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KEMER’S THEOREM FOR AFFINE PI ALGEBRAS OVER A

FIELD OF CHARACTERISTIC ZERO

ELI ALJADEFF, ALEXEI KANEL-BELOV, AND YAAKOV KARASIK

Abstract. We present a proof of Kemer’s representability theorem for affine
PI algebras over a field of characteristic zero.

1. Introduction

The purpose of this article is to provide a proof, as complete as possible, of the
representability theorem for affine PI algebras over a field of characteristic zero
which is due to Kemer.

Theorem 1.1. Let W be an affine PI algebra over a field F of characteristic zero.
Then there exists a field extension L of F and a finite dimensional algebra A over
L which is PI equivalent to W (i.e. IdL(WL) = IdL(A), where WL = W ⊗F L).

Kemer’s proof may be found in his original article [4] and in his monograph [5].
Our exposition here follows the steps of the proof as in [1]. The paper [1] provides a
generalization of Kemer’s Theorem for PI G-graded algebras W over a field of zero
characteristic and G an arbitrary finite group. As had been mentioned in [1], the
proof there follows (at least partially) the general idea of the proof in the ungraded
case which appears in [3].

Besides [4], [5], [3] and [1], let us also mention [6] and [7] which provide a gen-
eralization of Kemer’s theorem for PI G-graded algebras where G is finite abelian
and for affine PI algebras with involution.

2. Sketch of the proof

In this short section we outline the main steps of the proof of Kemer’s theorem.

(1) Step 1. Show there exists a finite dimensional algebra A with Id(A) ⊆ Γ =
Id(W ). This is a highly nontrivial result which uses Rasmyslov, Kemer,
Braun theorem on the nilpotency of the Jacobson Radical of an affine PI
algebra, Kaplansky’ theorem on primitive PI algebras and Lewin’s theorem
on products of T -ideals.

(2) Step 2. Definition of Ind(Γ), the Kemer index of any T -ideal Γ which
contains the T -ideal of a finite dimensional algebra A. In case Γ = Id(A),
where A is a finite dimensional algebra, we refer to the index of Id(A) as
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the index of A and denote it by Ind(A). The Kemer index of Γ consists of
two parameters (nonnegative integers) (α, s), which provide a “measure”
of the extreme alternating properties of polynomials which are not in Γ.
It is clear that any multilinear polynomial which is alternating on a set of
cardinality > dimF (A) must be in Id(A) and hence in Γ. It follows that
the cardinality of alternating sets of any multilinear polynomial f which is
not in Γ is uniformly bounded (e.g. by dimF (A)). Strictly speaking non
of the parameters α or s ( where Ind(Γ) = (α, s)) measures the maximal
cardinality of an alternating set in a polynomial f /∈ Γ. They measure more
subtle invariants related to alternation in polynomials f /∈ Γ.

As mentioned above, the Kemer index Ind(Γ) = (α, s) is an element
in Ω = Z≥0 × Z≥0. We consider the lexicographic ordering on Ω and
denote it by ≤. From the definition of Ind(Γ) it will be easy to conclude
that if Γ1 ⊆ Γ2 then Ind(Γ2) ≤ Ind(Γ1) (reverse ordering). In particular
Ind(Γ) ≤ Ind(A).

(3) Step 3. Definition of Kemer polynomials of a T -ideal Γ. These are extremal
polynomials which are not in Γ whose alternation realize the Kemer index
Ind(Γ).

(4) Step 4. Construction of basic algebras. These are finite dimensional al-
gebras that on one hand they are “abundant” enough so that any finite
dimensional algebra is PI equivalent to the direct product of finitely many
basic algebras and on the other hand they are “special” enough so that
the parameters α and s (of Ind(A)) coincide respectively with the integers
dimF (A) and nA − 1, where A is the semisimple subalgebra of A which
supplements the radical J(A) and nA is the nilpotency index of J(A).

(5) Step 5. From the connection between the parameters of the Kemer index
of any basic algebra A and its geometrical properties (namely dimF (A) and
nA − 1) we obtain the Phoenix property of Kemer polynomials of A. By
definition, Kemer polynomials satisfy the Phoenix property if for any Kemer
polynomial f of Γ (in particular f /∈ Γ) and any polynomial f ′ ∈ 〈f〉 which
is not in Γ, there is f ′′ ∈ 〈f ′〉 which is Kemer of Γ (i.e. Kemer polynomials
regenerate themselves). By the fact that any finite dimensional algebra A is
PI equivalent to the product of some basic algebra we conclude the Phoenix
property of Kemer polynomials of finite dimensional algebras.

(6) Step 6. Find a finite dimensional algebra B with Id(A) ⊆ Id(B) ⊆ Γ so
that Id(B) and Γ have the same Kemer index and have the same Kemer
polynomials. From that we obtain the Phoenix property of any Kemer
polynomial of Γ.

(7) Step 7. Construction of a representable algebraB(α,s) over F (i.e. contained
in the algebra of n×n-matrices over L for some n, and L is a field extension
of F ) with Id(B(α,s)) ⊇ Γ and such that all Kemer polynomials of Γ are
nonidentities of B(α,s).

(8) Step 8. We consider Γ′ = Γ + S where S is the T -ideal generated by all
Kemer polynomials of Γ. This will imply that Ind(Γ′) < Ind(Γ) and hence
by induction on the Kemer index there exists a finite dimensional algebra
A′ (over a field extension L of F ) with Γ′ = Id(A′).
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(9) Step 9. We show that all polynomials of S (which are not in Γ) are non-
identities of B(α,s) (that is, not just elements in S which are Kemer poly-
nomials as shown in Step 7). This is achieved by the Phoenix property
of Kemer polynomials. Since any nonidentity f ′ of Γ which is in S, pro-
duces (by the T -operation) a Kemer polynomial which by Step 7 is not in
Id(B(α,s)) we have also that f ′ /∈ Id(B(α,s)). From that one concludes that
Γ = Id(A′ + B(α,s)). Being the algebra A′ + B(α,s) sum of representable
algebras, it is representable and so we are done.

3. Start

The starting point of the Representability Theorem for affine PI algebras, is the
existence of a finite dimensional F -algebraB (here F is a field of characteristic zero)
whose ideal of identities IdF (B) is contained in Γ (the given T -ideal of an affine
PI F -algebra W ). The existence of such algebra B relies on three fundamental
theorems of PI theory. In what follows we prove this assertion and state (without
proof) along the way the theorems when they are needed. For future reference let
us formulate the main theorem of this section.

Theorem 3.1. Let Γ be the T -ideal of identities of an affine PI algebra W over a
field F of characteristic zero. Then there exists a finite dimensional algebra B over
F such that Id(B) ⊆ Γ.

Consider the relatively free algebra W = F 〈X〉 /Γ. Denote by J its Jacobson
radical and by J the pre-image of J inside F 〈X〉. It is clear that J contains Γ.

First, we claim that J is a T -ideal (an ideal of F 〈X〉 is a T -ideal if it is invariant
under any endomorphism of the F -algebra F 〈X〉). For this recall that r ∈ J(C)
(the Jacobson radical of an F -algebra C) if and only if any element of rC is right-
quasi-invertible (i.e. for every x ∈ rC there is yx ∈ C (quasi-inverse of x) such
that xyx − x− yx = 0). Therefore, J(C) is the unique maximal right-quasi-regular
right-ideal of C (a right ideal U of C is right-quasi-regular if every element z ∈ U
is quasi-invertible). It follows that if I ⊳W is a right-quasi-regular right-ideal, then
so is the image of I (inside W) by any surjective endomorphism of W . Hence,
by the maximality of J , we deduce that the image of J under any epimorphism
W →W is contained in J . We conclude that the image of J under any surjective
endomorphism of F 〈X〉 is contained J . We have proved the invariance of the ideal
J under endomorphisms of F 〈X〉 which are epic. In order to show the invariance
of J under arbitrary endomorphisms of F 〈X〉, let φ ∈ EndFF 〈X〉, and define
φn ∈ EndFF 〈X〉 by

φn(xi) = φ(xi), i = 1, 2, ..., n

φn(xi) = xi−n, i = n+ 1, n+ 2, ...

Note that φn is onto F 〈X〉 and φn|F 〈x1,...,xn〉 = φ|F 〈x1,...,xn〉. Thus, φ (J ∩ F 〈x1, ..., xn〉) ⊆
J . This holds for every n, so the claim follows.

Next, consider the algebra W ′ = W/J = F 〈X〉 /J . This is the relatively free
algebra associated with J . Since clearly the Jacobson radical of W ′ is zero, this
algebra is a sub-direct product of AInd =

∏
i∈Ind Ai, where Ind is some index set

and each Ai is a primitive F -algebra. Note that all the Ai satisfy the identities of
W and IdF (AInd) = IdF (W

′).



4 ELI ALJADEFF, ALEXEI KANEL-BELOV, AND YAAKOV KARASIK

Theorem 3.2 (Kaplansky). Suppose A is a primitive F -algebra satisfying a PI of
degree d. Then A is a central simple algebra and dimCent(A)A ≤ ⌊d/2⌋.

Hence, W ′ has the same identities as
∏

i∈IndMni
(Fi) , where Fi are fields

containing F and all the ni are uniformly bounded. The ideal of identities of
this algebra is equal to ∩i∈Ind IdF (Mni

(F )) (IdF (Mni
(Fi)) = IdF (Mni

(F ))), thus

there is some n0 such that this ideal is equal to IdF (Mn0(F )). We conclude that
IdF (Mn0(F )) = IdF (W

′) = J .
In order to continue we need to know that J is nilpotent.

Theorem 3.3 (RKB). If A is an affine PI F -algebra, then its Jacobson radical is
nilpotent.

Note that we cannot apply Theorem 3.3 directly to W since (in general) it is
nonaffine. However, since an element c of an algebra C is in J(C) if and only if cC
consists of right-quasi-regular elements, we deduce that the evaluations of J on W
are inside J(W ). Since W is affine, there is an integer r for which J(W )r = 0, thus
Jr ⊆ IdF (W ) = Γ.

We complete the proof by showing that Jr is the T -ideal of a certain finite
dimensional algebra over F . Recall that J is the T -ideal of identities of Mn0(F ).

Theorem 3.4 (Lewin). Let B = UTF (d1, ..., dm) be the upper block triangular
matrix algebra over F . Then, IdF (B) = IdF (Md1(F ) · · · IdF (Mdm

(F )).

Therefore, Jr is the ideal of identities of the finite dimensional F -algebraUTF (n0, ..., n0︸ ︷︷ ︸
r times

).

It follows that there exists an n such that any polynomial which alternates on a
set of cardinality n is an identity of W . In that case we say that cn, the nth Capelli
polynomial, is in Γ or that W satisfies the nth Capelli identity.

Remark 3.5. It is well known (and easy to prove) that any T -ideal over a field of
characteristic zero is generated by multilinear polynomials and hence T -ideals are
stable under field extensions. This means that if Γ = Id(W ) where W is an algebra
over F , then Γ⊗F L = IdL(W ⊗F L). It follows that we may assume, by extensions
of scalars, that the algebra A (appearing in 3.1) is finite dimensional over F (rather
than K). In addition, we assume as we may that F is algebraically closed.

4. the index of T -ideals

The following terminology will be used frequently.

Definition 4.1. Let f(X,Y ) be a polynomial in noncommuting variables where
X = {x1, . . . , xn} and Y is an arbitrary finite set. Suppose further that f is
multilinear on the set X . We say that f is alternating on X if there exists a
polynomial h = h(X,Y ) (multilinear on the set X) such that

f(x1, . . . , xn, Y ) =
∑

σ∈Sym(n)

(−1)σh(xσ(1), . . . , xσ(n), Y ).

