РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ МАТЕМАТИКИ ИМ. С. Л. СОБОЛЕВА

Приложение к сборнику тезисов Международной конференции «ДНИ ГЕОМЕТРИИ В НОВОСИБИРСКЕ–2018», 19–22 сентября 2018 года

Новосибирск, 2018

FUNK–MINKOWSKI TYPE TRANSFORMS OF VECTOR FIELDS ON THE SPHERE \mathbb{S}^2

SERGEY KAZANTSEV

Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 , $\mathbb{S}^2 = \{ \boldsymbol{\xi} \in \mathbb{R}^3 : |\boldsymbol{\xi}| = 1 \}$, where $|\cdot|$ denotes the Euclidean norm. Throughout the paper we adopt the convention to denote in bold type the vectors in \mathbb{R}^3 , and in simple type the scalars in \mathbb{R} . By the greek letters $\boldsymbol{\theta}$, $\boldsymbol{\eta}$, $\boldsymbol{\xi}$ and so on we denote the units vectors on the sphere \mathbb{S}^2 . The Funk–Minkowski transform \mathcal{F} associates a function u or vector field \mathbf{f} on the sphere \mathbb{S}^2 with its mean values (integrals) along all great circles of the sphere,

(1)
$$\{ \mathcal{F} \stackrel{u}{\mathbf{f}} \}(\boldsymbol{\eta}) \equiv \mathcal{F}_{\boldsymbol{\eta}} \stackrel{u}{\mathbf{f}} = \frac{1}{2\pi} \int_{\mathbb{S}^2} \frac{u(\boldsymbol{\theta})}{\mathbf{f}(\boldsymbol{\theta})} \, \delta(\boldsymbol{\eta} \cdot \boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta},$$

where δ is the Dirac delta function and the $d\theta$ is the surface measure on \mathbb{S}^2 with normalization $\int_{\mathbb{S}^2} d\theta = 4\pi$. In the second case the Funk–Minkowski transform \mathcal{F} is applied to vector function **f** by componentwise.

The spherical convolution operator \mathcal{S} of Hilbert type is defined by,

$$\{\mathcal{S} \ {}^{u}_{\mathbf{f}} \ \}(\boldsymbol{\theta}) \equiv \mathcal{S}_{\boldsymbol{\theta}} \ {}^{u}_{\mathbf{f}} \ = \frac{\mathrm{p.v.}}{4\pi} \int_{\mathbb{S}^{2}} \ {}^{u}_{\mathbf{f}}(\boldsymbol{\eta}) \ \frac{\mathrm{d}\boldsymbol{\eta}}{\boldsymbol{\theta}\boldsymbol{\cdot}\boldsymbol{\eta}}, \ \boldsymbol{\theta} \in \mathbb{S}^{2}.$$

In addition, we also consider the following Funk-Minkowski type transforms of vector fields on the the sphere

(2)
$$\{\mathcal{F}^{(\tau)}\mathbf{f}\}(\boldsymbol{\eta}) \equiv \mathcal{F}^{(\tau)}_{\boldsymbol{\eta}}\mathbf{f} = \frac{\boldsymbol{\eta}\cdot}{2\pi} \int_{\mathbb{S}^2} \boldsymbol{\theta} \times \mathbf{f}(\boldsymbol{\theta})\delta(\boldsymbol{\eta}\cdot\boldsymbol{\theta}) \,\mathrm{d}\boldsymbol{\theta},$$

(3)
$$\{\mathcal{F}^{(\beta)}\mathbf{f}\}(\boldsymbol{\eta}) \equiv \mathcal{F}^{(\beta)}_{\boldsymbol{\eta}}\mathbf{f} = \frac{\boldsymbol{\eta}\cdot}{2\pi} \int_{\mathbb{S}^2} \mathbf{f}(\boldsymbol{\theta})\delta(\boldsymbol{\eta}\cdot\boldsymbol{\theta}) \,\mathrm{d}\boldsymbol{\theta}.$$

The transform (2) will be an analog of the longitudinal ray transform of vector fields in the Euclidean case. In the physical sense, the quantity $\mathcal{F}_{\eta}^{(\tau)}\mathbf{f}$ is equal to the circulation (work) of vector field \mathbf{f} along the closed contour (big circle) $\boldsymbol{\theta} \cdot \boldsymbol{\eta} = 0$ on the sphere.

