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S1. Carbonate formation

Several mechanisms of carbonate and hydrocarbonate formation have been discussed in.S1�S4

It has been found recently that the activation energy of the formation of hydrocarbonate

(HCO �
3 ) from CO2 and H2O in MeX zeolites is rather small (a few kcal/mol) for Me =

K, Rb, Cs in agreement with their formation at room temperature.S5 As zeolites usually

contain water one can assume that formed HCO �
3 withdraws cations from their sites in the 8R

windows and let other CO2 pass through. Alternative route of carbonate and hydrocarbonate

formation was shown in alkaline earth zeolites where MeOXMe clusters, Me = Mg � Ba,

and X varies from 1 to 4 depending on Me. Therein, the MeOXMe clusters can react

with CO2 immediatelyS3 or after CO oxidation to CO2 at these clusters.S1,S2 We should
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note that previous studies of this carbonate phenomenon did not deal with dynamics and

suggested only geometry optimizationsS6 and climbing-image Nudged Elastic Band (ciNEB)

calculations.S1�S4

S2. The pseudo-unit cell of NaKA zeolite

Because of the large NaKA unit cell, we reduced the cell model up to two α-cages which

contains only 1/4 atoms of true NaKA unit cell. In order to do this, the Al-O-Al alter-

nationS7 was allowed at some remote positions from the central 8R window between two

α-cages of the pseudo-unit cell where the K+ cation under study was positioned. The accep-

tance of non-Loewenstein model for such comparable analysis is based on thermodynamic

reason of its lower stability without anomalous electrostatic properties.S8 The perturbed Si-

O-Al alternation cannot result in enhanced arti�cial electrostatic e�ects because very close

Si and Al charge values were obtained with accurate basis sets at the B3LYP level with the

q(Al)/q(Si) ratio between 0.911 and 0.990,S9 being pretty close to 0.975 from X-ray electron

spectroscopy.S10 As an indirect con�rmation of this, the activation energy for the HCO �
3 for-

mation obtained in the present article is of the same order as in the MeX faujasites with

Si/Al = 1S5 and a conservation of the Loewenstein rule.S7

S3. The role of ion-quadrupole K+-CO2 interaction energy

The ion-quadrupole (K+-CO2) interaction energy is realized for long |C-K+| > 5 Å distances

(Fig. 3). The sum of the half of kinetic CO2 diameter (1/2Ö3.3 ÅS11) and K+ ionic radii

(1.37 ÅS12) is equal to 3.02 Å that is smaller than CO2-K
+ distance of 5 Å (Fig. 3, S4).

This allows using the central quadrupole CO2 moment for an evaluation of ion-quadrupole

K+-CO2 interaction energy. Even overestimating charge q(K+) as +1 and taking gas phase

CO2 quadrupole Θ = -3.3 eÖa.u.2,S13 one can get approximately (in a.u.): q(K+)ÖΘÖR-3

= (-3.3)Ö(5/0.5292)-3 ≈ -3.8Ö10-3 hr = -2.5 kcal/mol for the attraction between CO2-K
+
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separated by R = 5 Å (Fig. 3, S4). This small value allows classifying the CO2-K
+ interaction

as a weak one in agreement with the resultsS14,S15 especially as compared to the large energy

barriers required for a partial cation shift from the 8R plane.S16 Such small value explains

the conservation of the K+ position in the 8R plane irrespective of either three (Fig. S4), or

seven (Fig. 3) adsorbed CO2 per one α-cage.
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Figure S1: Reaction pro�le (a) and respective geometries of reagents (0-b), minimum (3-c),
transition state (4-d), and products (7-e) calculated at the PBE-D2/PAW level.

S-5



Figure S2: Representative atomic trajectories from ab initio molecular dynamics for NaKA
zeolite. The trajectories of some Na (dark blue) and one K (blue) atoms in empty NaKA
(a), including the trajectories of C (green) atom of HCO �

3 (b), CO 2�
3 (c) and the mixture of

seven CO2 and one HCO �
3 (d). The cases (a-d) correspond to Figs. 2a-d, respectively, at

300 K.
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Figure S3: Temperature (K) equilibration towards 300 K with CO 2�
3 (blue, Fig. 2c) and 7

CO2 (green, Fig. 3) per one α-cage of two α-cages in pseudo-unit cell of NaKA (Fig. 1).
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Figure S4: Time dependences (ps) of the K+ displacement along OZ-axis (blue line, left axis)
and the C-K+ distance (green line, right axis) in NaKA with 3 CO2 per one α-cage at 300
K.
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