Terminology 4.2. Multialternating polynomial We consider polynomials with ν
disjoint sets of alternating variables of cardinality d and µ disjoint sets (also disjoint
to the previous sets) of alternating variables of cardinality l. In particular we
consider the case l = d+ 1.
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Given a T -ideal of identities Γ of an affine PI algebra W we have by the previous
section that there exists an integer k such that any polynomial f with an alternating
set of k variables is necessarily in Γ (indeed, any k > dimF (A) will do). So if d is
an integer for which there exist polynomials with alternating sets of cardinality d
which are not in Γ, then clearly d < k. Fix a nonnegative integer ν and consider
the largest integer dν for which there exist multilinear polynomials not in Γ with ν
disjoint alternating sets of cardinality dν . Clearly, the function dν is nonnegative,
integer valued and nonincreasing. Denote by d = lim dν . Furthermore, we let µ be
the integer ν for which the function dν stabilizes (i.e. reaches the limit). Note that
d may be zero as it is in the case of nilpotent algebras.

By the definition of the integer d it follows that there exist multilinear polynomi-
als not in Γ with arbitrary many disjoint alternating sets of variables of cardinality
d. On the other hand (again from the definition of d) there is a bound on the num-
ber of alternating disjoint sets of cardinality d+ 1 that one can find in multilinear
polynomials outside Γ. Let us denote by sν the maximal number of alternating sets
of cardinality d+1 which appear in polynomials not in Γ which have ν alternating
sets of cardinality d. Again, the function sν is nonincreasing, nonnegative integer
valued and hence has a limit which we denote by s. So we have constructed three
integers, namely d, µ and s (we take µ, to be large enough so that the two functions
dν and sν reach the limit). By construction we can find multilinear polynomials
outside Γ with arbitrary many alternating disjoint sets of cardinality d and precisely
s sets of alternating sets of cardinality d+ 1. Furthermore, as long as the number
of alternating sets of cardinality d exceeds (or equal) µ we will not find multilinear
polynomials outside Γ with more than s alternating sets of cardinality d+ 1.

Example 4.3. Let W be a PI algebra and denote by Γ = Id(W ) its T -ideal of
identities. Then W is nilpotent with nilpotency index = n (Wn−1 6= 0 and Wn = 0)
if and only if d(Γ) = 0 and s(Γ) = n− 1.

Proof. Note that W is a nilpotent algebra with nilpotency index n ≥ 1 if and only
if x1 · · ·xn ∈ Γ, and n is minimal. It follows there are no multilinear polynomials
outside Γ with arbitrary many alternating sets of cardinality 1 and hence d = 0.
On the other hand we have at most n − 1 (alternating sets) of cardinality 1 (in a
nonidentity) and hence s ≤ n− 1. Since x1 · · ·xn−1 /∈ Γ, s(Γ) = n− 1. Conversely,
if d = 0, there is a bound on the number of alternating sets of cardinality 1 and
hence there is a bound on the length of multilinear monomials. If m is the largest
length, it is clear that the nilpotency index is m+ 1 as required. �

Remark 4.4. Note that if W is an algebra over F , affine and nilpotent, then it is
clearly finite dimensional over F and hence representable. This allows us to focus
(in certain proofs) on affine PI algebras with index (α, γ) where α ≥ 1.

Definition 4.5. We say that a multilinear polynomial f is a Kemer polynomial
of Γ if (a) f is not in Γ (b) f has at least µ alternating disjoint sets of cardinality
d (small sets) (c) f has exactly s alternating disjoint sets of cardinality d+ 1 (big
sets).

Given a T -ideal of identities of an affine PI algebra we extract two parameters,
namely d and s and consider the pair Ind(Γ) = (d, s) (Kemer index of Γ) as a point
in the set Ω = Z≥0 × Z≥0 with the (left) lexicographic ordering (denoted by ≤).
So any T -ideal of identities of an affine PI algebra determines a point in Ω.
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Remark 4.6. If W is non-PI, we have Γ = 0 and d is not bounded. We are
assuming this is not the case. If W = 0, the T -ideal is the free algebra and hence
Ind(Γ) = (0, 0). If W is an affine PI algebra and nonzero, Ind(Γ) > (0, 0) and is in
Z≥0 × Z≥0. If W is PI but nonaffine, then it may satisfy a Capelli identity and it
may not. If it satisfies a Capelli identity then it has an index in Ω and if it doesn’t
satisfy any Capelli identity it does not have an index in Ω. Note that by Theorem
3.1 any affine PI algebra satisfies a Capelli identity cn for some n.

Lemma 4.7. If Γ1 ⊆ Γ2 then Ind(Γ1) ≥ Ind(Γ2) i.e. the order is reversed.

Before proving the lemma (below) let us explain once again (in more formal
terminology) the functions dν and sν considered above.

Explanation 4.8. The function dν , sν
We are assuming that there exists a finite dimensional algebra A (say of di-

mension n) such that Id(A) ⊆ Γ. The algebra A satisfies cn+1 meaning that any
multilinear polynomial p(X) which is alternating on a set of cardinality n+ 1 is in
Γ. In other words, outside Γ there is no multilinear polynomial which is alternating
on a set of cardinality n+ 1.

Fix an integer ν = 1, 2, . . . ,. Let dν be the maximal nonnegative integer such that
there exists outside Γ a multilinear polynomial which is alternating on ν disjoint
sets of cardinality dν . Note that dν < n + 1 since any polynomial with at least
one alternating set of cardinality n+ 1 is already in Γ. This says that we can find
outside Γ a multilinear polynomial with ν alternating (disjoint) sets of cardinality
dν but any polynomial with ν alternating sets of cardinality dν +1 is already in Γ.
In that sense dν is maximal.

Now take ρ > ν. Then, by definition, there is a multilinear polynomial q(X) /∈ Γ
with ρ alternating sets of cardinality dρ. Let us show dρ ≤ dν . Suppose dρ >
dν . This would contradict the maximality of dν since the polynomial q(X) has ρ
sets (and hence ν sets) of cardinality dρ which are alternating. Consequently, the
function d : N → N ∪ {0} is nonincreasing and hence has a limit which we denote
by d. We denote by µ the minimal integer with dµ = dµ+1 = dµ+2 = . . . .

Here is the interpretation of d and µ. There exist polynomials outside Γ with
arbitrarymany alternating sets (disjoint) of cardinality d. On the other hand we will
not find polynomials outside Γ with arbitrary many alternating sets of cardinality
d + 1. By the definition of µ above, the number of alternating sets of cardinality
d+ 1 we can find in polynomials outside Γ is bounded by µ− 1.

Let us return to the above considerations with somewhat more formal notation
and prove Lemma 4.7. For ν ∈ N consider the set of nonnegative integers

∆ν = {r ∈ N ∪ {0} : ∃p(X) /∈ Γ, alternating on ν disjoint sets of cardinality r}.

The set ∆ν is bounded by n (the dimension of A). We denote by dν its maximum.
Since any ρ alternating set contains a ν alternating set for any ν < ρ we have that
∆ρ ⊆ ∆ν and hence dρ ≤ dν . We denote by d the limit of dν .

In order to construct the second parameter of the Kemer index of Γ = Id(W )
(W affine and PI), we know by the definition of the parameter d, that for any
ν ≥ 1, there is a multilinear polynomial pν(X) /∈ Γ which alternates on ν sets of
cardinality d. Clearly, the parameter d depends on the T -ideal Γ so in what follows
we may write dΓ. From the definition of the parameter dΓ we know that the set
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S
(Γ)
ν = {j ∈ N ∪ {0} : ∃p(X) /∈ Γ, alternating on ν disjoint sets of cardinality

dΓ and j disjoint sets (and disjoint to the previous sets) of cardinality dΓ + 1 } is

nonempty. Furthermore, by the maximality of dΓ, we know the set S
(Γ)
ν is bounded

for every ν and we denote by sν = max(S
(Γ)
ν ). As it is for the sequence {dν}, also

the sequence {sν} is nonincreasing and we let s = sΓ = limν→∞sν . We let µ be an
integer where the sequences {dν} and {sν} reach the limit.

Remark 4.9. In what follows it will not be important to keep the precise value µ
(i,e, the minimal value) where the sequences {dν} and {sν} stabilize. We can take
larger integers.

Proof. (of Lemma 4.7)

Consider the sets ∆
(Γ1)
ν and ∆

(Γ2)
ν which correspond to integer ν and the T -

ideals Γ1 and Γ2 respectively. Since Γ1 ⊆ Γ2 we have ∆
(Γ1)
ν ⊇ ∆

(Γ2)
ν . Consequently,

(dΓ1)ν = max(∆
(Γ1)
ν ) ≥ (dΓ2)ν = max(∆

(Γ2)
ν ) for every ν and hence dΓ1 ≥ dΓ2 . In

order to complete the proof of the lemma, we need to show that if dΓ1 = dΓ2 then

sΓ1 ≥ sΓ2 . To see this, note that in that case S
(Γ1)
ν ⊇ S

(Γ2)
ν for every ν and hence

(sΓ1)ν = max(S
(Γ1)
ν ) ≥ (sΓ2)ν = max(S

(Γ2)
ν ) for every ν. Taking the limit we have

sΓ1 ≥ sΓ2 and we are done. �

5. The index of finite dimensional algebras

We start this section with the definition of the Phoenix property.

Definition 5.1. (The Phoenix property) Let Γ be a T -ideal as above. Let P be
any property which may be satisfied by polynomials (e.g. being Kemer). We say
that P is “Γ-Phoenix” (or in short “Phoenix”) if given a multilinear polynomial

f satisfying P which is not in Γ and any f
′

in 〈f〉 (the T -ideal generated by f)

which is not in Γ as well, there exists a multilinear polynomial f
′′

in 〈f
′

〉 which is
not in Γ and satisfies P . We say that P is “strictly Γ-Phoenix” if any multilinear
polynomial f

′

∈ 〈f〉 which is not in Γ, satisfies P .

Remark 5.2. Given a polynomial g, there exists a multilinear polynomial f ′ such
that 〈f ′〉 = 〈g〉. It follows that in order to verify the Phoenix property it is sufficient
to consider multilinear polynomials f ′ in 〈f〉.

Example 5.3. Multilinearization implies that “multilinearity” is Phoenix: indeed,
if f is any multilinear polynomial not in Γ and f ′ ∈ 〈f〉 which is not in Γ there
exists a multilinear polynomial f ′′ ∈ 〈f ′〉 which is not in Γ.

Let us pause for a moment and summarize what we have at this point. We are
given a T -ideal Γ (the T -ideal of identities of an affine algebra W ). We assume that
W is PI and hence as shown in Section 3 there exists a finite dimensional algebra
A with Γ ⊇ Id(A). To the T -ideal Γ we attach the corresponding Kemer index in
Z≥0 × Z≥0. Similarly, we may consider the Kemer index of Id(A) which by abuse
of notation we denote it by Ind(A). By Lemma 4.7, we have Ind(Γ) ≤ Ind(A).

One of our main goals (in the first part of the proof) is to replace the algebra A

by a representable algebra A
′

with a larger T -ideal such that

(1) Γ ⊇ Id(A
′

)

(2) Γ and Id(A
′

) have the same Kemer index.