The tangential gradient or the surface gradient, denoted by $\nabla \equiv \nabla_{\boldsymbol{\xi}}$ and the tangential rotated gradient (the surface curl-gradient), denoted by $\nabla^{\perp} \equiv \nabla_{\boldsymbol{\xi}}^{\perp}$, are defined accordingly as

(4)
$$\nabla_{\boldsymbol{\xi}} u = \frac{\partial u}{\partial \theta} \mathbf{e}_1(\boldsymbol{\xi}) + \frac{1}{\sin \theta} \frac{\partial u}{\partial \varphi} \mathbf{e}_2(\boldsymbol{\xi}), \quad \nabla_{\boldsymbol{\xi}}^{\perp} u = \boldsymbol{\xi} \times \nabla_{\boldsymbol{\xi}} u$$

where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the orthonormal basis in the tangent plane $\boldsymbol{\xi}^{\perp} = \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot \boldsymbol{\xi} = 0\},\$

$$\mathbf{e}_1(\boldsymbol{\xi}) = \frac{\partial \boldsymbol{\xi}}{\partial \theta} = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, -\sin\theta), \ \mathbf{e}_2(\boldsymbol{\xi}) = \frac{1}{\sin\theta} \frac{\partial \boldsymbol{\xi}}{\partial \varphi} = (-\sin\varphi, \cos\varphi, 0),$$

$$\boldsymbol{\xi} = \boldsymbol{\xi}(\theta, \varphi) = \mathbf{i} \sin \theta \cos \varphi + \mathbf{j} \sin \theta \sin \varphi + \mathbf{k} \cos \theta = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$$

The surface divergence $\operatorname{div}_{\boldsymbol{\xi}}$ of vector-valued function $\mathbf{v}(\boldsymbol{\xi}) = v^1 \mathbf{e}_1(\boldsymbol{\xi}) + v^2 \mathbf{e}_2(\boldsymbol{\xi}) + v^3 \boldsymbol{\xi}$ on the sphere \mathbb{S}^2 is written as,

(5)
$$\operatorname{div}_{\boldsymbol{\xi}} \mathbf{v} = \frac{1}{\sin \theta} \left(\frac{\partial}{\partial \theta} (v^1 \sin \theta) + \frac{\partial}{\partial \varphi} v^2 \right) + 2v^3 \, .$$

Finally, we define the Laplace–Beltrami operator $\Delta \equiv \Delta_{\boldsymbol{\xi}}$ as $\Delta_{\boldsymbol{\xi}} u(\boldsymbol{\xi}) = \operatorname{div}_{\boldsymbol{\xi}} \nabla_{\boldsymbol{\xi}} u(\boldsymbol{\xi})$.

Theorem 1. For any function $f(\boldsymbol{\theta}) \in H^1(\mathbb{S}^2)$ the following identity takes place (6)

$$f(\boldsymbol{\theta}) = \underbrace{\frac{1}{4\pi} \int_{\mathbb{S}^2} \{\mathcal{F}f\}(\boldsymbol{\eta}) \mathrm{d}\boldsymbol{\eta}}_{=f_{00}} + \frac{\mathrm{p.v.}}{4\pi} \int_{\mathbb{S}^2} \frac{(\boldsymbol{\eta} + \boldsymbol{\theta}) \cdot \left\{ \left[\mathcal{F}, \nabla\right] f \right\}(\boldsymbol{\eta})}{\boldsymbol{\eta} \cdot \boldsymbol{\theta}} \mathrm{d}\boldsymbol{\eta} = f_{00} + \mathcal{S}_{\boldsymbol{\theta}}(\boldsymbol{\eta} + \boldsymbol{\theta}) \cdot \left[\mathcal{F}, \nabla\right]_{\boldsymbol{\eta}} f.$$

Here operators \mathcal{F} and ∇ are the Funk–Minkowski transform (1) and the surface gradient (4), respectively. Through the square brackets [.,.] we, as usual, denoted the commutator $\left[\mathcal{F}, \nabla\right] f = \mathcal{F} \nabla f - \nabla \mathcal{F} f$.

We see that by using formula (6) the unknown function f completely reconstruct, if two Funk–Minkowski transforms, $\mathcal{F}f$ and $\mathcal{F}\nabla f$, are known.

Another result of this article is related to the problem of Helmholtz–Hodge decomposition for tangent vector field on the sphere S^2 . The Helmholtz–Hodge decomposition says that we can write any vector field tangent to the surface of the sphere as the sum of a curl-free component and a divergence-free component

(7)
$$\mathbf{f}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} u(\boldsymbol{\theta}) + \nabla_{\boldsymbol{\theta}}^{\perp} v(\boldsymbol{\theta}).$$

Here $\nabla_{\theta} u$ is called also as inrotational, poloidal, electric or potential field and $\nabla_{\theta}^{\perp} v$ is called as incompressible, toroidal, magnetic or stream vector field. Scalar functions u and v are called velocity potential and stream functions, respectively.

In the next theorem we show that decomposition (7) is obtained by use of Funk–Minkowskitransform \mathcal{F} and spherical convolution transform \mathcal{S} .

