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COMPUTING OBSERVABILITY OF GATES IN COMBINATIONAL LOGIC CIRCUITS  
BY BIT-PARALLEL SIMULATION 

D. V. Telpukhov,1  V. V. Nadolenko,2  and  S. I. Gurov3 UDC 004.052.32 

The article considers vector computation methods (bit-parallel simulation) for determining the observa-
bility of combinational logic gates.  The computations produce an ODC (observability don’t care) set of 
all gates for a given set of circuit states.  These results make it possible to evaluate the probability  
of logical masking of a random circuit fault.  The methods are compared by accuracy and time costs us-
ing testing results for ISCAS ’85 benchmark circuits. 
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Introduction 

The observability of gates in a combinational circuit constitutes the strongest [1] and most difficult to esti-
mate [2] error masking mechanism – logical masking.  This mechanism is triggered when a fault occurs on  
a unobservable gate  G ,  i.e., the signals on the primary circuit outputs are independent of the signal on the out-
put of the gate  G .   In the general case, logical masking depends on the circuit state (the values of the signals on 
all its nodes).  The state of a correctly operating combinational circuit in turn is uniquely determined by the set 
of input signals.  Therefore, observability of the gate  G   (i.e., the probability that the logical masking mecha-
nism is not triggered by an inversion fault on the given gate) is determined by the formula 

 POG =
i
∑PXi *OG

i , (1) 

where Xi  is the  i  th input vector,  OG
i   is the observability of the gate  G   with the given input vector (0 or 1), 

summation is over all input vectors. 
Computing all gate observabilities from (1), we can then estimate the fault-tolerance of the entire circuit [3]. 

Bit-Parallel Simulation 

In this article, we apply bit-parallel simulation – a Monte Carlo method that saves and simultaneously pro-
cesses multiple circuit states [4].  Instead of a single logic value, each node in a chain is assigned the signature 

 signatureG = fG X1( ) fG X2( )… fG XN( )[ ], (2) 
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where  X1,…, XN   are input patterns (vectors of signal values on the circuit inputs),  fG   is the node logic func-
tion. 

We first use the input vectors to specify the signatures of the primary circuit inputs.  To this end, we form 
the matrix of column vectors  X1,…, XN   in which the rows are the signatures of the corresponding inputs: 

 

 

X1 X2 ! XN

signaturein1 x11 x21 ! xN1

signaturein2 x12 x22 ! xN2

" " " # "

signatureinK x1K x2K ! xNK

. (3) 

Then we traverse the circuit gates in topological order.  The signature of a gate output is computed by bit-
wise application of its logic function to the input signatures.  In this way, we perform full logical simulation of 
the circuit. 

Then for each gate  G   and each input vector  Xi   we determine  OG
i   (see (1)) and construct the vector of 

observabilities – the ODC (observability don’t care) mask [5]: 

 ODCG = OG
1OG

2 …OG
N⎡⎣ ⎤⎦ . (4) 

With uniformly distributed appearance probability of the input vectors  X1,…, XN ,  we obtain from (1)  

 POG = w(ODCG )
ODCG

, (5) 

where  w(ODCG )   is the Hamming weight of the Boolean vector  ODCG ,  i.e., the number of ones in this vector,  
ODCG   is the length of the vector. 

Evaluation of ODC Masks 

We consider five methods for the evaluation of ODC masks: inversion error simulation [6], back propaga-
tion [5], fast error simulation [7], module approach [8, 9], and partial simulation. 

The first method is the benchmark, because it evaluates observability from its basic definition.  The second 
method is quite fast, but its error is highly sensitive to the circuit structure: it may reach 3%–5% in the presence 
of reconvergent paths or 10% and higher in the presence of functionally redundant parts in the circuit.  The re-
maining methods combine fault simulation and back propagation in different ways.  Fast simulation produces  
an exact result in less time than full simulation.  The module approach and partial simulation strike a compro-
mise between speed and accuracy. 

In what follows, we describe each method in detail, highlighting its strengths and weaknesses. 


