

VII Международная конференция «Морские исследования и образование»

Москва, 19-22 ноября 2018 г.

VII International conference
"Marine Research and Education"

Moscow, 19-22 November 2018

MARESEDU-2018

ТРУДЫ КОНФЕРЕНЦИИ / CONFERENCE PROCEEDINGS
Том / Volume I (IV)

УДК [551.46+574.5](063)

ББК 26.221я431+26.38я431+28.082.40я431

T78

Труды VII Международной научно-практической конференции "Морские исследования и образование (MARESEDU-2018)" Том I (IV): [сборник]. Тверь: ООО «ПолиПРЕСС», 2019, 319 с.: ISBN 978-5-6041943-5-5.

Сборник «Труды VIIМеждународной научно-практической конференции исследования и образование (MARESEDU-2018)"» представляет собой книгу тезисов докладов участников конференции, состоящую из четырех томов. Сборник включает в себя главы, соответствующие основным секциям технической программы конференции: океанология, геолого-геофизические исследования на акваториях, морская геология и геофизика, рациональное природопользование, гидрология и др. Специальным событием в программе этого года стало проведение дополнительной юбилейной конференции, организованной в честь 80летия ББС имени Н.А. Перцова, – «Морская биология, геология и океанология – междисциплинарные исследования на морских стационарах». В четвертом томе сборника представлены тезисы докладов по направлениям: таксономия и филогения, биология развития, биология морских животных, морская микрология, альгология и микробиология, физиология.

Все тезисы представлены в редакции авторов.

В рамках конференции участники обсудили состояние и перспективы развития комплексных исследований Мирового океана, шельфовых морей и крупнейших озер, актуальные проблемы рационального природопользования и сохранения биоразнообразия в водных пространствах, проблемы освоения ресурсов континентального шельфа, достижения науки в области морской геологии, современные подходы к исследованиям обширных акваторий дистанционными методами, проблемы устойчивого развития экосистем моря и прибрежной зоны, организацию и проведение комплексных экспедиционных исследований, преподавание «морских дисциплин», вопросы организации полевых практик студентов.

Подготовлено к выпуску издательством ООО «ПолиПРЕСС» по заказу ООО «Центр морских исследований МГУ имени М.В. Ломоносова».

ООО «ПолиПРЕСС»

170041, Россия, г. Тверь, Комсомольский пр-т, д. 7, пом. II polypress@yandex.ru

ООО «Центр морских исследований МГУ имени М.В. Ломоносова». РФ, 119234, г. Москва, ул. Ленинские Горы, д. 1, стр. 77 (495) 648-65-58/930-80-58

Все права на издание принадлежат ООО «Центр морских исследований МГУ имени М.В. Ломоносова».

© ООО «Центр морских исследований МГУ имени М.В. Ломоносова», 2019 © ООО «ПолиПРЕСС»

ВЕРТИКАЛЬНАЯ СТРАТИФИКАЦИЯ ВОДОЕМОВ КАНДАЛАКШСКОГО ЗАЛИВА НА РАЗНЫХ ЭТАПАХ ОТДЕЛЕНИЯ

<u>Иванова И.Н.¹</u>, Колесов С.В., Бегун М.А., Комарова А.П., Прядун В.В.

МГУ имени М.В. Ломоносова, физический факультет,

¹ e-mail: ivair@yandex.ru

В работе рассматриваются результаты натурных измерений в водоемах Кандалакшского залива, находящихся на разных стадиях отделения от Белого моря. Были получены вертикальные профили параметров воды (температура, соленость, содержание кислорода, мутность) в Кисло-Сладком и Трехцветном озере, Ермолинской губе. В каждом водоеме измерения проводились на 6-8 станциях, расположенных по всей изучаемой акватории. Проведенные исследования вертикальной стратификации трёх различных водоемов наглядно демонстрируют особенности разных этапов процесса отделения таких водоемов.

Введение

Исследование отделившихся водоемов важно для прогнозирования экологических катастроф, моделирования последствий при строительстве больших плотин и гидроэлектростанций. Отделившиеся водоемы представляют особый интерес, как пример одновременного существования различных экосистем. Цель данной работы — исследовать вертикальные профили параметров воды в водоемах, находящихся на разных стадиях отделения от Белого моря.

Полигоны

15, 16 и 20 августа 2018 года проводились натурные измерения в районе Беломорской Биологической станции МГУ на озерах Кисло-Сладкое и Трехцветное, в Ермолинской губе. Измерения проводились многопараметрическими зондами RCM 9 LW (Aanderaa Instruments) и YSI 600OMS (YSI Incorporated). На выбранных станциях зондирований с шагом 0,25 м по глубине измерялись температура воды, концентрация растворенного кислорода, электропроводность и мутность воды. Точность измерений T, O_2 , C и S составляли 0,02°C, 0,25 мг/л, 0,02 мСм/см и 0,4 NTU.