(3) Γ and Id(A
′

) have the “same” Kemer polynomials.
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Remark 5.4. The terminology “the same Kemer polynomials” needs a clarifica-
tion. Suppose Γ1 ⊇ Γ2 are T -ideals with Ind(Γ1) = Ind(Γ2). We say that Γ1

and Γ2 have the same Kemer polynomials if there exists an integer µ such that all
Kemer polynomials of Γ2 with at least µ alternating small sets are not in Γ1.

Remark 5.5. Statements (1)− (3) above will establish the important connection
between the combinatorics of the Kemer polynomials of Γ and the structure of finite
dimensional algebras. The “Phoenix” property for the Kemer polynomials of Γ will
follow from that connection.

Let A be a finite dimensional algebra over F and let J(A) be its Jacobson
radical. We know that A = A/J(A) is semisimple. Moreover by the Wedderburn-
Malcev Principal Theorem there exists a semisimple subalgebra A of A such that
A = A⊕ J(A) as vector spaces. In addition, the subalgebra A may be decomposed
as an algebra into the direct product of (semisimple) simple algebras A ∼= A1 ×
A2 × · · · ×Aq.

Remark 5.6. This decomposition enables us to consider “semisimple” and “rad-
ical” substitutions. More precisely, since in order to check whether a given multi-
linear polynomial is an identity of A it is sufficient to evaluate the variables on any
(given) spanning set, we may take a basis consisting of elements of A∪J(A). We re-
fer to such evaluations as semisimple or radical evaluations respectively. Moreover,
the semisimple substitutions may be taken from the simple components.

In what follows, whenever we evaluate a polynomial on a finite dimensional al-
gebra, we consider only evaluations of that kind.

For any finite dimensional algebra A over F we let d(A) be the dimension of
the semisimple subalgebra and nA the nilpotency index of J(A). We denote by
Par(A) = (d(A), nA − 1) the parameter of the algebra A.

Lemma 5.7. Let A be a finite dimensional algebra over F and Par(A) = (d(A), nA−
1) its parameter. If f is a multilinear polynomial with at least nA alternating sets
{Xl}l, each of cardinality d(A) + 1, then f is an identity of A.

Proof. If one of the sets Xl is evaluated only with semisimple elements, by the
pigeonhole principle we must have repetitions, and hence by the alternation the
polynomial vanishes. Otherwise all sets Xl get at least one radical evaluation and
again the polynomial vanishes since their number is at least the nilpotency index
of J(A). �

Proposition 5.8. Let (α, s) be the index of A. Then (α, s) ≤ (d(A), nA − 1).

Proof. By the definition of the parameter α, there exist nonidentity polynomials
with arbitrary large number of alternating sets of cardinality α. This says that
α ≤ d(A) for if α > d(A), by the previous lemma we cannot have in a nonidentity
more than n(A)−1 alternating sets of cardinality α. In order to complete the proof
of the proposition we need to show (by the lexicographic ordering) that if α = d(A)
then s ≤ nA− 1. If not, by the definition of Ind(A) there exists a nonidentity of A
with s > nA − 1 alternating sets of cardinality α + 1 (= d(A) + 1) which is again
impossible by the previous lemma. This proves the proposition.

�
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In the next example we show that the index of A may be quite far from Par(A) =
(d(A), nA − 1).

Example 5.9. Let B be a finite dimensional simple algebra, r > 1, B(r) = B ×
· · · × B (r times). Clearly Id(B) = Id(B(r)) and hence B and B(r) have the
same Kemer index. On the other hand Par(B(r)) increases with r: Par(B) =
(d(B), 1) < (r · d(B), 1) = Par(B(r)).

In order to establish a precise relation between the index of a finite dimensional
algebra A and its structure we need to find appropriate finite dimensional algebras
which will serve as minimal models for a given Kemer index.

Definition 5.10. Let A be a finite dimensional algebra over F . We say A is basic
if A is not PI equivalent to an algebra B where B = B1 × · · · × Br, Bi are finite
dimensional algebras over F and Par(Bi) < Par(A) for i = 1, . . . , r.

Remark 5.11. The above definition of a basic algebra, as well as some definitions
below, are different from those in [1].

In Proposition 5.8 we showed that Ind(A) ≤ Par(A) for any finite dimensional
algebra. In the next lemma we show that if A is not basic then the inequality is
strict.

Lemma 5.12. Let A be a finite dimensional nonbasic algebra. Then Ind(A) <
Par(A).

Proof. If A is nonbasic, there exists an algebra B = B1 × · · · × Br, PI equivalent
to A, where Bi is a finite dimensional algebra over F and Par(Bi) < Par(A) for
i = 1, . . . , r. We know by Lemma 5.7 that Ind(Bi) ≤ Par(Bi). Suppose Ind(A) =
Par(A) = (d(A), nA− 1). Then for any µ (by definition of the Kemer index), there
exists a multilinear polynomial f , nonidentity of A, with µ-folds of alternating sets
of cardinality d(A) and precisely nA−1 alternating sets of cardinality of d(A)+1 (a
Kemer polynomial). We claim however, that if µ is sufficiently large the polynomial
f is an identity ofBi, i = 1, . . . , r, and hence an identity ofB = B1×· · ·×Br showing
that the algebras A and B are not PI equivalent. Indeed, since Par(Bi) < Par(A)
we either have d(Bi) < d(A) or else d(Bi) = d(A) and nBi

< nA. In the first case
we have d(Bi) + 1 ≤ d(A) and hence by Lemma 5.7 f is an identity as long as µ,
the number of alternating sets of cardinality d(A), is ≥ nBi

. If d(Bi) = d(A) and
nBi

< nA, then again by Lemma 5.7, f is an identity of Bi since it has nA−1 ≥ nBi

alternating sets of cardinality d(Bi) + 1 = d(A) + 1. We see that any Kemer
polynomial of A with µ alternating sets of cardinality d(A), µ ≥ max{nB1 , . . . , nBr

},
is an identity of B. This completes the proof of the lemma.

�

Our main task in this section and the next two is to show that if A is basic then
Ind(A) = Par(A). For the proof of that statement we introduce two properties (of
finite dimensional algebras), named full and property K. We’ll show that any basic
algebra A must satisfy both conditions. Then the main task will be to show that
an algebra A which is full and satisfies property K has Ind(A) = Par(A). Finally,
applying the previous lemma we’ll obtain the following equivalences.

Proposition 5.13. The following conditions are equivalent for a finite dimensional
algebra A.
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(1) A is basic
(2) A is full and satisfies property K
(3) Ind(A) = Par(A)

Definition 5.14. We say that a finite dimensional algebra A is full if there exists
a nonidentity multilinear polynomial f such that every simple component is repre-
sented (among the semisimple substitutions) on every nonvanishing evaluation of
f on A. A finite dimensional algebra A is said to be full if it is full with respect to
some multilinear polynomial f .

We wish to show that any finite dimensional algebra may be decomposed (up to
PI -equivalence) into the direct product of full algebras.

Lemma 5.15. Let A be a finite dimensional algebra over F with q simple compo-
nents. If the algebra A is not full, then A is PI-equivalent to a finite dimensional
algebra B = B1 × · · · × Bq, where (1) Bi has fewer than A simple components for
i = 1, . . . , q. (2) d(Bi) < d(A) for i = 1, . . . , q and hence Par(Bi) < Par(A).

Proof. Note that if q = 0, i.e. A is radical (nonzero) then A is full with respect to
any multilinear polynomial, nonidentity of A. We therefore may assume that q > 0
and suppose A is not full. This means that any multilinear polynomial, nonidentity
of A, has a nonvanishing evaluation which misses the simple component Ai of A
for some i.

For any i = 1, . . . , q, consider the subalgebra Bi = 〈Aj , J : j 6= i〉 (i.e. the
subalgebra generated by all elements of J and Aj , j 6= i). Note that J(Bi) =

J(A) = J and Bi/J ∼= Bi =
∏

j 6=i Aj . Consider the product B = B1×· · ·×Bq. We

know that Id(A) ⊆ Id(Bi), any i, and hence Id(A) ⊆ ∩i Id(Bi) = Id(B). For the
converse, let f be a multilinear polynomial, nonidentity of A. By our assumption
above f has a nonzero evaluation on A which misses Ai for some i and hence f is
a nonidentity of Bi. We obtain that f is a nonidentity of B as desired.

�

Corollary 5.16. Every finite dimensional algebra A is PI equivalent to a finite
dimensional algebra B = B1 × · · · ×Bm, where Bi is full for i = 1, . . . ,m.

Proof. This follows from the corollary above (either from part (1) or (2)). �

Corollary 5.17. Let A be a finite dimensional algebra. If A is basic then A is full.

Proof. If A is not full, by the previous corollary, A is PI equivalent to B = B1 ×
· · · ×Bm, where d(Bi) < d(A) and hence, by definition, A is not basic.

�

Roughly speaking, a finite dimensional algebra A is full if its simple components
are “connected” via all nonzero evaluations of a suitable nonidentity. “Property
K” (see Section 7), concerns with the number of radical evaluations of nonidentity
polynomials.

6. Kemer’s Lemma 1

The task in this section is to show that if A a finite dimensional algebra which is
full then the first parameter of Ind(A) and the first parameter of Par(A) coincide.

Proposition 6.1. Let A be a finite dimensional algebra which is full. Let Ind(A) =
(α, s) and Par(A) = (d(A), nA − 1). Then α = d(A).
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Proof. For the proof we need to show that for an arbitrary large integer ν there
exists a multilinear nonidentity f that contains ν folds of alternating sets of cardi-
nality dimF (A).

Since the algebra A is full, there is a multilinear polynomial f(x1, . . . , xq,
−→y ),

which does not vanish upon an evaluation of the form xj = xj ∈ Aj , j = 1, . . . , q
and the variables of −→y get values in A (either in simple components or in the

radical). The idea is to produce polynomials f̂ ’s in the T -ideal generated by f
which remain nonidentities of A and that reach eventually the desired form. The

way one checks that the polynomials f̂ ’s are nonidentities is by presenting suitable
evaluations on which they do not vanish. Let us reformulate what we need in the
following lemma.

Lemma 6.2 (Kemer’s Lemma 1 for finite dimensional algebras). Notation as above.
Let A be a finite dimensional algebra which is full with respect to the polynomial
f = f(x1, . . . , xq,

−→y ). Then for any integer ν there exists a multilinear polynomial

f
′

in the T -ideal generated by f with the following properties:

(1) f
′

/∈ Id(A)

(2) f
′

has ν-folds of alternating sets of cardinality dimF (A).

Proof. We note that if the algebra is radical, then the lemma is clear.
Let f0 be the polynomial obtained from f by multiplying (on the left say) each

one of the variables x1, . . . , xq by variables z1, . . . , zq respectively. Note that the
polynomial obtained, denoted by f1, is a nonidentity since the variables zi’s may
be evaluated by the elements 1Ai

’s where

1Ai
= Ei

1,1 + · · ·+ Ei
ki,ki

.

(Here we use the notation, Ai = Mki
(F ).)

By linearity there exists a nonzero evaluation where the variables z1, . . . , zq take
values of the form E1

j1,j1 , . . . , E
q
jq ,jq

where 1 ≤ ji ≤ ki and i = 1, . . . , q.

Our aim is to replace each one of the variables z1, . . . , zq by polynomials Z1, . . . , Zq

such that:

(1) For every i = 1, . . . , q, the polynomial Zi is alternating in ν-folds of sets of
cardinality dimF (Ai).

(2) For every i = 1, . . . , q, the polynomial Zi assumes the value Ei
ji,ji

.

Once this is accomplished, we complete the construction by alternating the cor-
responding pth sets, p = 1, . . . , ν, which come from different Zi’s. Clearly, the
polynomial f

′

obtained

(1) is a nonidentity since any nontrivial alternation of the evaluated variables
(as described above) vanishes.

