section. As a matter of fact, the derivation will closely follow the proof of
Theorem 5.1. Another exact inversion formulas for the attenuated vectorial Radon
transform was derived by G. Bal [4] and by F. Natterer [33]. In [6] J. Boman investi-
gated the injectivity for a weighted vectorial Radon transform.

Recall, that in the unattenuated case (when p(x) : 0) we can restore only the

solenoidal part of the vector field. In the next theorem we derive the inversion for-
mula for the full reconstruction of the vector field from its attenuated vectorial X-ray
transform.

Theorem 6.1. Let the reql-valued vector functions a(x) : (or(*),or(*)) e L2(O)
and p,(x) e C2(A) be the vectorial "emission map" and the scalar attenuqtion map

for the attenuated vectorial X-ray transform (2.6) respectively. The SPECT data

f  @,p) : :  lB,al(B,e)

is known. Then the following inversion formula takes place for points x such that
p(x) * o

.4(x):.@;={9

75r

-z1ot*)p11x,r1] Ar)),: -r(# u(+ l, eies[u.(7(x,p),p)e (6.1)
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where

u* (g ,p) :  [ ( r  -  i r ) (o(  . ,  e)  -  l  rOf  . ,  e  *  r ) ,e) ) l@),

u (0, p) : "zLo'-' "'f, ' ') f (P,,p),
andT is the angular Hilbert transform (4.2). I denotes the identity operator

Proof. By analogy with Theorem 5.1, let's denote

u(x, p) 2: fd ra(. )](*, p) :  yo r leiv A(. ) + u-ivd1)] (*, p).

After the change of variables

u (* ,  p) '  -  ez lD\-  
)  P l (x , r )  u(* ,  g) ,

b(*,p) .- "2lDt-)fi$,v)1sivA(x) * "-ic4(x))

we obtain that o(x,9) satisfies

a(x,p)  :  lDb( .  ,p) l ( * ,p) ,

1sa(x, p) : b(x, p).

and, due to (6.8) and
positive harmonics

u* (*, g) :: s-2lo\- 
)'1@'v) 

r* 1*, 11,

eiq A(*) + e-ie4x) _ e-2IDr-,pl(*,e)b(x,p)

(6.4)

(6.5)

(6.2)

(6.3)

(6.6)

(6.7)
and consequently

Substituting (5.8) into (6.5) and then into (6.6), we get the following expansions

@ 6

b(* ,p)  :  D e- ik*bx(*) ,  u(x ,p) :  t  e- ikv lob l " l (x ,p) .

Then, following the same arguments as in Theorem 5.1, the function

,*(*,p) ,:z i  e-ikelDG)6,](x,p), (6.8)
k : - l

also satisfies
06u*(x,P) :  b(x,P) (6.9)

(4.5), has a Fourier series expansion that contains only non-

F

u* (x, p) : I ,i (*) e-ikq . (6.10)
lc:0

Then, applying the inverse change of variables

(6 .11)
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we come to the new function u" (x, g) , which by virtue of (6.9) and (4. I g) satisfies the
equation

dsu"(x,g) * p,u*(x,g):  eirA(*) + e- ie,A(x)

and has a Fourier series expansion with only non-positive harmonics

u* (x ,e ) :  i r [ ( * )  e - ikp .
k:o

The latter follows from (6.11), (6.10) and (5.g).

_ substituting the expansion (6.13) into the equation (6.12) atd,matching terms with
the same exponents, we come to the system of equations

(6.r2)

(6.  l3)

(6.r4)

(6.1s)

(6.16)

(6.r7)

0u[ :  4 '

pu6 + )ui :9,

6 u g + p u i + \ u i : i ,

6 u l +  p u i + r * 0 u f , * 2 : 0 ,  k : I , 2 , . . . .
unfortunately we can't use the first equation (6.14) of this system for determining ,4(x)
immediately, because it would require the knowledge or r5(x), whereas we can only
find s[,fi(x)]. By analogy with rlieorem 5.1, rhe rouo*hg i"lution takes place

S lu.(x,  r)J :  3 Jr. ,  t (x,  p),  11 "-zloe) d6,d1.

So, in order to get an inversion formula, we first express ufi(x) from (6.15)

and then substitute it into (6.14)

A(*) : -a(+Eut(x)).
r p ( x )  ' '  ' /

This gives us an inversion formula (6.1). Theorem 6.1 is proved.