Ермолинская губа расположена в Кандалакшском заливе, 660 с.ш. и 330 в.д., имеет ограниченное сообщение с морем. Во время отливов остается один узкий пролив шириной 10-15 м и глубиной около 1 м. Длина губы составляет около 1 км с учетом ее кутового района, ширина в средней части - 0.4-0.5 км, глубина достигает 4,8 м [1]. В вершину губы впадает небольшой ручей. Измерения в Ермолинской губе проводились на 8 станциях.

Озеро Кисло-Сладкое — небольшое (60 м в ширину и 100 м в длину) соленое озеро с максимальной глубиной около 5 м, расположенно на берегу Ругозерской губы Кандалакшского залива Белого моря (66°32′54″ N; 33°08′05″ E), соединяется с морем небольшим протоком, через который морская вода может попадать в озеро во время высоких приливов. Здесь измерения проводились на 6 станциях.

Трехцветное озеро расположено в Пеккелинской губе Белого моря, координаты $-66^{\circ}35.53'$ с.ш., $32^{\circ}59.97'$ в.д. Размеры водоема: 340×150 м, наибольшая глубина -7.5 м. Озеро обладает ярко выраженной устойчивой стратификацией и состоит из 3 слоёв: верхний слой гуминовый бледно-желтый, далее прослойка темно-зеленого цвета из-за присутствия в

нем зелёных фототрофных бактерий, третий слой бледно-зеленого цвета, мутноватый из-за кристаллов серы. [2] Измерения проводились на 7 станциях.

Вертикальное распределение солености и растворенного кислорода

Солёность в Ермолинской губе имеет постоянное значение приблизительно 25,1 ‰ по всей глубине. От поверхности губы до глубины 3 м количество растворенного кислорода незначительно уменьшается и составляет 8-9 мг/л. Результаты измерений в глубоких точках показывают, что ниже 3 м и до самого дна концентрация кислорода увеличивается. Губа все еще является частью моря и не функционирует как самостоятельный водоем, в ней отсутствует устойчивая стратификация.

На примере Кисло-Сладкого озера можно наблюдать особенности отделившихся водоемов, еще сохраняющих связь с морем. Поверхностный слой в водоеме летом имеет соленость на несколько единиц меньше, чем в море. Соленость воды в котловине озера устойчиво оказывается выше на 3-5 единиц солености поверхностных вод и почти не изменяется в течение лета. Летом в водоеме образуются две зоны: аэробная и анаэробная. Максимум содержания кислорода располагается в нижней части галоклина или под ним. В придонном слое в разной степени, в зависимости от года и сезона, отмечается присутствие сероводорода.

На рис. 1а показаны вертикальные профили солености и растворенного кислорода в Кисло-Сладком озере. В слое до 2 м от поверхности озера уровень кислорода возрастает. На глубине 2 м наблюдается наиболее насыщенный кислородом слой. Далее на глубине от 2 до 4 м концентрация кислорода уменьшается. После 4 м и до самого дна содержание кислород очень мало. В поверхностном слое (до 1 м) наблюдается резкий градиент солености, в целом соленость меняется от 14 ‰ до 20-22 ‰ ниже приповерхностного слоя и в придонном слое.

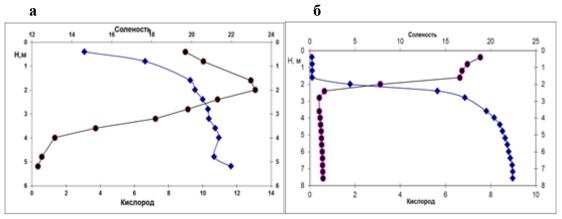


Рис. 1. Вертикальные профили солености (‰) и растворенного кислорода (мг/л) а) озеро Кисло-Сладкое, б) Трехцветное озеро

На рис 1.б показаны вертикальные профили солености и растворенного кислорода в Трехцветном озере. Верхний слой водоёма (до 1,5 м) практически полностью опреснен (0,3‰). На глубине от 2 до 3 м значение солености резко увеличивается (примерно до 20‰), затем возрастает до самого дна, нижний придонный слои имеет высокую соленость 23 ‰.

Содержание кислорода в поверхностном слое достигает примерно 7мг/л. Ниже 2 м от поверхности озера кислород практически отсутствует, зато в больших количествах наблюдается сероводород. Бактериальная зеленая прослойка и нижние слои озера обладают

характерным запахом сероводорода, усиливающимся ко дну. Толщина поверхностного насыщенного кислородом слоя почти на метр меньше, чем в Кисло-Сладком озере.

Вертикальное распределение температуры и мутности

В Ермолинской губе температура воды менялась от 15,6 °C на поверхности до 14,96 °C градусов в придонном слое. Мутность во всех измеренных точках оставалась примерно одинакова по всей глубине водоёма, ее значение лежало в интервале от 0.1 до 1 NTU.