(2) f
′

has ν-folds of alternating sets of cardinality dimF (A).

We now show how to construct the polynomials Zi.

In order to simplify the notation we put Â = Ai (∼= Mk(F )) where Ai is the i-th
simple component.

Fix 1 ≤ t ≤ k and consider a product of the k2 different matrix units Ei,j

of Mk(F ) with value Et,t (it is not difficult to show the such a product exists).
We refer to these matrix units Ei,j as designated matrices. Next, we border each
matrix unit Ei,j with idempotents Ei,i and Ej,j . We refer to these idempotent
matrices as frames. Clearly the product of all matrices, namely designated matrices
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and frames is Et,t. Now we construct a Capelli polynomial which corresponds to
that word of matrix units: We construct a monomial with variables which are
in 1 − 1 correspondence with the word of matrix units just mentioned, namely
the designated and frame matrices. We make a distinction between variables that
correspond to designated matrices (u1, . . . , un, . . .) and variables that correspond to
frame matrices (y1, . . . , ym, . . .). We denote that monomial by Σ1t. The subscript
1 stands for the fact that the monomial has exactly one set of designated variables
whereas the subscript t stands for the fact that there is an evaluation with value Et,t.
Next we consider the product of ν monomials Σ1t (with different variables). We
denote the long monomial obtained by Σνt. In order to complete the construction
of the polynomials Zi, we consider the polynomial Ẑνt obtained by alternating
each set of designated variables separately. We let Zi = Ẑνji, for each i = 1, . . . , q.
Once again for each p = 1, . . . , ν, we consider the pth set of designated variables in
each polynomial Zi and as indicated above we alternate these variables among the
different i = 1, . . . , q. It is clear that if we evaluate the variables accordingly, any
nontrivial permutation yields a zero value and hence get a nonidentity of A of the
desired form.

�

�

Remark 6.3. Let us return once again to the definition of the full property of
a finite dimensional algebra A. By definition, a finite dimensional algebra A is
full if there exists a multilinear polynomial, nonidentity of A such that all simple
components are represented in any nonzero evaluation on A. Nevertheless, for
the proof of Kemer’s Lemma 1 we used a seemingly weaker condition, namely the
existence of a multilinear nonidentity of A which has a nonzero evaluation which
visits all simple components of A. These two condition are indeed nonequivalent
for a given polynomial. However, as we see below, it follows from Kemer’s Lemma
1, the T -ideal generated by a nonidentity f which satisfies the weaker condition
contains a polynomial f ′ which satisfies the stronger condition.

Corollary 6.4. Let A be a finite dimensional algebra. Then A is full if and only
if there exists a multilinear polynomial f , nonidentity of A which admits a nonzero
evaluation which visits every simple components of A.

Proof. Clearly, if A is full the condition is satisfied. In order to prove the opposite
direction we need to show that if f is a multilinear polynomial, nonidentity of A
with a nonzero evaluation on A which visits any simple component then there exists
a multilinear polynomial f ′, nonidentity of A, which visits every simple component
of A on every nonzero evaluation. Indeed, by Kemer lemma 1 we know there exists
a multilinear polynomial f ′ in the T -ideal 〈f〉, nonidentity of A, which alternates
on ν disjoint sets of variables of cardinality d(A), where ν is arbitrary. Now, if we
take ν ≥ nA, then in any nonzero evaluation of f ′, at least one alternating set of
cardinality d(A) must be evaluated by only semisimple elements for otherwise in
each each alternating set there is a variable which gets a radical value. Of course
any such evaluation vanishes since at least nA variables of f ′ get radical values. But
if in any nonzero evaluation of f ′, there is one alternating set of cardinality d(A)
which gets only semisimple values, by the alternation, these values must be linearly
independent over F and hence consist of a basis of the semisimple subalgebra A.
This shows that any nonzero evaluation of f ′ visits all simple components as desired.
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�

7. Kemer’s Lemma 2

In this section we prove Kemer’s Lemma 2. Before stating the precise statement
we need an additional reduction which enables us to control the number of radical
evaluations in certain nonidentities.

Let f be a multilinear polynomial which is not in Id(A). Clearly, any nonzero
evaluation cannot have more than nA − 1 radical evaluations.

Lemma 7.1. Let A be an algebra which is full. Let Ind(A) = (α, s) be its Kemer
index. Then s ≤ nA − 1.

Proof. By Kemer’s Lemma 1 we can find nonidentity polynomials with arbitrary
many alternating sets of cardinality d(A) and since this is the maximum possible,
we have that α = d(A). It follows that in alternating sets of cardinality d(A) + 1
we must have at least one radical evaluation and hence we cannot have more than
nA − 1 in a nonidentity.

Remark 7.2. Although not needed later in the paper, it worth noting that the re-
sult of the lemma above holds also for arbitrary finite dimensional algebras. Indeed
we know (Corollary 5.16) that the algebra A is PI equivalent to the direct product
of algebras B1×· · ·×Bm, where Bi is full for i = 1, . . . ,m. For each Bi we consider
the dimension of the semisimple part d(Bi). Applying Kemer lemma 1 we have that
α ≥ maxi(d(Bi)). On the other hand if α > d(Bi), any multilinear polynomial with
more than nBi

− 1 alternating sets of cardinality α is in Id(Bi) (any alternating
set must have at least one radical evaluation) and hence if α > maxi(d(Bi)), any
polynomial as above is an identity of B1 × · · · × Bm and hence of A. This con-
tradicts the definition of the parameter α and hence α = maxi(d(Bi)). Now take
an alternating set of cardinality α + 1. In every such set we must have a radical
evaluation or elements from different full algebras. If they come from different full
algebras we get zero. If we get a radical element then we cannot pass nA − 1.

�

The next definition is key in the proof of Kemer’s Lemma 2 (see below).

Definition 7.3. Notation as above. Let f be a multilinear polynomial which is
not in Id(A). We say that A has property K with respect to f if f vanishes on any
evaluation on A with less than nA − 1 radical substitutions.

We say that a finite dimensional algebra A has property K if it satisfies the
property with respect to some nonidentity multilinear polynomial.

Proposition 7.4. Let A be a finite dimensional basic F -algebra. Then it has
property K.

Before proving the proposition we introduce a construction which will enable us
to put some “control” on the nilpotency index of (the radical of) finite dimensional
algebras which are PI equivalent.

Let B be any finite dimensional algebra and let B
′

= B ∗ F{x1, . . . , xn} be
the algebra of polynomials in the variables {x1, . . . , xn} with coefficients in B, the

semisimple component of B (in case B = 0, B
′

= F 〈x1, . . . , xn〉 is the nonunital
free F -algebra generated by the variables {x1, . . . , xn}). The number of variables
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we take is at least the dimension of J(B). Let I1 be the ideal of B
′

generated by

all evaluations of polynomials of Id(B) on B
′

and let I2 be the ideal generated by

all variables {x1, . . . , xn}. Consider the algebra B̂u = B
′

/(I1 + Iu2 ).

Proposition 7.5. The following hold.

(1) Id(B̂u) = Id(B) whenever u ≥ nB (nB denotes the nilpotency index of

J(B)). In particular B̂u and B have the same index.

(2) B̂u is finite dimensional.

(3) The nilpotency index of J(B̂u) is ≤ u.

Proof. Note that by the definition of B̂u (modding B
′

by an ideal that contains I1),

Id(B̂u) ⊇ Id(B). On the other hand there is a surjection B̂u −→ B which maps the
variables {x1, . . . , xn} onto a spanning set of J(B) and B is mapped isomorphically.

Indeed, we have such a map from B
′

, namely there is a surjective map φ : B
′

−→ B
which maps B isomorphically and the variables {x1, . . . , xn} onto a spanning set of

J(B). The ideal I1 consists of all evaluation of Id(B) on B
′

and hence is contained
in ker(φ). Also the ideal Iu2 is contained in ker(φ) since u ≥ nB and φ(x) ∈ J .
This shows (1).

To see (2) observe that any element in B̂u is represented by a sum of elements
of the form b1z1b2z2 · · · bjzjbj+1 where j < u, bi ∈ B and zi ∈ {xi} (we allow
also consecutive zi’s). Clearly, the subspace spanned by monomials for a given
configuration of the zi’s (and arbitrary bi’s) has finite dimension. On the other
hand the number of different configurations is finite and so the result follows. In

order to prove the 3rd statement, note that I2 generates a radical ideal in B̂u

and since B
′

/I2 ∼= B we have that B̂u/I2 ∼= B
′

/(I1 + Iu2 + I2) = B
′

/(I1 + I2) ∼=
(B

′

/(I2))/I1 = B/I1 = B (the last equality follows from the fact that B ⊆ B). We

therefore see that I2 generates the radical in B̂u, and hence its nilpotency index is
bounded by u as claimed. �

Proof. (of Proposition 7.4) Suppose A is a basic algebra for which K fails. This
means that any multilinear polynomial that vanishes on any evaluation with less

than nA − 1 radical evaluations must be in Id(A). Consider the algebra Âu =

A
′

/(I1 + Iu2 ) (from the proposition above). We claim that Id(ÂnA−1) = Id(A).

This will show that Par(ÂnA−1) < Par(A) (and hence A is not basic) since the

algebras ÂnA−1 and A have isomorphic semisimple parts and the nilpotency index

of J(ÂnA−1) is bounded by nA − 1.

To prove the claim, note that by construction Id(A) ⊆ Id(ÂnA−1). For the con-
verse take a multilinear polynomial f which is not in Id(A). Then by assumption,

there is a nonzero evaluation f̃ of f on A with less than nA − 1 radical substi-
tutions (say k). Following this evaluation we refer to the variables of f that get
semisimple(radical) values as semisimple (radical) variables respectively. Consider

the evaluation f̂ of f on A
′

= A ∗ {x1, . . . , xn} where semisimple variables are eval-

uated as in f̃ whereas the radical variables are evaluated on {x1, . . . , xn} respecting

the surjection φ : A
′

→ A (by abuse of language “we replace the radical values in

f̃ by indeterminates”).

We claim f̂ /∈ I1 + InA−1
2 . This will show f /∈ Id(ÂnA−1) which is what we

want. Clearly, the map φ induces φ̄ : A
′

/I1 → A and hence f̂ /∈ I1. Next, note (by
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multiplication with central indeterminates) that an element in A
′

= A∗{x1, . . . , xn}
is in I1 if and only if each one of its multihomogeneous components in the variables

of {x1, . . . , xn} is in I1. But by construction f̂ is multihomogeneous of degree

k < nA − 1 in the variables {x1, . . . , xn} whereas any element of InA−1
2 ⊆ A

′

is
the sum of multihomogeneous elements degree ≥ nA − 1. We therefore have that

f̂ ∈ I1 + InA−1
2 if and only if f̂ ∈ I1 and we are done.

�

Let A be a basic algebra. Let ParA = (d(A), nA−1) where d(A) is the dimension
of the semisimple part of A and nA the nilpotency index of J(A). By Proposition 7.4
the algebra satisfies property K with respect to a nonidentity polynomial f , that is
f vanishes on any evaluation whenever it has less than nA−1 radical substitutions.
Furthermore, there is possibly a different nonidentity polynomial h with respect to
which A is full, that is h has a nonzero evaluation which “visits” each one of the
simple components of A. In order to proceed we need both properties to be satisfied
by the same polynomial.

