РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ИНСТИТУТ МАТЕМАТИКИ ИМ. С. Л. СОБОЛЕВА

Приложение к сборнику тезисов
Международной конференции «ДНИ ГЕОМЕТРИИ В НОВОСИБИРСКЕ-2018»,
19-22 сентября 2018 года

FUNK-MINKOWSKI TYPE TRANSFORMS OF VECTOR FIELDS ON THE SPHERE \mathbb{S}^{2}

SERGEY KAZANTSEV

Let \mathbb{S}^{2} be the unit sphere in \mathbb{R}^{3}, $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:|\boldsymbol{\xi}|=1\right\}$, where $|\cdot|$ denotes the Euclidean norm. Throughout the paper we adopt the convention to denote in bold type the vectors in \mathbb{R}^{3}, and in simple type the scalars in \mathbb{R}. By the greek letters $\boldsymbol{\theta}, \boldsymbol{\eta}, \boldsymbol{\xi}$ and so on we denote the units vectors on the sphere \mathbb{S}^{2}. The Funk-Minkowski transform \mathcal{F} associates a function u or vector field \mathbf{f} on the sphere \mathbb{S}^{2} with its mean values (integrals) along all great circles of the sphere,

$$
\begin{equation*}
\left\{\mathcal{F}_{\underset{\mathbf{f}}{u}}^{u}\right\}(\boldsymbol{\eta}) \equiv \mathcal{F}_{\eta} \stackrel{u}{\mathbf{f}}=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}} \underset{\mathbf{f}(\boldsymbol{\theta})}{u(\boldsymbol{\theta})} \delta(\boldsymbol{\eta}, \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \tag{1}
\end{equation*}
$$

where δ is the Dirac delta function and the $\mathrm{d} \boldsymbol{\theta}$ is the surface measure on \mathbb{S}^{2} with normalization $\int_{\mathbb{S}^{2}} \mathrm{~d} \boldsymbol{\theta}=4 \pi$. In the second case the Funk-Minkowski transform \mathcal{F} is applied to vector function f by componentwise.

The spherical convolution operator \mathcal{S} of Hilbert type is defined by,

$$
\left\{\mathcal{S}_{\underset{\mathrm{f}}{u}}^{u}\right\}(\boldsymbol{\theta}) \equiv \mathcal{S}_{\boldsymbol{\theta}}{ }_{\mathbf{f}}^{u}=\frac{\mathrm{p} . \mathrm{v} .}{4 \pi} \int_{\mathbb{S}^{2}} \frac{u(\boldsymbol{\eta})}{\mathbf{f}(\boldsymbol{\eta})} \frac{\mathrm{d} \boldsymbol{\eta}}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}}, \boldsymbol{\theta} \in \mathbb{S}^{2} .
$$

In addition, we also consider the following Funk-Minkowski type transforms of vector fields on the the sphere

$$
\left.\begin{array}{rl}
\left\{\mathcal{F}^{(\boldsymbol{\tau})} \mathbf{f}\right\}(\boldsymbol{\eta}) & \equiv \mathcal{F}_{\eta}^{(\boldsymbol{\tau})} \mathbf{f}
\end{array}=\frac{\boldsymbol{\eta} \cdot}{2 \pi} \int_{\mathbb{S}^{2}} \boldsymbol{\theta} \times \mathbf{f}(\boldsymbol{\theta}) \delta(\boldsymbol{\eta} \cdot \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}, ~ 子 \mathcal{F}^{(\boldsymbol{\beta})} \mathbf{f}\right\}(\boldsymbol{\eta}) \equiv \mathcal{F}_{\boldsymbol{\eta}}^{(\boldsymbol{\beta})} \mathbf{f}=\frac{\boldsymbol{\eta} \cdot}{2 \pi} \int_{\mathbb{S}^{2}} \mathbf{f}(\boldsymbol{\theta}) \delta(\boldsymbol{\eta} \cdot \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} .
$$

The transform (2) will be an analog of the longitudinal ray transform of vector fields in the Euclidean case. In the physical sense, the quantity $\mathcal{F}_{\eta}^{(\boldsymbol{\tau})} \mathbf{f}$ is equal to the circulation (work) of vector field \mathbf{f} along the closed contour (big circle) $\boldsymbol{\theta} \cdot \boldsymbol{\eta}=0$ on the sphere.

The tangential gradient or the surface gradient, denoted by $\nabla \equiv \nabla_{\xi}$ and the tangential rotated gradient (the surface curl-gradient), denoted by $\nabla^{\perp} \equiv \nabla \frac{\downarrow}{\xi}$, are defined accordingly as

$$
\begin{equation*}
\nabla_{\boldsymbol{\xi}} u=\frac{\partial u}{\partial \theta} \mathbf{e}_{1}(\boldsymbol{\xi})+\frac{1}{\sin \theta} \frac{\partial u}{\partial \varphi} \mathbf{e}_{2}(\boldsymbol{\xi}), \quad \nabla_{\boldsymbol{\xi}}^{\perp} u=\boldsymbol{\xi} \times \nabla_{\boldsymbol{\xi}} u \tag{4}
\end{equation*}
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the orthonormal basis in the tangent plane $\boldsymbol{\xi}^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \boldsymbol{\xi}=0\right\}$,