7. Reconstruction algorithm

we have developed an application in c++ for solving the two-dimensional spECT
problem in scalar and vector cases. we reconstruct a scalar emission map o(x) (or
a vectorial "emission map" a(x)) while the attenuation map pr(x) is assumed to be
known. In practice it can be determined from additional transn;srion -"ur*"ments,
i.e. from the X-ray transform Dp.

u6:  - r  au i
p
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Using our previous works 19,231we represent the attenuation map p as a polynomial
of degree N using the series of Zernike polynomials

N n

p(*) : t t cn,kzn'k(x), cn,k : an,p l7bn3. Q.I)
n:O k:O

Note, that this is a truncated version of the representation (4.1 1). Hereinafteq we shall
need to evaluate functions lO{+l r11U,g). Due to property (4.8) we can denote

2lDr-t r11p,p) :: U(p,d + 1v(p,d, Q.2)

2PH pl(g,e) :: tJ(B,d - iv(p,d. Q.3)

The function s U (P ,,p) and V (0 , d can be computed from the corresponding truncated
versions of representations (4.13-4.la) by formulae

N ' t€. 
^ ,. I cos [(n + I)(P - r)] cos l(n - zk)el

u ( A , d : 2 t - i .  )  a n . k x \" \ Y ) Y t  - 2 n - 1 1  
f t  

* ' " ' ^  
t  

- s i n [ ( n + l ) ( P - r p ) ] s i n l ( n - Z f i e ]

(  r '

-  bn.r"  x{  " : 'J I"  + r)(P- e) l  s in [ (n-ztc)e] ,  (7.4)
s in  [ (n+  l ) (B-e) ]  cos  l (n -z te )e ] '  

\ " ' /

N "K. ^ ,. I sin [(n + l )(B - e)] cos l(n - zk)e]
V(g ,d :2 f  -+=  )  an .k  x  \' \Y1 ' t ' /  -2n i |  

? -  
- " ' "  "  

I  cos [ (n+ t ) (p - ,p ) ] rh l (n -2k)p ]
(  r l

- bn.k x J 
- sin.[(n + t)(P - cp)] sin [(n --zn)e] 

, (z.s)
cos [(n + IXB - ,p)] cos l(n - zn)el ' \""/

where the top line should be used in the case of even n, and bottom line - in the case
of odd n, ard the sign * near by the second sum denotes that in the case of even n, coef-
ficient an,ln/2) should be divided by 2 andbn,ln/21should be set to 0. Computation of
functions U andV on a regular 2D gidcan be performed in 0(N21og, N) operations.

An implementation of the inversion formulae (5.1), (6.1) consists of the following
steps.

. Computation of the modified sinogram a(p,p) by the change of variables (5.3),
(6.:;.

. Computation of its 2(-) p& a*(0,9) by formulae (5.2\, (6.2), which involve the
angular Hilbert transform.

. Performing the inverse change of variables in the integrands (5.1), (6.1), and sub-
sequent numerical integration and differentiation.
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computation of the modified sinogram. At the first step, we transform a real-
valued sinogram f (0,d into the complex-valued modified sinogram u(8,9) us-
ing (7.2) and previously determined functions u(0,p) and.v(B,p). This corresponds
to formulae (5.3) and (6.3).

u (A, p) - "2lot- t *1ru'd f (p, 9) : su (e d(cos(v(B, p)) + i sin(v(8, d)) f @, e).

Evaluation of the angular Hitbert transfonn. Evaluation of the functi on u" (8, 9)
in(5.2) and (6.2) employs the angular Hilberr transform (4.2)

irrl(p) ,: +* Io'" "rrry,(,Dd,1,, B elo,2n). (7.6)

We use the quadrature formula from[27] for evaluation of this singular integral. It is
based on the fact that a periodic function u(tlt) canbe approximated by the trigonomet-
ric polynomial of degree n

2n

u*(4\:i y!'"^[(2n:r)(4' -.!:)/2] 
.' ! \ r /  

f t zn+ r  s in [ ( {_ rb r ) l z ]  1

which satisfies the conditions

u.( | t * )  :  uk l tn) ,  rb*  :  
f f in ,  k  :0 ,1 , . . . ,2n.