Lemma 7.6. Let A be a basic algebra. Then there exists a multilinear polynomial
f , nonidentity of A, which visits every simple component in any nonzero evaluation
and has property K

Proof. We prove the lemma by showing that there exists a multilinear polynomial,
nonidentity of A, which visits every simple component in any nonzero evaluation
and in addition realizes the property K of A, that is, vanishes on any evaluation
with less than nA − 1 radical evaluations.

Suppose first A is a radical algebra. Then, any nonidentity of A which satisfies
property K, visits (in an empty way) all simple components of A in every nonzero
evaluation and so we are done in that case. Suppose now q > 0 (number of simple
components of A) and suppose by way of contradiction that the lemma is false,
that is any multilinear polynomial f , nonidentity of A, has a nonzero evaluation
with less than nA − 1 radical evaluations or has a nonzero evaluation which does
not visit all simple components of A.

Consider the subalgebras Bi, i = 1, . . . , q constructed in the proof of Lemma

5.15, the algebra B = B1×· · ·×Bq and the algebra ÂnA−1 (see proof of Prop. 7.4).

Let C = B1 × · · ·Bq × ÂnA−1. We claim the algebras A and C are PI equivalent.

This will contradict the fact that A is basic since Par(ÂnA−1) < Par(A) and
Par(Bi) < Par(A) for i = 1, . . . , q. To prove the claim note that by the definition

of the Bi’s and ÂnA−1 we have Id(A) ⊆ (∩ Id(Bi)) ∩ Id(ÂnA−1) = Id(C). For
the opposite direction let f /∈ Id(A), multilinear. By assumption, f has either a
nonvanishing evaluation on A which does not visit all simple components of A (say
Aj) or has a nonvanishing evaluation with less than nA − 1 radical evaluations. In
the first case f is a nonidentity of Bj whereas in the other case f is a nonidentity

of ÂnA−1. In both cases f /∈ Id(C) and the lemma is proved. �

Example 7.7. Let A be the algebra over F of upper triangular 2 × 2-matrices.
Consider the polynomial p(x, y, z) = xyz. It is clear that p has a nonzero evaluation
which visits the two simple components of A (x = e11, y = e12, z = e22). On the
other one can easily find a nonzero evaluation of p which visits only one simple
component (x = e11, y = e11, z = e11). Next we construct a polynomial which
visits both simple components on every nonzero evaluation. Let q(x1, x2, x3) =
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∑
(−1)σxσ(1)xσ(2)xσ(3). The polynomial q is alternating on a set of cardinality 3,

the variables x1, x2, x3 must get linearly independent elements of A in any nonzero
evaluation. Since A is of dimension 3, the elements e11, e12, e22 must appear as
values and hence any nonzero evaluation visits all simple components. It remains
to show that there is at least one nonzero evaluation. Indeed, it is easily verified
that the evaluation x1 = e11, x2 = e12, x3 = e22 is nonzero.

We can now state and prove Kemer’s Lemma 2.

Lemma 7.8 (Kemer’s Lemma 2). Let A be a finite dimensional. Suppose A is
basic whose index is (d = d(A), nA − 1). Then for any integer ν there exists a
multilinear, nonidentity polynomial f with ν-alternating sets of cardinality d (small
sets) and precisely nA−1 alternating sets of variables of cardinality d+1 (big sets).

The theorem is clear either in case A is radical or semisimple (i.e. simple). Hence
for the proof we assume that q ≥ 1 (the number of simple components of A) and
nA > 1.

Note 7.9. Any nonzero evaluation of such f must consists only of semisimple
evaluations in the ν-folds and each one of the big sets (namely the sets of cardinality
d+ 1) must have exactly one radical evaluation.

Proof. (of Lemma 7.8)
By Lemma 7.6, there exists a multilinear polynomial f with respect to which A

is full and has property K. Let us fix a nonzero evaluation x 7−→ x̂ realizing the
“full” property. Note that by the construction of f , being the evaluation nonzero,
precisely nA − 1 variables must obtain radical values, and hence the rest of the
variables obtain semisimple values. Let us denote by w1, . . . , wnA−1 the variables
that obtain radical values (in the evaluation above) and by ŵ1, . . . , ŵnA−1 their
corresponding values. By abuse of language we refer to the variables w1, . . . , wnA−1

as radical variables.

Remark 7.10. Note that by Kemer lemma 1 we could assume at this point that
f is alternating on ν-folds of alternating sets of cardinality dimF (A), but since
it will be important where these alternating sets are located (with respect to the
radical evaluations), our starting polynomial in the proof below is merely assumed
to realize property K and the nonzero evaluation (fixed above) to realize the full
property of A.

We will consider four cases. These correspond to whether A has or does not
have an identity element and whether q (the number of simple components) > 1 or
q = 1.

Case (1, 1) (A has an identity element and q > 1).
By linearity we may assume the evaluation of any radical variable wi is of the

form 1Aj(i)
ŵi1A

j̃(i)
, i = 1, . . . , nA − 1, where 1Ak

is the identity element of the

simple component Ak. Note that the evaluation remains full (i.e. visits every
simple component of A).

Choose a monomial X of f which does not vanish upon the above evaluation.
Notice that the variables of X which get semisimple evaluations from different

simple components must be separated by radical variables.

Claim 7.11. The elements 1Aj(i)
, 1A

j̃(i)
, i = 1, . . . , nA − 1, which appear in the

borderings above, represent all simple components of A.
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Indeed, suppose that the component A1 (say) is not represented among the
1Ak

’s. Since our original evaluation is full, there is a variable which is evaluated
by an element u of A1. “Moving” along the monomial X to the left or right of u
we will hit a bordering value 1Ak

before we hit any radical evaluation. But this is
possible only if both u and 1Ak

belong to the same simple component. This proves
the claim.

But we need more: Consider the radical evaluations which are bordered by
pairs of elements (1Aj(i)

, 1A
j̃(i)

) where j(i) 6= j̃(i) (i.e. belong to different simple

components).

Claim 7.12. Every simple component is represented by one of the elements in these
pairs.

Again, assume that A1 is not represented among these pairs. By the preceding
claim A1 is represented in some pair and so it must be represented by both partners
in each pair it appears. Take such a pair (1Aj(i)

, 1A
j̃(i)

), where j(i) = j̃(i) = 1.

Moving along the monomial X to the left of 1Aj(i)
or to the right 1A

j̃(i)
we will

hit a value in a different simple component. But before that we must hit a radical
evaluation which is bordered by a pair where one of the partners is from A1 and
the other from a different simple component. This contradicts our assumption and
hence the claim is proved.

For t = 1, . . . , q we fix a variable wrt whose radical value is 1Aj(rt)
ŵrt1Aj̃(rt)

where

(1) j(rt) 6= j̃(rt) (i.e. different simple components).
(2) One of the element 1Aj(rt)

, 1A
j̃(rt)

is the identity element of the t-th simple

component. We refer to that element as the idempotent attached to the
simple component At.

Remark 7.13. Note that we may have wrt = wr
t
′
even if t 6= t

′

.

Next by the T operation we replace the variables wrt , t = 1, . . . , q, by yrtwrt or
wrt ỹrt according to the location of the primitive idempotent attached to the t-th
simple component. Clearly, by evaluating the variable yrt by 1Aj(rt)

(or the variable

ỹrt by 1A
j̃(rt)

) the value of the polynomial remains the same and in particular
nonzero.

Applying Lemma 6.2 we can replace the variable yrt , t = 1, . . . , q, by a ν-
fold alternating polynomial (on the sets U t

l ) Zrt = Zrt(U
t
1, . . . , U

t
ν ;Yt), (or replace

ỹrt by a ν-fold alternating polynomial Z̃rt). Here, the sets U t
l , l = 1, . . . , ν are

each of cardinality dimF (At). Now, if we further alternate the sets U1
l , . . . , U

q
l for

l = 1, . . . , ν, we obtain a nonidentity polynomial with ν-folds of (small) sets of
alternating variables where each set is of cardinality dimF (A). In the sequel we

fix an evaluation of the polynomials Zrt (or Z̃rt) so the entire polynomial obtains
a nonzero value. As in Kemer’s Lemma 1, also here the alternating variables U t

l

are bordered by variables (called frames) whose values are primitive idempotents
in At.

Our next task is to construct such polynomial with an extra nA − 1 alternating
sets of cardinality d+ 1 (big sets). Consider the radical variables wrt , t = 1, . . . , q

with radical evaluations 1Aj(rt)
ŵrt1Aj̃(rt)

, j(rt) 6= j̃(rt) (i.e. different simple com-

ponents).
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We attach each variable wrt to one alternating set U1
l , . . . , U

q
l (some l). We

see that any nontrivial permutation of wrt with one of the variables of U1
l , . . . , U

q
l ,

keeping the evaluation above, will yield a zero value since the primitive idempotents
values in frames variables of each variable of U1

l , . . . , U
q
l belong to the same simple

components whereas the pair of idempotents in 1Aj(rt)
ŵrt1Aj̃(rt)

belong to different

simple components. Thus we may alternate the variable wrt with U1
lt
, . . . , U q

lt
,

t = 1, . . . , q and obtain a multilinear nonidentity of A. Next we proceed in a
similar way with any variable wi whose evaluation is 1Aj(i)

ŵi1A
j̃(i)

and j(i) 6= j̃(i).

Finally we need to attach the radical variableswi whose evaluation is 1Aj(i)
ŵi1A

j̃(i)

where j(i) = j̃(i) (i.e. the same simple component) to some small set. We claim
also here that if we attach the variable wi to the sets U1

l , . . . , U
q
l (some l), any non-

trivial permutation yields a zero value, and hence the value of the entire polynomial
remains unchanged. If we permute wi with an element u0 ∈ Uk

l which is bordered
by idempotents different to 1Aj(i)

we obtain zero. On the other hand we claim that

any permutation of wi with an element u0 ∈ Uk
l which is bordered by the idem-

potent 1Aj(i)
corresponds to an evaluation of the original polynomial with fewer

radical values and then we will be done by the property K. In order to simplify our
notation let {U1

l , . . . , U
q
l } = {U

1, . . . , U q} (omit the index l) and suppose without
loss of generality, that u0 ∈ U1. Permuting the variables wi and u0 (with their cor-
responding evaluations) we see that the polynomial Zr1 = Zr1(U

1 = U1
1 , . . . , U

t
ν ;Yt)

(or Z̃r1) with wi replacing u0, obtains a radical value which we denote by ̂̂w. Re-
turning to our original polynomial, we obtain the same value if we evaluate the

variable wi by a suitable semisimple element, the variable wr1 by ̂̂wŵr1 (or ŵr1
̂̂w)

and the evaluation of any semisimple variable remains semisimple. It follows that if
we make such a permutation for a unique radical variable wi, the value amounts to
an evaluation of the original polynomial with nA− 2 radical evaluations and hence
vanishes. Clearly, composing p > 0 permutations of that kind yields a value which
may be obtained by the original polynomial f with nA − 1− p radical evaluations
and hence vanishes by property K. This completes the proof of the lemma where
A has identity and q, the number of simple components, is > 1.

Case (1, 2) (A has an identity element and q = 1). We start with a nonidentity
f which satisfies property K. Clearly we may multiply f by a variable x and get a
nonidentity (since x may be evaluated by 1). Again by Lemma 6.2 we may replace
x by a polynomial h with ν-folds of alternating sets of cardinality d. Consider
the polynomial hf . We attach the radical variables of f to some of the small sets
in h. Any nontrivial permutation vanishes because f satisfies property K. This
completes the proof of the Lemma 7.8 in case A has an identity element.