На Рис. 2. а, б, показаны вертикальные профили температуры и мутности, полученные в Кисло-Сладком и Трехцветном озере.

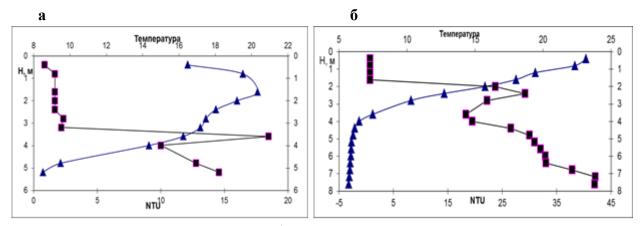


Рис. 2. Вертикальные профили температуры (°C) и мутности (NTU) а) озеро Кисло-Сладкое б) Трехцветное озеро

В поверхностном слое (до 2 м) в Кисло-Сладком озере значение мутности варьируется от 0 до 2 NTU на всех станциях. На уровне 2,5 м наблюдается тонкий слой ярко-красной воды, окрашенной так из-за наличия в ней коричневых фототрофных бактерий, что дает резкое увеличение мутности на этой глубине (20 NTU). На глубине около 0,8 м достигается максимальная температура 20 °C, далее с увеличением глубины она плавно убывает до 9,4 °C. Верхний приповерхностный слой оказывается холоднее.

В Трехцветном озере температура воды плавно убывает в верхнем слое с 23°С на поверхности до 15°С. Во втором слое резко падает до 10°С, и затем до самого дна медленно спадает до 6°С. До глубины 1,5 м наблюдается практически прозрачная вода, значение мутности менее 1 NTU. На глубине 2 м мутность резко возрастает (до 30 NTU) из-за наличия зеленого бактериального слоя толщиной порядка 10 см. В нижних слоях мутность возрастает от 17 до 40 NTU по направлению ко дну.

Вертикальное распределение плотности воды

На Рис. 3. показано распределение изменения плотности воды по глубине, полученное в Ермолинской губе, Кисло-Сладком озере и Трехцветном озере.

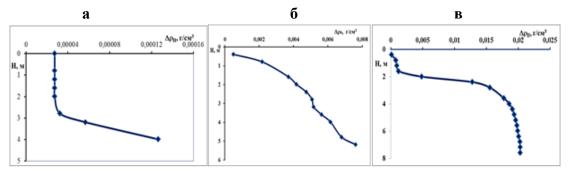


Рис. 3. Вертикальные профили плотности воды а) Ермолинская губа, б) озеро Кисло-Сладкое, в) Трехцветное озеро.

В Ермолинской губе изменение плотности происходит в придонном слое толщиной 1 м. В Кисло-Сладком озере изменение плотности происходит по всей глубине, в придонном слое медленнее. В Трехцветном озере наблюдается сильная стратификация: в приповерхностном слое (2 м.) и глубже 4 м. изменения плотности незначительны. На глубине 2-4 м. изменение плотности воды максимально.

Заключение

Проведенные исследования вертикальной стратификации трёх различных водоемов наглядно демонстрируют особенности отделяющихся водоемов, на разных этапах отделения.

- 1. В Ермолинской губе происходит сильное перемешивание. Вертикальная стратификация практически отсутствует. Не наблюдаются отклонения в параметрах воды, которые говорили бы об обособленности губы от моря.
- 2. Кисло-сладкое озеро частично отделено от моря. Оно обладает характеристиками самостоятельного закрытого водоёма, но из-за регулярного притока морской воды во время приливов прослеживается поведение озера как части моря.
- 3. Трехцветное озеро обладает ярко выраженной стратификацией в распределении плотности, растворенного кислорода, мутности. Придонный слой воды имеет повышенную соленость, а поверхностный слой опреснился.

Работа выполнена во время учебной практики кафедры физики моря и вод суши физического факультета МГУ.

Благодарность

Особая благодарность сотрудникам ББС имени П.А. Перцова Е.Д. Красновой и Д.А. Воронову за помощь в проведении измерений.

Список литературы

- 1. Столяров А.П. Макробентос лагунной экосистемы Ермолинской губы (Кандалакшский залив, Белое море): особенности структуры, разнообразие и тенденция изменений. Вестник Тверского государственного университета. 2016 г. Серия: Биология и экология. Из-во. Тверь, N24, стр. 130-150.
- **2.** Ю. К. Васильчук, Н. Л. Фролова, Е. Д. Краснова, Н. А. Буданцева, А. К. Васильчук, Л. В. Добрыднева, Л. Е. Ефимова, Е. В. Терская, Ю. Н. Чижова. Изотопно-геохимический

состав воды в меромиктическом озере Трехцветном на Беломорском побережье. 2016 г. Водные ресурсы, том 43, № 5, с. 555-561