In order to veriff this fact it is sufficienr ro notice that sin [(2n + l)al2] : 0 when
a :2ktr  l (2n + 1),  k :  0,  1,  .  .  .  ,2n and

,r^ sin(zn J !)912 :2n t t.
a-0 slJr\o/2)

Substituting o,(ty') instead of u(t!) into (7.6) and making use of trigonometric iden-
tities

rtn(2" + t\Ib /21
t1@E- 

: | + 2(cos tlt +'' ' + cosmlt)'

$ cos[(2n + t){,/z] _ctg, -W:2(sint l t  +. . .+ sinrul t)

and thelehtion (4.3) in the form

I  f z o  i l t - B
2 "  J ,  

c t e L Z L  c o s ( k r l )  d ' b : - s i n ( k p ) ,  k : 0 , i , . . - ,

one gets the quadrature formula

1  f 2 n  $ - 0
ls"J(il,: G Jo 

cteLZL u"Qh)drl'

: S ,( *) 7",o{t" - 0
? 2 " + 1 1 - - "  2

cos[(2n + t)ftlt* - 012]t .n n,
@ l \ t ' t )
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This formula is exact for every trigonometric polynomial of degree n, as in this case
u.(1r) = u(T/) and formula (7.7) gives the exact value of the integral (7.6). When this
formula is considered at the points

0 ^ : $ ^ +  ; ! - ,  r r l : 0 , I , . . . , 2 n ,
z n +  r

then (7 .7) simplifies into

ls,l(od:i,^m"tsfu*, (7.8)

(7.e)

(7.10)

as in this case cos [(2n + I) (rbn - P; I 2] : 0 and sin [(rp6 
- P; I 2) I 0 fot all k, m :

0 , I ,  '  "  r 2 n '
For implementation of computations by this formula it is significant that the circle

should be partitioned into the odd number (2n + l) of angles and the values of u($a)
in (7.8) should be taken right in the middle between the knots B^ wherc the func-
tion [St,] (which is an approximation of [fr.']) is evaluated.

Evaluation of the integrand. In the integrals (5.1), (6.1) we encounter an expression
of the form

, .  (7(*, p), p) "- ' l ' ' -  
t  PI(* 'q),

where 7(x, rp) is given by the formula (2.1). Recall, that from (7.2), (7.3) we have

lot-t r1rU, d + 1ot+t ,l@, d : u (0, p) ,

fo{-t r1rU,d - 1ot+t r)(0,d : iv(9,p).

In order to evaluate -zlDe p16,9) at the interior point x of a disc, we make use of
the Lemma 4.3. The formula (4.20) yields

Wp]&.,w) : zlor+t rl(*, p) - 2lor+t r11r(*,p),p),

lD t 1d., e) : 21p?) pl(o-, d - 2lD{ ) r11',(*, p), p).

Subtracting (7.12) from(7.I1), we get

1zr(+)r11x, p) - lDe) pl(*, p) : lo\+) r11r(*,p),p) - @\-)p10(*,p),p)

or, using (7.10), it can be rewritten as

yoG) p|1x,d - 1ot-t rl(*, p) : -iv(-y(x, p),p)). (7.r3)

Applying the angular Hilbert ffansform f with respect to the angle 9 to the both sides
of (7.13)

(7 .11)

(7.r2)

[r[o(+)p](x, )](e) - frlat-rr1(*, .)l(p) : -i [rv(7(x,.), .)](e)
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and using (4.9) from the Lemma 4.1 for the left hand side, we get

i([2t+)p](x, d + lDe pl(*, p)) : - i lry(r(*, . ), . )](p),

or, dividing by i,

lptr pl$,d + 1o{-t rl(*, p) : - [rv(7(x, .), .)](p). (7.r4)

Subtracting (7.14) from (7.13) we get a required expression for -zlDe p](*, p)

-zlD\-)pl(x,d :  l rvo(*, .) ,  ) ](e) -  iv(7@,p),p)).  (7.1s)

In the same manner we can derive an expression for lDpl(x,g) by adding (7.11)
together with (7 .12) and using (7 .14) and (7 .9)

lD pl(*, e) : (lo\+) ,l (*, p) + lot-t pl(x, Q)
- (lot+t r1rr(*, e), d + 1ot-t 1106, p), p))

:  -  [ r r (7(x,  . ) ,  . ) ]  @) -  u( t6,p),p).  (7.16)

For computation of (7.15) and (7.16) we use previously evaluated functions u (0, p)
andV(B,e).