Case (2, 1). Suppose now A has no identity element and q > 1. The proof
in this case is basically the same as in the case where A has an identity element.
Let e0 = 1 − 1A1 − 1A2 − · · · − 1Aq

(1 ∈ F ) and attach e0 to the set of elements
which border the radical values ŵj . Of course e0 is not an element of A but the
product e0a, a ∈ A is well defined. A similar argument shows that also here every
simple component (A1, . . . , Aq) is represented in one of the bordering pairs where
the partners are different (the point is that one of the partners (among these pairs)
may be e0). Now we complete the proof exactly as in case (1, 1).

Case (2, 2). In order to complete the proof of the lemma we consider the case
where A has no identity element and q = 1. The argument in this case is different.



KEMER’S THEOREM FOR AFFINE PI ALGEBRAS OVER A FIELD OF CHARACTERISTIC ZERO19

For simplicity we denote by e1 = 1A1 and e0 = 1 − e1. Let f(x1, . . . , xn) be
a nonidentity of A which satisfies property K and let f(x̂1, . . . , x̂n) be a nonzero
evaluation for which A is full. If e1f(x̂1, . . . , x̂n) 6= 0 (or f(x̂1, . . . , x̂n)e1) we proceed
as in case (1, 2). To treat the remaining case we may assume further that

e0f(x̂1, . . . , x̂n)e0 6= 0.

First note, by linearity, that each one of the radical values ŵ may be bordered
by one of the pairs {(e0, e0), (e0, e1), (e1, e0), (e1, e1)} so that if we replace the eval-
uation ŵ (of w) by the corresponding element eiŵej , i, j = 0, 1, we get nonzero.

Now, if one of the radical values (say ŵ0) in f(x̂1, . . . , x̂n) allows a bordering
by the pair (e0, e1) (and remains nonzero), then replacing w0 by w0y yields a non-
identity (since we may evaluate y by e1). Invoking Lemma 6.2 we may replace the
variable y by a polynomial h with ν-folds of alternating (small) sets of cardinality
dimF (A) = dimF (A1). Then we attach the radical variable w0 to a suitable small
set. Clearly, the value of any nontrivial permutation of w0 with any element of
the small set is zero since the borderings are different. Similarly, attaching radical
variables w whose radical value is eiŵej where i 6= j, to small sets yields zero for
any nontrivial permutation and hence the value of the polynomial remains nonzero.
The remaining possible values of radical variables are either e0ŵe0 or e1ŵe1. Note
that since semisimple values can be bordered only by the pair (e1, e1), any alterna-
tion of the radical variables whose radical value is e0ŵe0 with elements of a small
set vanishes and again the value of the polynomial remains unchanged. Finally
(in order to complete this case, namely where one of the radical variables, say w0,
is bordered by the pair (e0, e1)) we attach the remaining radical variables (whose
values are bordered by (e1, e1)) to suitable small sets in h. Here, the value of any
nontrivial permutation of w0 with elements of the small set is zero because of prop-
erty K (as in case (1, 1)). This settles the case where the bordering pair of ŵ0 is
(e0, e1) . Obviously, the same holds if the bordering pair of ŵ0 above is (e1, e0).
The outcome is that we may assume that all radical values may be bordered by
either (e0, e0) or (e1, e1).

Claim 7.14. Under the above assumption, all pairs that border radical values are
equal, that is are all (e0, e0) or all (e1, e1).

Indeed, if we have of both kinds, we must have a radical value which is bordered
by a mixed pair since the semisimple variables can be bordered only by the pair
(e1, e1) (and in particular they cannot be bordered by mixed pairs). This of course
contradicts our assumption.

A similar argument shows that we cannot have radical variables w with values
e0ŵe0 since again, semisimple values can be bordered only by (e1, e1) and this will
force the existence of a radical value bordered by mixed idempotents (we remind
the reader that here q = 1 and A is full with respect the evaluation f(x̂1, . . . , x̂n)).

The remaining case is the case where all values (radical and semisimple) are bor-
dered by the pair (e1, e1) and this contradicts the assumption e0f(x̂1, . . . , x̂n)e0 6= 0.
This completes the proof of the Lemma.

�

We can now prove Proposition 5.13.

Proof. If A is basic we know that A is full and satisfies property K. Kemer’s
Lemma 2 shows that if A is full and satisfies property K there exist nonidentities
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of A with arbitrary many alternating sets of cardinality d(A) and precisely nA − 1
alternating sets of cardinality d(A) + 1. This shows that Ind(A) = Par(A). In
order to complete the proof of the proposition we show that if a finite dimensional
algebra A admits a multilinear polynomial f with µ alternating sets of cardinality
d(A) and precisely nA − 1 alternating sets of cardinality d(A) + 1 then A is basic.
Suppose not. Then A is PI equivalent to an algebra B = B1 × · · · × Bm where
Par(Bi) < Par(A), i = 1, . . . ,m. But this implies that f ∈ Id(Bi), i = 1, . . . ,m
and hence f ∈ Id(B). Contradiction.

�

We close this section by establishing the Phoenix property of Kemer polynomials.
As mentioned above, this seemingly “unimportant” property is in fact key for the
entire proof of the representability theorem.

Lemma 7.15. Let A be a finite dimensional algebra over F and suppose A is basic.
The following hold.

(1) Let f /∈ Id(A) be a multilinear polynomial and suppose A is full with respect
to any nonzero evaluation of f on A, that is, in any nonzero evaluation of
f on A we must have semisimple values from all simple components. Then
if f ′ ∈ 〈f〉 is multilinear (〈f〉 = T - ideal generated by f) is a nonidentity
of A then it is full with respect to any nonzero evaluation on A.

(2) Let f /∈ Id(A) be multilinear and suppose f vanishes on any evaluation on
A with less than nA− 1 radical evaluations. Then if f ′ ∈ 〈f〉 is multilinear
(and nonidentity of A) then it vanishes on any evaluation on A with less
than nA − 1 radical evaluations.

Proof. Suppose f(x1, . . . , xn) is a multilinear polynomial which satisfies the condi-
tion in (1). It is sufficient to show the condition remains valid if f ′ is multilinear and
has the form (a) f ′ =

∑
i gi · f · hi (b) f ′(z1, . . . , zt, x2, . . . , xn) = f(Z, x2, . . . , xn)

where Z = z1 · · · zt is a multilinear monomial consisting of variables disjoint to
the variables of f(x1, . . . , xn). If f ′ =

∑
i gi · f · hi then any nonzero evalua-

tion of f ′ arises from a nonzero evaluation of f and so the claim is clear in this
case. Let f ′(z1, . . . , zt, x2, . . . , xn) = f(Z, x2, . . . , xn) and suppose xi = x̂i and
zi = ẑi is a nonvanishing evaluation of f ′. If a simple component A1 say, is not
represented, then the same simple component is not represented in the evaluation
x1 = ẑ1 · · · ẑt, x2 = x̂2, . . . , xn = x̂n and hence f vanishes. We see that f ′ vanishes
on any evaluation which misses a simple component.

We now turn to the proof of the 2nd part of the lemma. If f ′ =
∑

i gi ·f ·hi then
it is clear that if an evaluation of f ′ has less than nA − 1 radical evaluations then
with that evaluation f has less than nA− 1 radical evaluations and hence vanishes.
This implies the vanishing of f ′. If an evaluation of f ′(z1, . . . , zt, x2, . . . , xn) =
f(Z, x2, . . . , xn) has less than nA−1 radicals, then this corresponds to an evaluation
of f(x1, . . . , xn) with less than nA − 1 radicals and hence vanishes.

�

Corollary 7.16. Let A be a basic algebra, then Kemer polynomials satisfy the
Phoenix property.

Proof. Let f be a Kemer polynomial of A and let f ′ ∈ 〈f〉 be a multilinear non-
identity of A. We need to show there exists a Kemer polynomial in 〈f ′〉.
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We know that A is full and satisfies property K with respect to the Kemer
polynomial f . Furthermore, applying the previous lemma, we have that A is full
and has property K with respect to f ′. Finally, invoking Kemer’s Lemma 2 there
exists f ′′ ∈ 〈f ′〉 which is Kemer.

�

8. Finite generation of the relatively free algebra

Recall that an algebra W satisfies the mth Capelli identity if any multilinear
polynomial having an alternating set of cardinality (at least) m is an identity of W .
The purpose of this section is to prove that for any such algebra one can assume that
the corresponding relatively free algebra W is generated by (only) m− 1 variables.
More precisely, we will show that if

W = F 〈x1, . . . , xm−1〉 / Id(W ) ∩ F 〈x1, . . . , xm−1〉

then Id(W ) = Id(W). To this end we recall some basic results (and fix notation)
from the representation theory of Sn (the symmetric group on n elements) and
their application to PI theory.

Since FSn is a semisimple algebra, we can write FSn as a direct sum of its
minimal two sided ideals. It is a basic fact that the number of such is equal to
the number of conjugacy classes of Sn. Each conjugacy class can be described by
a partition µ of n, i.e. a finite sequence of nondecreasing natural numbers which
sum up to n. As we shall see, each partition encodes the structure of some minimal
ideal.

Suppose µ = (µ1, . . . , µm) is a partition of n. A Young diagram of µ is a finite
subset of Z× Z defined as Dµ = {(i, j)| i = 1...m, j = 1, . . . , µi}. This is not more
thanm rows of boxes, such that the length of the i’th row is µi. A Young tableau Tµ

associated to µ is a filling of the boxes of Dµ with the integers 1, . . . , n (repetitions
are not allowed). We say that a tableau Tµ is standard if the numbers in each row
and column of Tµ are increasing from left to right and from up to bottom. To each
tableau we associate two subgroups of Sn as follows: Let RTµ(1), . . . , RTµ(m) denote
the rows of Tµ (i.e. the numbers appearing in each row) and CTµ(1), . . . , CTµ(t)

denote the columns of Tµ. We denote by RTµ(i) and by CTµ(j) the symmetric
groups SRTµ(i)

and SCTµ(j)
respectively (i.e the symmetric groups acting on the

numbers in the ith row and jth column of Tµ respectively). Finally, we denote
by RTµ

and by CTµ
the subgroups of Sn which are the row and column stabilizers

of Tµ. Clearly, with notation above, we have RTµ
= RTµ(1) × · · · × RTµ(m) and

CTµ
= CTµ(1) × · · · × CTµ(t).

For each tableau Tµ, consider the left ideal Vµ = FSneTµ
, where

eTµ
=

∑

σ∈RTµ ,τ∈CTµ

(−1)τστ.

Now let I be a minimal 2-sided ideal of FSn. It is well known that I is equal to
the sum of all minimal left ideals isomorphic to some (fixed) minimal left ideal V .

Theorem 8.1. The following hold:

(1) Let V be a minimal left ideal of FSn. Then there exists a partition µ such
that V ∼= Vµ.
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(2) If we denote the corresponding minimal two sided ideal by Iµ, then it is the
direct sum of minimal ideals Vµ which correspond to standard tableaux Tµ

of µ.
(3) The map Tµ 7→ Vµ establishes a one to one correspondence between Young

tableaux associated to Young diagram Dµ and minimal left ideal isomorphic
to Vµ.

Now let us apply the theorem above to PI theory. Let Pn(W ) = Pn/(Pn∩Id(W )),
where Pn is the space (of dimF (Pn) = n!) of all multilinear polynomials with
variables x1, . . . , xn. The group Sn acts on Pn(W ) via σ·xi1 · · ·xin = xσ(i1) · · ·xσ(in)

and hence we may consider its decomposition into irreducible submodules. By the
theorem above, any such submodule can be written as FSneTµ

· f , where f is some
polynomial in Pn(W ). Clearly, if f ∈ Pn(W ) is nonzero, then there is some partition
µ and a (standard) tableau Tµsuch that eTµ

· f is nonzero.
We are ready to prove the main result of this section.