Theorem 2. Any vector field $\mathbf{f} \in \mathbf{L}_{2,tan}(\mathbb{S}^2)$ that is tangent to the sphere can be uniquely decomposed into a sum (7) of a surface curl-free component and a surface divergence-free component with scalar valued functions $u, v \in H^1(\mathbb{S}^2)/\mathbb{C}$. Functions u and v are velocity potential and stream functions that are calculated unique up to a constant by the formulas

$$\begin{split} u(\boldsymbol{\theta}) &= \left[\mathcal{S}, \boldsymbol{\eta} \boldsymbol{\cdot}, \mathcal{F} \right]_{\boldsymbol{\theta}} \mathbf{f} = \left\{ \mathcal{S}\boldsymbol{\eta} \boldsymbol{\cdot} \mathcal{F} \mathbf{f} \right\} (\boldsymbol{\theta}) - \left\{ \mathcal{F}\boldsymbol{\eta} \boldsymbol{\cdot} \mathcal{S} \mathbf{f} \right\} (\boldsymbol{\theta}) = \mathcal{S}_{\boldsymbol{\theta}} \boldsymbol{\eta} \boldsymbol{\cdot} \mathcal{F}_{\boldsymbol{\eta}} \mathbf{f} - \mathcal{F}_{\boldsymbol{\theta}} \boldsymbol{\eta} \boldsymbol{\cdot} \mathcal{S}_{\boldsymbol{\eta}} \mathbf{f}, \\ v(\boldsymbol{\theta}) &= \boldsymbol{\theta} \boldsymbol{\cdot} \left[\mathcal{S}, \boldsymbol{\eta} \times, \mathcal{F} \right]_{\boldsymbol{\theta}} \mathbf{f} = \boldsymbol{\theta} \boldsymbol{\cdot} \left\{ \mathcal{S} \boldsymbol{\eta} \times \mathcal{F} \mathbf{f} \right\} (\boldsymbol{\theta}) - \boldsymbol{\theta} \boldsymbol{\cdot} \left\{ \mathcal{F} \boldsymbol{\eta} \times \mathcal{S} \mathbf{f} \right\} (\boldsymbol{\theta}) = \boldsymbol{\theta} \boldsymbol{\cdot} \mathcal{S}_{\boldsymbol{\theta}} \boldsymbol{\eta} \times \mathcal{F}_{\boldsymbol{\eta}} \mathbf{f} - \boldsymbol{\theta} \boldsymbol{\cdot} \mathcal{F}_{\boldsymbol{\theta}} \boldsymbol{\eta} \times \mathcal{S}_{\boldsymbol{\eta}} \mathbf{f}, \\ \text{where through } \left[\mathcal{A}, \mathcal{B}, \mathcal{C} \right] \text{ we denote the generalized commutator, } \left[\mathcal{A}, \mathcal{B}, \mathcal{C} \right] = \mathcal{ABC} - \mathcal{CBA}. \end{split}$$

Theorem 3. For any functions $u, v \in H^1(\mathbb{S}^2)$ the following identities take place

(8)
$$\nabla u(\boldsymbol{\theta}) = \underbrace{\frac{\nabla}{4\pi} \int_{\mathbb{S}^2} \frac{\{\mathcal{F}^{(\boldsymbol{\beta})} \nabla u\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \,\mathrm{d}\boldsymbol{\eta}}_{\text{superator}} + \underbrace{\frac{1}{4\pi} \int_{\mathbb{S}^2} \frac{\boldsymbol{\eta} \Delta \{\mathcal{F}u\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \,\mathrm{d}\boldsymbol{\eta}}_{\text{superator}},$$

(9)
$$\nabla^{\perp} v(\boldsymbol{\theta}) = -\underbrace{\frac{\nabla_{\boldsymbol{\theta}}^{\perp}}{4\pi} \int_{\mathbb{S}^{2}} \frac{\{\mathcal{F}^{(\tau)} \nabla^{\perp} v\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \, \mathrm{d}\boldsymbol{\eta}}_{odd \, part} + \underbrace{\frac{\boldsymbol{\theta} \times}{4\pi} \int_{\mathbb{S}^{2}} \frac{\boldsymbol{\eta} \Delta \{\mathcal{F} v\}(\boldsymbol{\eta})}{\boldsymbol{\theta} \cdot \boldsymbol{\eta}} \, \mathrm{d}\boldsymbol{\eta}}_{even \, part}$$

The analytic inversion formulas for operators $\mathcal{F}^{(\tau)}$ and $\mathcal{F}^{(\beta)}$ follow from the Theorem 3. Let $\mathbf{f}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} u(\boldsymbol{\theta}) + \nabla_{\boldsymbol{\theta}}^{\perp} v(\boldsymbol{\theta})$ is an odd vector field, $\mathbf{f}(-\boldsymbol{\eta}) = -\mathbf{f}(\boldsymbol{\eta})$. It is obvious that for even vector fields $\mathbf{f}(-\boldsymbol{\eta}) = \mathbf{f}(\boldsymbol{\eta})$ the $\mathcal{F}^{(\tau)}\mathbf{f}$ will be zero. We also know that $\mathcal{F}^{(\tau)}\nabla u = 0$, so the original vector field is not completely determined by its transformation $\mathcal{F}^{(\tau)}$. We see that the first term in the formula (9) gives the inversion formula. So we define only the stream function v_{odd} and, accordingly, only the solenoidal part $\nabla^{\perp} v_{odd}(\boldsymbol{\theta})$ of the vector field \mathbf{f} .

SOBOLEV INSTITUTE OF MATHEMATIC, ACAD. KOPTYUG AVENUE, 4, NOVOSIBIRSK, 630090, RUSSIA *E-mail address*: kazan@math.nsc.ru