7.1. Numerical examples

Figures 2-3 illustrate reconstructions of scalar source functions (emission maps) under
the presence of a variable attenuation. Both, in Figures 2 and3,panel (a) represents the
unknown source function, panel (b) shows the known attenuation map, panels (c)-(d)
show reconstructions of the source function using different number of fan projections
without adding noise, and panels (e)-(0 show the reconstruction from the sinogram
contaminated by noise (with Poisson distribution). Noise levels (5Vo for panel (e) and
l0%o for panel (0) are given in the -L2-norm. Black color in the images corresponds to
the value 0, and white color - to the value 1, both for the attenuation map and for the
source distribution.

Figures 4-5 show the full (not only solenoidal part) reconstructions ofvector fields
(smooth in Figure 4 and discontinuous in Figure 5) under the presence of a con-
stant nonzero attenuation. Panels (a) depict original vector fields (vectorial "emission

maps") and panels (b) show reconstructions. The vector field being reconstructed in
Figure 4 is given by formulae

^( r ,y ) :  ( : ; )  
: ( zry cos(nz + a2) * cos(6ry) - 6ry sn(6:ry) \

\- sin(r2 * y2) - 2r2 cos(r2 + a2) + 6y2 sin(6ry) J

* (znr"os("1"2 + g2;)\
'  

\2zrscos("(*2 + a2)) )

(7.r7)

(7.18)
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Figure 2. Reconstructions of a scalar function (a) from its attenuated Radon transform
with a known attenuation map (b) without (c,d) and with (e,f) added noise
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ffi

(c)
128 proj.

(d)
512 proj.

(e)
512 proj. 5% noise

Figune 3. Reconstructions of a scalar function (a) from its attenuated Radon transform
with a known attenuation map (b) without (c,d) and with (e,0 added noise

: l l
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Figure 4. Full reconstruction (b) of a smooth vector field (a), given by formulae (7 .17)-
(7. I 8), from its vectorial attenuated Radon transform using 1 28 fan-projections

Figure 5. Full reconstruction (b) of a discontinuous vector field (a) from its vectorial
attenuated Radon transform with a constant attenuation using 256 fan-projections

(o) originol vector field (b) reconstructed vector field

Figure 6. Attenuation map for Figure 7
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(b)

s
(c)

(d)
a,(x,Y)
reconstructed

(0

without noise
in sinogram

0.1% noise
in sinogram

(e)
alx'v)

reconstructed

(g)
alx,v)a'(x'Y)

reconstructed reconstructed

Figure 7. Full reconstructions of a vector field (b,c) from its vectorial attenuated Radon
transform with a known attenuation map (Figure 6) without (d,e) and with (f,g) added
noise
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&

(b) (c)

(d) (e)
a'(x'Y) alx,y)
reconstructed reconstructed

Figure 8. Full reconstruction (d,e) of a vector field (b,c) from its vectorial attenuated
Radon transform with a known attenuation map containing zero values (a)

without noise
in sinogram
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and contains solenoidal (7.17) ard potential (7.18) pars. Figrres 6- 
- aort E rllu-<u-ate

full reconstructions of vector fields under the pre.sence of rri*lc nrrrtrrtu m;trt

Figure 6 contains the attenuation map for the experiment m fu Egu" ?- ls rrfurei

are separated from zero. On the Figure 7, panels O) atrd {ct de4ir fon d .lrncd

components of the original vector field (vectorial "emission mry*f- ft (df d lc,

show the components of the reconstructed vector field witbour di4 ri|E I b
sinogram. Panels (0, (g) show the reconstruction from the sinogram crff !
a small amount of noise. Noise level of O.lVo is given in the t2-norm- Imusirdt
vectorial attenuated Radon ffansform is more sensitive to a noise in tbIe iryot dalb
inversion of the scalar attenuated Radon transform. Figure 8 shows anotber ex*rnnle d
reconstruction of a vector field (b), (c) from its vectorial attenuated Radon trmsfun-

Note, that in the panel (a) the values of the attenuation map attain zero in soms plG.

which forbids from normal reconstruction. So, some values remain undefined in the

reconstructed vector field, see panels (d), (e).
These numerical examples show that the presented method can indeed be used fm

the full reconstruction of a vector field (not only its solenoidal part) from its vectorial

attenuated Radon transform in the case of an arbitrary nonzero attenuation coefficient.
Further numerical examples can be found in [10]'
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