$$
\begin{gathered}
\mathbf{e}_{1}(\boldsymbol{\xi})=\frac{\partial \boldsymbol{\xi}}{\partial \theta}=(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta), \mathbf{e}_{2}(\boldsymbol{\xi})=\frac{1}{\sin \theta} \frac{\partial \boldsymbol{\xi}}{\partial \varphi}=(-\sin \varphi, \cos \varphi, 0) \\
\boldsymbol{\xi}=\boldsymbol{\xi}(\theta, \varphi)=\mathbf{i} \sin \theta \cos \varphi+\mathbf{j} \sin \theta \sin \varphi+\mathbf{k} \cos \theta=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) .
\end{gathered}
$$

The surface divergence $\operatorname{div}_{\boldsymbol{\xi}}$ of vector-valued function $\mathbf{v}(\boldsymbol{\xi})=v^{1} \mathbf{e}_{1}(\boldsymbol{\xi})+v^{2} \mathbf{e}_{2}(\boldsymbol{\xi})+v^{3} \boldsymbol{\xi}$ on the sphere \mathbb{S}^{2} is written as,

$$
\begin{equation*}
\operatorname{div}_{\boldsymbol{\xi}} \mathbf{v}=\frac{1}{\sin \theta}\left(\frac{\partial}{\partial \theta}\left(v^{1} \sin \theta\right)+\frac{\partial}{\partial \varphi} v^{2}\right)+2 v^{3} \tag{5}
\end{equation*}
$$

Finally, we define the Laplace-Beltrami operator $\Delta \equiv \Delta_{\boldsymbol{\xi}}$ as $\Delta_{\boldsymbol{\xi}} u(\boldsymbol{\xi})=\operatorname{div}_{\boldsymbol{\xi}} \nabla_{\boldsymbol{\xi}} u(\boldsymbol{\xi})$.

Theorem 1. For any function $f(\boldsymbol{\theta}) \in H^{1}\left(\mathbb{S}^{2}\right)$ the following identity takes place

$$
\begin{equation*}
f(\boldsymbol{\theta})=\underbrace{\frac{1}{4 \pi} \int_{\mathbb{S}^{2}}\{\mathcal{F} f\}(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}}_{=f_{00}}+\frac{\text { p.v. }}{4 \pi} \int_{\mathbb{S}^{2}} \frac{(\boldsymbol{\eta}+\boldsymbol{\theta}) \cdot\{[\mathcal{F}, \nabla] f\}(\boldsymbol{\eta})}{\boldsymbol{\eta} \cdot \boldsymbol{\theta}} \mathrm{d} \boldsymbol{\eta}=f_{00}+\mathcal{S}_{\boldsymbol{\theta}}(\boldsymbol{\eta}+\boldsymbol{\theta}) \cdot[\mathcal{F}, \nabla]_{\boldsymbol{\eta}} f . \tag{6}
\end{equation*}
$$

Here operators \mathcal{F} and ∇ are the Funk-Minkowski transform (1) and the surface gradient (4), respectively. Through the square brackets [.,.] we, as usual, denoted the commutator $[\mathcal{F}, \nabla] f=\mathcal{F} \nabla f-\nabla \mathcal{F} f$.
We see that by using formula (6) the unknown function f completely reconstruct, if two Funk-Minkowski transforms, $\mathcal{F} f$ and $\mathcal{F} \nabla f$, are known.

Another result of this article is related to the problem of Helmholtz-Hodge decomposition for tangent vector field on the sphere \mathbb{S}^{2}. The Helmholtz-Hodge decomposition says that we can write any vector field tangent to the surface of the sphere as the sum of a curl-free component and a divergence-free component

$$
\begin{equation*}
\mathbf{f}(\boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} u(\boldsymbol{\theta})+\nabla_{\boldsymbol{\theta}}^{\perp} v(\boldsymbol{\theta}) . \tag{7}
\end{equation*}
$$

Here $\nabla_{\boldsymbol{\theta}} u$ is called also as inrrotational, poloidal, electric or potential field and $\nabla_{\boldsymbol{\theta}}{ }^{\perp} v$ is called as incompressible, toroidal, magnetic or stream vector field. Scalar functions u and v are called velocity potential and stream functions, respectively.

In the next theorem we show that decomposition (7) is obtained by use of Funk-Minkowskitransform \mathcal{F} and spherical convolution transform \mathcal{S}.

