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FUNK–MINKOWSKI TYPE TRANSFORMS OF VECTOR FIELDS ON THE
SPHERE S2

SERGEY KAZANTSEV

Let S2 be the unit sphere in R3, S2 = {ξ ∈ R3 : |ξ| = 1}, where | · | denotes the Euclidean
norm. Throughout the paper we adopt the convention to denote in bold type the vectors in R3,
and in simple type the scalars in R. By the greek letters θ, η, ξ and so on we denote the units
vectors on the sphere S2. The Funk–Minkowski transform F associates a function u or vector
field f on the sphere S2 with its mean values (integrals) along all great circles of the sphere,

{F u
f
}(η) ≡ Fη

u
f

=
1

2π

∫
S2

u(θ)
f(θ)

δ(η � θ) dθ,(1)

where δ is the Dirac delta function and the dθ is the surface measure on S2 with normalization∫
S2 dθ = 4π. In the second case the Funk–Minkowski transform F is applied to vector function
f by componentwise.

The spherical convolution operator S of Hilbert type is defined by,

{S u
f
}(θ) ≡ Sθ

u
f

=
p.v.

4π

∫
S2

u(η)
f(η)

dη

θ � η
, θ ∈ S2.

In addition, we also consider the following Funk-Minkowski type transforms of vector fields on
the the sphere

{F (τ )f}(η) ≡ F (τ )
η f =

η �
2π

∫
S2
θ × f(θ)δ(η � θ) dθ,(2)

{F (β)f}(η) ≡ F (β)
η f =

η �
2π

∫
S2
f(θ)δ(η � θ) dθ.(3)

The transform (2) will be an analog of the longitudinal ray transform of vector fields in

the Euclidean case. In the physical sense, the quantity F (τ )
η f is equal to the circulation (work)

of vector field f along the closed contour (big circle) θ � η = 0 on the sphere.
The tangential gradient or the surface gradient, denoted by ∇ ≡ ∇ξ and the tangential

rotated gradient (the surface curl-gradient), denoted by ∇⊥ ≡ ∇⊥
ξ , are defined accordingly as

∇ξu =
∂u

∂θ
e1(ξ) +

1

sin θ

∂u

∂ϕ
e2(ξ), ∇⊥

ξ u = ξ ×∇ξu,(4)

where {e1, e2} is the orthonormal basis in the tangent plane ξ⊥ = {x ∈ R3 : x � ξ = 0},

e1(ξ) =
∂ξ

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ), e2(ξ) =

1

sin θ

∂ξ

∂ϕ
= (− sinϕ, cosϕ, 0),

ξ = ξ(θ, ϕ) = i sin θ cosϕ+ j sin θ sinϕ+ k cos θ = (sin θ cosϕ, sin θ sinϕ, cos θ).

The surface divergence divξ of vector-valued function v(ξ) = v1e1(ξ) + v2e2(ξ) + v3ξ on the
sphere S2 is written as,

divξv =
1

sin θ

(
∂

∂θ
(v1 sin θ) +

∂

∂ϕ
v2
)

+ 2v3 .(5)

Finally, we define the Laplace–Beltrami operator ∆ ≡ ∆ξ as ∆ξu(ξ) = divξ∇ξu(ξ) .
82
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Theorem 1. For any function f(θ) ∈ H1(S2) the following identity takes place

f(θ) =
1

4π

∫
S2
{Ff}(η)dη︸ ︷︷ ︸
=f00

+
p.v.

4π

∫
S2

(η + θ) �
{[
F ,∇

]
f
}

(η)

η � θ
dη = f00 + Sθ(η + θ) �

[
F ,∇

]
η
f.

(6)

Here operators F and ∇ are the Funk–Minkowski transform (1 ) and the surface gradient
(4), respectively. Through the square brackets [., .] we, as usual, denoted the commutator[
F ,∇

]
f = F∇f −∇Ff .

We see that by using formula (6) the unknown function f completely reconstruct, if two
Funk–Minkowski transforms, Ff and F∇f , are known.

Another result of this article is related to the problem of Helmholtz–Hodge decomposition for
tangent vector field on the sphere S2. The Helmholtz–Hodge decomposition says that we can
write any vector field tangent to the surface of the sphere as the sum of a curl-free component
and a divergence-free component

f(θ) = ∇θu(θ) +∇⊥
θ v(θ).(7)

Here ∇θu is called also as inrrotational, poloidal, electric or potential field and ∇⊥
θ v is called

as incompressible, toroidal, magnetic or stream vector field. Scalar functions u and v are called
velocity potential and stream functions, respectively.

In the next theorem we show that decomposition (7) is obtained by use of Funk–Minkowski-
transform F and spherical convolution transform S.

Theorem 2. Any vector field f ∈ L2,tan(S2) that is tangent to the sphere can be uniquely
decomposed into a sum (7) of a surface curl-free component and a surface divergence-free
component with scalar valued functions u, v ∈ H1(S2)/C. Functions u and v are velocity
potential and stream functions that are calculated unique up to a constant by the formulas

u(θ) =
[
S,η � ,F

]
θ
f =

{
Sη � Ff

}
(θ)−

{
Fη � Sf

}
(θ) = Sθη � Fηf −Fθη � Sηf ,

v(θ) = θ �
[
S,η×,F

]
θ
f = θ �

{
Sη ×Ff

}
(θ)− θ �

{
Fη × Sf

}
(θ) = θ � Sθη ×Fηf − θ � Fθη × Sηf ,

where through [A,B, C] we denote the generalized commutator, [A,B, C] = ABC − CBA.

Theorem 3. For any functions u, v ∈ H1(S2) the following identities take place

∇u(θ) =
∇
4π

∫
S2

{F (β)∇u}(η)

θ � η
dη

︸ ︷︷ ︸
even part

+
1

4π

∫
S2

η∆{Fu}(η)

θ � η
dη

︸ ︷︷ ︸
odd part

,(8)

∇⊥v(θ) =− ∇
⊥
θ

4π

∫
S2

{F (τ )∇⊥v}(η)

θ � η
dη

︸ ︷︷ ︸
odd part

+
θ×
4π

∫
S2

η∆{Fv}(η)

θ � η
dη

︸ ︷︷ ︸
even part

.(9)

The analytic inversion formulas for operators F (τ ) and F (β) follow from the Theorem 3. Let
f(θ) = ∇θu(θ) + ∇⊥

θ v(θ) is an odd vector field, f(−η) = −f(η). It is obvious that for even
vector fields f(−η) = f(η) the F (τ )f will be zero. We also know that F (τ )∇u = 0, so the
original vector field is not completely determined by its transformation F (τ ). We see that the
first term in the formula (9) gives the inversion formula. So we define only the stream function
vodd and, accordingly, only the solenoidal part ∇⊥vodd(θ) of the vector field f .

Sobolev Institute of Mathematic, Acad. Koptyug avenue, 4, Novosibirsk, 630090, Russia
E-mail address: kazan@math.nsc.ru