Theorem 8.2. Let W be an algebra which satisfies the mth Capelli identity. Then
Id(W) = Id(W ) where W is the relatively free algebra of W generated by m − 1
variables.

Proof. It is clear that Id(W ) ⊂ Id(W). For the other direction suppose f is a
multilinear nonidentity of W of degree n. Then, by the theorem above, there is a
partition µ of n and a tableau Tµ such that g = eTµ

· f is a nonidentity of W .

Let g0 =
∑

τ∈CTµ
(−1)ττ · f =

∑
τ∈CTµ(1)

(−1)ττ ·
(∑l

k=1(−1)
τkτk · f

)
, where

τ1, . . . , τl is a full set of representatives of CTµ(1)-cosets in CTµ
.

Let hµ (the height of µ) denote the number of rows in the Young diagram Dµ.
If hµ ≥ m, the polynomial g0 is alternating on the variables of the first column
and hence by assumption is an identity of W . But in that case also the polynomial
g =

∑
σ∈RTµ

σ · g0 is in Id(W ) contradicting our assumption and so hµ must be

smaller than m.
Let us now focus on the rows of Dµ. Since g =

∑
σ∈RTµ

σ · g0, it is symmetric

in the variables corresponding to any row of Tµ and so if for any i = 1, . . . , hµ we
replace by yi all variables in g corresponding to the ith row we obtain a polynomial ĝ
which yields g by multinearization. In particular g ∈ Id(W ) if and only if ĝ ∈ Id(W ).
In order to conclude, note that ĝ can be regarded as an element ofW (at most m−1
variables) and nonzero. This shows that g is nonidentity of W and hence also f .
This proves the theorem. �

Remark 8.3. In the sequel, if W satisfies the mth Capelli identity, we’ll consider
affine relatively free algebras W with at least m− 1 generating variables.

Definition 8.4. Suppose W is an affine algebra. Any algebra of the form

F 〈x1, . . . , xm〉 / Id(W ) ∩ F 〈x1, . . . , xm〉

having the same T -ideal as W is called affine relatively free algebra of W .

We close this section with the following useful lemma.

Lemma 8.5. Let W be a PI algebra which satisfies the mth Capelli polynomial and

let W = F 〈x1, . . . , xn〉/Îd(W ) be an affine relatively free algebra where n ≥ m− 1.

Let I be any T -ideal and denote by Î the ideal of W generated (or consisting rather)

by all evaluation on W of elements of I. Then Id(W/Î) = Id(W ) + I.
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Proof. Clearly, Id(W/Î) ⊇ Id(W ) and Id(W/Î) ⊇ I so Id(W/Î) contains Id(W )+I.
For the converse note that

W/Î = (F 〈x1, . . . , xn〉)/Îd(W )/Î = F 〈x1, . . . , xn〉/(Îd(W )+Î) = F 〈x1, . . . , xn〉/ ̂Id(W ) + I.

Then, since F 〈x1, . . . , xn〉/ ̂Id(W ) + I satisfies the nth Capelli identity we obtain

Id(F 〈x1, . . . , xn〉/ ̂Id(W ) + I) = Id(W ) + I

as desired.
�

9. Shirshov base

Definition 9.1. Let W be an affine algebra over F . Let a1, . . . , as be a generating
set of W . Let m be a positive integer and let Y be the set of words in a1, . . . , as of
length ≤ m. We say that W has a Shirshov base of length m and of height h if W
is spanned (over F ) by elements of the form yn1

1 · · · y
nl

l , where yi ∈ Y and l ≤ h.

The following fundamental theorem was proved by Shirshov.

Theorem 9.2. If an affine algebra W has a multilinear PI of degree m, then it
has a Shirshov base of length m and some height h where h depends only on m and
the number of generators of W .

In fact, there is an important special case where we can get even “closer” to
representability.

Lemma 9.3. Let C be a commutative algebra over F and let W = C 〈a1, . . . , as〉.
Suppose W has a Shirshov base. If for every i = 1, . . . , s, the element ai is integral
over C, then W is a finite module over C.

If in addition, our commutative algebra C is Noetherian and unital we reach our
goal, as the next theorem shows.

Theorem 9.4. (Beidar [2]) Let W be an F algebra and let C be a unital commuta-
tive Noetherian F algebra. If W is a finite module over C, then W is representable.

Proof. The simplest case is when C is a local Artinian ring and W is of finite
length (over C). Let P be the unique maximal ideal of C. Since C is Artinian
we know that P is nilpotent, thus C is complete in the P -adic metric. Thus C
contains a field (F ⊂)K such that K+P = C, and so K is isomorphic to C/P . Let
W = W(0) ⊇W(1) ⊇ · · · ⊇W(m) = 0 be a composition series of W (as a C module).
We have that W(i)/W(i+1) is isomorphic to C/P , so it is a one dimensional K-space.
It follows that W is a finite dimensional K-space.

Now assume that W has finite length as a C module (without any other assump-
tions on the ring C). This yields that C′ = C/annC(W ) is Artinian. Therefore, we
may decompose C′ into a (finite) direct product of local Artinian rings C′ = ×m

i=1Ci.
This decomposition induces a decomposition of W , namely W = ⊕m

i=1CiW , and
since each CiW is a Ci module of finite length, we are back to the first case (Note
that here we make use of the fact that a finite number of fields with the same
characteristic can be embedded in a larger field).

We proceed now to the general case. Recall that the set of associated primes
AssC(W ) is a finite set. Let P1, . . . , Pk be its maximal elements and let S =
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C − ∪ki=1Pi (a multiplicative set). Since S is the set of nonzero divisors of W , the
localization by S, C0 = S−1C, induces an embedding of W in W0 = S−1W . More-
over, the maximal ideals of C0 are S

−1P1, . . . , S
−1Pk and AssC0(W0) = {S

−1P |P ∈
AssC(W )} (the last equality is due to the maximality of the Pi’s in AssC(W )).
Thus we may assume from the beginning that C is a semilocal ring whose maximal
ideals are contained in AssC(W ).

We continue by induction on dC(W ), where dC(W ) represents the greatest length
of a descending chain of prime ideals from AssC(W ). If dC(W ) = 1, then all
the ideals of AssC(W ) are the maximal ideals of C. Since AssC(W ) contains all
minimal primes containing annC(W ), we conclude that all primes which contain
annC(W ) are maximal. Hence W is of finite length and we are done.

Suppose now that dC(W ) > 1. Let Q1, . . . , Ql be all maximal elements in the set
H = AssC(W )− {P1, . . . , Pk} and denote T = C −∪Qi. Write C1 = T−1C, W1 =
T−1W and let U be the kernel of the canonical mapW →W1. It is easy to calculate
the associated primes:

AssC1(W1) = {T
−1P |P ∈ H}, AssC(U) = {P1, . . . , Pk}

Since dC1(W1) < dC(W ), we know by the induction hypothesis that W1 is repre-
sentable.

There is r > 0 for which JrU = 0, where J = ∩Pi is the Jacobson radical of C.
Using the Artin-Rees lemma we obtain some r′ for which Jr′W ∩ U = 0. Thus,
W is a sub direct product of W/U and W/Jr′W . Finally, these two algebras are

representable: W/U - since it is contained in W1, and W/Jr′W - since it is of finite
length (recall that there is a product of primes which annihilate it). �

10. The trace ring

Suppose A is an M -dimensional F -algebra and let A be an affine relatively
free algebra, say generated by the elements {x1 + Id(A), . . . , xv + Id(A)}, where
x1, . . . , xv are noncommuting variables.

It is well known that A may be interpreted as an algebra of “generic elements”.
Let us recall briefly the construction.

Let K = F ({ti,j | i = 1, . . . , v ; j = 1, . . . ,M}) and suppose a1, . . . , aM is an F -
basis of A. Consider the F -subalgebra A′ of AK = A⊗F K generated by

yi =

M∑

j=1

ti,jaj , i = 1, . . . , v.

It is well known that the map φ : A′ → A determined by φ(yi) = xi + Id(A),
is an F -algebra isomorphism. Henceforth we will not distinguish between A and
A′ and we denote both by A. It follows from the construction of the algebra of
generic elements that A is representable and so we fix for the rest of the paper an
embedding A ⊆ AK .

Suppose A = A1 × · · · × Ak, where Ar is finite dimensional over F , for r =
1, . . . , k. Fix a K-vector space decomposition (Ar)K = (Ar)

ss
K⊕(Jr)K where (Ar)

ss
K

is a maximal semisimple subalgebra of (Ar)K and (Jr)K is its Jacobson radical.
Consider the embedding

(Ar)
ss
K →֒ EndK((Ar)

ss
K )
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given by a(x) = ax(a, x ∈ (Ar)
ss
K ). Let Â be the F -subalgebra of AK generated by

the projections ofA intoAss
K = (A1)

ss
K×· · ·×(Ak)

ss
K and JK = (J1)K×· · ·×(Jk)K . It

is clear that Â is an affine F -algebra containing (the image of) A. Moreover, we may

choose generators of Â such that the corresponding Shirshov base is Y = Yss ⊔ YJ ,
where Yss ⊂ Ass

K and YJ ⊂ JK (indeed, choosing generators b1, . . . , bs of Â either
from Ass

K or JK , then bi1bi2 · · · bit ∈ Yss, t ≤ m, if and only if bij ∈ Ass
K , for all

j = 1, . . . , t). Since JK is nilpotent, it is clear that the elements of YJ are integral
over F , however this may not be the case for elements in Yss. Our goal is to extend
F in a suitable way so that the elements of Yss “become” integral. Consider the
elements of Yss as elements of EndK((A1)

ss
K )× · · · ×EndK((Ak)

ss
K ) (via the above

embedding) and define R to be the unital F -subalgebra of K × · · · ×K (k times)
generated by Tr(Yss) = {(Tr(p1(u))), . . . , T r(pk(u)) : u ∈ Yss)}, where pr is the
projection EndK((A1)

ss
K ) × · · · × EndK((Ak)

ss
K ) → EndK((Ar)

ss
K ). Since Yss is a

finite set, it is clear that R is a commutative unital Noetherian F -algebra.
Let us define an action of K × · · · × K (k-times) (and hence also of R) on

AK = (A1)K × · · · × (Ak)K by

(c1, . . . , ck) · (b1, . . . , bk) = (c1b1, . . . , ckbk),

where (c1, . . . , ck) ∈ K(k) and b1 ∈ (A1)K , . . . , bk ∈ (Ak)K .
Let dr = dimFA

ss
r and denote by d = max{dr : r = 1, . . . , k}.

Theorem 10.1. AR = R·A is a finite module over R.

Proof. The Cayley-Hamilton theorem implies that for a ∈ Yss

pr(a
d+1) +

d−1∑

i=0

qi
(
Tr(pr(a

1)), . . . , T r(pr(a
d))
)
pr(a

i+1) = 0,

where q0, . . . , qd−1 are polynomials on commutative variables.
It follows that

ad+1 +

d−1∑

i=0

qi
(
Tr(a1), . . . , T r(ad)

)
ai+1 = 0

proving that Yss, and hence also Y , is integral over R.

Remark 10.2. The exponent d + 1 is needed since the generic algebra A has no
identity.

Applying Lemma 9.3 we obtain that R · Â is a finite module over R. Since R
is Noetherian, R · Â is a Noetherian R-module, and hence AR ⊆ R · Â is a finite
module over R. This proves the theorem. �

Corollary 10.3. The algebra AR is representable. Furthermore, if I is an ideal
of A which is closed under multiplications by elements of R, that is IR = RI = I,
then A/I is representable.