Theorem 2. Any vector field $\mathbf{f} \in \mathbf{L}_{2, \tan }\left(\mathbb{S}^{2}\right)$ that is tangent to the sphere can be uniquely decomposed into a sum (7) of a surface curl-free component and a surface divergence-free component with scalar valued functions $u, v \in H^{1}\left(\mathbb{S}^{2}\right) / \mathbb{C}$. Functions u and v are velocity potential and stream functions that are calculated unique up to a constant by the formulas

$$
\begin{aligned}
& u(\boldsymbol{\theta})=[\mathcal{S}, \boldsymbol{\eta} \cdot, \mathcal{F}]_{\boldsymbol{\theta}} \mathbf{f}=\{\mathcal{S} \boldsymbol{\eta} \cdot \mathcal{F} \mathbf{f}\}(\boldsymbol{\theta})-\{\mathcal{F} \boldsymbol{\eta} \cdot \mathcal{S} \mathbf{f}\}(\boldsymbol{\theta})=\mathcal{S}_{\boldsymbol{\theta}} \boldsymbol{\eta} \cdot \mathcal{F}_{\boldsymbol{\eta}} \mathbf{f}-\mathcal{F}_{\boldsymbol{\theta}} \boldsymbol{\eta} \cdot \mathcal{S}_{\boldsymbol{\eta}} \mathbf{f}, \\
& v(\boldsymbol{\theta})=\boldsymbol{\theta} \cdot[\mathcal{S}, \boldsymbol{\eta} \times \mathcal{F}]_{\boldsymbol{\theta}}^{\mathbf{f}}=\boldsymbol{\theta} \cdot\{\mathcal{S} \boldsymbol{\eta} \times \mathcal{F} \mathbf{f}\}(\boldsymbol{\theta})-\boldsymbol{\theta} \cdot\{\mathcal{F} \boldsymbol{\eta} \times \mathcal{S} \mathbf{f}\}(\boldsymbol{\theta})=\boldsymbol{\theta} \cdot \mathcal{S}_{\boldsymbol{\theta}} \boldsymbol{\eta} \times \mathcal{F}_{\boldsymbol{\eta}} \mathbf{f}-\boldsymbol{\theta} \cdot \mathcal{F}_{\boldsymbol{\theta}} \boldsymbol{\eta} \times \mathcal{S}_{\boldsymbol{\eta}} \mathbf{f},
\end{aligned}
$$ where through $[\mathcal{A}, \mathcal{B}, \mathcal{C}]$ we denote the generalized commutator, $[\mathcal{A}, \mathcal{B}, \mathcal{C}]=\mathcal{A B C}-\mathcal{C B A}$.

Theorem 3. For any functions $u, v \in H^{1}\left(\mathbb{S}^{2}\right)$ the following identities take place

$$
\begin{align*}
\nabla u(\boldsymbol{\theta}) & =\underbrace{\frac{\nabla}{4 \pi} \int_{\mathbb{S}^{2}} \frac{\left\{\mathcal{F}^{(\boldsymbol{\beta})} \nabla u\right\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \mathrm{d} \boldsymbol{\eta}}_{\text {even part }}+\underbrace{\frac{1}{4 \pi} \int_{\mathbb{S}^{2}}^{\int \frac{\boldsymbol{\eta} \Delta\{\mathcal{F} u\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \mathrm{d} \boldsymbol{\eta}},}_{\text {odd part }} \tag{8}\\
\nabla^{\perp} v(\boldsymbol{\theta}) & =-\underbrace{\frac{\nabla_{\boldsymbol{\theta}}^{\perp}}{4 \pi} \int_{\mathbb{S}^{2}} \frac{\left\{\mathcal{F}^{(\boldsymbol{\tau})} \nabla^{\perp} v\right\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \mathrm{d} \boldsymbol{\eta}}_{\text {odd part }}+\underbrace{\frac{\boldsymbol{\theta} \times}{4 \pi} \int_{\mathbb{S}^{2}}^{\boldsymbol{\eta} \Delta\{\mathcal{F} v\}(\boldsymbol{\eta})} \boldsymbol{\boldsymbol { \theta } \cdot \boldsymbol { \eta }} \mathrm{d} \boldsymbol{\eta}}_{\text {even part }} . \tag{9}
\end{align*}
$$

The analytic inversion formulas for operators $\mathcal{F}^{(\boldsymbol{\tau})}$ and $\mathcal{F}^{(\boldsymbol{\beta})}$ follow from the Theorem 3. Let $\mathbf{f}(\boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} u(\boldsymbol{\theta})+\nabla_{\boldsymbol{\theta}} v(\boldsymbol{\theta})$ is an odd vector field, $\mathbf{f}(-\boldsymbol{\eta})=-\mathbf{f}(\boldsymbol{\eta})$. It is obvious that for even vector fields $\mathbf{f}(-\boldsymbol{\eta})=\mathbf{f}(\boldsymbol{\eta})$ the $\mathcal{F}^{(\boldsymbol{\tau})} \mathbf{f}$ will be zero. We also know that $\mathcal{F}^{(\boldsymbol{\tau})} \nabla u=0$, so the original vector field is not completely determined by its transformation $\mathcal{F}^{(\boldsymbol{\tau})}$. We see that the first term in the formula (9) gives the inversion formula. So we define only the stream function $v_{\text {odd }}$ and, accordingly, only the solenoidal part $\nabla^{\perp} v_{\text {odd }}(\boldsymbol{\theta})$ of the vector field \mathbf{f}.

Sobolev Institute of Mathematic, Acad. Koptyug avenue, 4, Novosibirsk, 630090, Russia
E-mail address: kazan@math.nsc.ru