Proof. Since AR is a finite module over R, where R is unital, commutative and
Noetherian, it is representable (by Theorem 9.4). For the same reason, if I is any
ideal of A, the quotient module AR/IR (being finite) is representable. Now suppose
IR = I. Then we get A/I ⊆ AR/I = AR/IR. Since the later is representable, the
result follows. �
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We would like to apply the above results to the case where A = A1 × · · · ×Ak is
a product of basic algebras but before that we need the following basic lemma.

Lemma 10.4. Let F 〈X〉 be the free algebra over F where X is a countable set of
variables. Let W be any algebra and S a set of polynomials in F 〈X〉. Let I = 〈S〉,
the T -ideal generated by S. Denote by I and S the sets of all evaluations on W of
polynomials of I and S respectively. Then I = 〈S〉 (the ideal generated by S).

Proof. We show first I is an ideal of W . Let z, w ∈ I and let pz and pw be
polynomials in I with evaluations z and w respectively. By the T -property of I
we may change variables and so we may assume pz and pw have disjoint sets of
variables. Then there is an evaluation of pz + pw which is z + w. Next, let z ∈ I
and u ∈W . If pz ∈ I with value z, we may take a variable x which is not in pz and
get uz as an evaluation of xpz .

Now, obviously I ⊇ 〈S〉. For the converse, consider the algebra W = W/〈S〉.
Clearly, elements of S are identities of W and hence I = 〈S〉 ⊆ Id(W ). It follows
that all evaluations of I on W are contained in 〈S〉 as desired. �

Proposition 10.5. Let A be a product of basic algebras as above and let I be the
T -ideal generated by some Kemer polynomials of A. Denote by Î the ideal of A
obtained by all evaluation of the polynomials of I on A. Then Î is closed under
multiplication of R.

Proof. We need to show that for any element f ∈ I, any evaluation f̄ ∈ Î (of f on

A) and any a0 ∈ Yss, we have Tr(a0)f̄ ∈ Î. Note that since the ideal Î is generated
by all evaluations on A of all Kemer polynomials in I, invoking Lemma 10.4, we
may assume that f is a Kemer polynomial.

Let (d, s) be the Kemer index of A. Recall that d = max{dr} where dr =
dimF (A

ss
r ) and if Ψ = {q : dq = d} then s = maxq∈Ψ{nAq

− 1}, where nAq
is the

nilpotency index of Jq. Let f(Z,X1, . . . , Xµ, V1, . . . , Vs, Q) be a (multilinear) Kemer
polynomial of A where Z = {z1, . . . , zd}, X1, . . . , Xµ are small sets, V1, . . . , Vs are
big sets (the designated variables) and Q is a set of additional variables. We assume
µ is large enough so that f is an identity of any basic algebra Ar whose Kemer index
is strictly smaller than (d, s) (note that since f is a Kemer polynomial of A, it is a
nonidentity of Aq for some q ∈ Ψ and nAq

= s). Consider an evaluation of f (on

A) given by Ẑ = {ẑ1, . . . , ẑd}, {X̂i}, {V̂j}, Q̂.
In view of the embedding

A ⊆ Â ⊆ AK =
k∏

r=1

(Ar)
ss
K ⊕ (Jr)K

each element π ∈ Ẑ ∪ (∪iX̂i) ∪ (∪j V̂j) ∪ Q̂ can be written as π = πss + πJ where
πss ∈ Ass

K and πJ ∈ JK . Note that in general πss and πJ are not elements of A.
Now, viewing the above evaluation in AK , we have (t denotes the degree of f)

f(π1, . . . , πt) = f
(
πss
1 + πJ

1 , . . . , π
ss
t + πJ

t

)
=

2t∑

i=1

f̄i

where f̄i = f(πǫ1
1 , . . . , πǫt

t ) and πǫj is either πss or πJ .
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Since AK has the same Kemer index as A, the evaluation f̄i (on AK) vanishes
unless all small sets, Z, {Xi}i get semisimple values (and precisely one variable of
each big set {V1, . . . , Vs} gets a radical value). In particular we have

f̄ = f(Ẑ, {X̂i}, {V̂j}, Q̂) =

k∑

r=1

f(ẑss1 . . . , ẑssd , {X̂i}, {V̂j}, Q̂),

where ẑi = ẑssi + ẑJi . Our task is then to show Tr(a0)f(ẑ
ss
1 . . . , ẑssd , {X̂i}, {V̂j}, Q̂) ∈

Î . To this end let us simplify the notation. We let a1 = ẑss1 , . . . , ad = ẑssd , b1 =

ẑJ1 , . . . , bd = ẑJd (that is ẑi = ai+bi, i = 1, . . . , d) and since the tuples {X̂i}, {V̂j}, Q̂
will not play any role in the proof we denote them by Λ. Thus f̄ = f(a1, . . . , ad,Λ).

Claim: for any r the following holds:

Tr(a
(r)
0 )f(a

(r)
1 , . . . , a

(r)
d ,Λ(r)) =

d∑

i=1

f(a
(r)
1 , . . . , a

(r)
i−1, a

(r)
0 a

(r)
i , a

(r)
i+1, . . . , a

(r)
d ,Λ(r)),

where ai = (a
(1)
i , . . . , a

(k)
i ) = (p1(ai), . . . , pk(ai)) and Λ(r) = pr(Λ).

Since the variables z1, . . . , zd alternate in f , the value f(a
(r)
1 , . . . , a

(r)
d ,Λ(r)) is

zero unless the elements a
(r)
1 , . . . , a

(r)
d are linearly independent over K. On the

other hand, since Ar is basic, dr = dimF (A
ss
r ) = dimK((Ar)

ss
K ≤ d and so

f(a
(r)
1 , . . . , a

(r)
d ,Λ(r)) 6= 0 only if dr = d and the set {a

(r)
1 , . . . , a

(r)
d } is a basis of

(Ar)
ss
K over K.

Write a
(r)
0 a

(r)
i =

∑d
j=1 γi,jaj where γi,j ∈ K.

We compute:

d∑

i=1

f(a
(r)
1 , . . . , a

(r)
i−1, a

(r)
0 a

(r)
i , a

(r)
i+1, . . . , a

(r)
d ,Λ(r)) =

d∑

i=1

d∑

j=1

γi,jf(a
(r)
1 , . . . , a

(r)
i−1, a

(r)
j , a

(r)
i+1, . . . , a

(r)
d ,Λ(r)).

As f(a
(r)
1 , . . . , a

(r)
i−1, a

(r)
j , a

(r)
i+1, . . . , a

(r)
d ,Λ(r)) is zero when a

(r)
j 6= a

(r)
i , we obtain

d∑

i=1

γi,if(a
(r)
1 , . . . , a

(r)
i−1, a

(r)
i , a

(r)
i+1, . . . , a

(r)
d ,Λ(r)) = Tr(a

(r)
0 )f(a

(r)
1 , . . . , a

(r)
d ,Λ(r))

proving the claim.
Having established the claim for r = 1, . . . , k we conclude

Tr(a0) · f(a1, . . . , ad,Λ) =

d∑

i=1

f(a1, . . . , ai−1, a0ai, ai+1, . . . , ad,Λ).

It order to complete the proof we show that f(a1, . . . , ai−1, a0ai, ai+1, . . . , ad,Λ) ∈

Î, i = 1, . . . , d. The argument is similar to the one above. Recall that a0 ∈ Yss ⊆ Â.
Furthermore, by the construction of Â, there is an element ẑ0 ∈ A such that
ẑ0 = a0 + b0, where b0 ∈ JK . This implies

f(a1, . . . , ai−1, a0ai, ai+1, . . . , ad,Λ) = f(ẑ1, . . . , ẑi−1, ẑ0ẑi, ẑi+1, . . . , ẑd,Λ)

which is clearly in Î. The proposition is now proved. �

Proposition 10.5 and Corollary 10.3 yield
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Corollary 10.6. Let A be a finite dimensional F -algebra and let A be an affine
relatively free algebra. Let I be a T -ideal generated by some Kemer polynomials of
A and let Î be the ideal of A consisting of all evaluations of I on A. Then A/Î is
representable.

Let us explain how the last result fits in our plan for proving Kemer’s theorem.
We have started the proof by showing the existence of a finite dimensional F -algebra
A whose ideal of identities is contained in Id(W ). Our goal is to replace the algebra
A by a representable algebra A′, with Id(A) ⊆ Id(A′) ⊆ Γ, which has the same
Kemer index as Γ, and moreover shares with Γ the same Kemer polynomials. This
may be considered as an “approximation” (i.e. not necessarily PI equivalence) of
Γ by a representable algebra. Let us sketch briefly the construction of A′. We take
the T -ideal I generated by Kemer polynomials of A which are contained in Γ. If A
and Γ have different Kemer indices, then all Kemer polynomials of A are contained
in Γ and hence the Kemer index of A/Î is strictly smaller than the Kemer index
of A. A finite number of such steps yield a representable algebra A1 with the same
Kemer index as Γ and Id(A1) ⊆ Γ. Once we have reached the Kemer index of Γ
(from above in the lexicographic ordering), we consider the T -ideal I generated by

all Kemer polynomials of A1 which are contained in Γ. As above, we let Î be ideal
of A1 (an affine relatively free algebra of A1) consisting of all evaluations of I on A1

and conclude our construction by putting A′ = A1/Î. Before we present the details
of the proof, let us explain why we insist in modding out ideals of a relatively free
algebra A (and not of A for instance).

It is clear that if B is any algebra and I is a T -ideal, modding out from B
the ideal Î consisting of all evaluations of I on B, yields an algebra whose T -
ideal of identities contains I. However, in general, we don’t know whether other
polynomials “become” identities. For instance if B = Mn(F ), then taking any

T -deal I * Id(B) gives B/Î = 0. A key property of the relatively free algebra A is

that Id(A/Î) = Id(A) + I (see Lemma 8.5).

11. Γ-Phoenix property

Suppose Γ is a T -ideal containing a Capelli polynomial. We know that this is
equivalent to saying that Γ is a T -ideal of an affine PI algebra and also equivalent to
Γ containing the T -ideal of a finite dimensional algebra A. If we denote by pΓ and
pA the Kemer index of Γ and A respectively, then pΓ ≤ pA. Our goal in this section
is to show that it is possible to replace A by another finite dimensional algebra B,
with Id(A) ⊆ Id(B) ⊆ Γ, which is “closer” to Γ in the sense that its Kemer index
and Kemer polynomials are exactly as those of Γ. This will allow us to deduce
the Phoenix property for Kemer polynomials of Γ from (the already established)
Phoenix property for Kemer polynomials of basic algebras (see Corollary 7.16).

Let us recall our notation once again. Let A be a finite dimensional algebra
which is a direct product of basic algebras A1 × · · · × As. Let pA and pi denote
the Kemer index of A and Ai, i = 1, . . . , s respectively. We let µi the minimal
number of small sets in its Kemer polynomials. Finally, write µ0 for the maximum
of {µ1, . . . , µs}. A denotes an affine relatively free algebra that corresponds to A.

In the next proposition Id(A) ⊆ Γ = Id(W ) where W is an affine PI algebra over
F and A is a finite dimensional algebra over F .
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Proposition 11.1. There exists a representable algebra B with the following prop-
erties:

(1) Id(B) ⊆ Γ.
(2) The Kemer index pB of B coincides with pΓ.
(3) Γ and B have the same Kemer polynomials corresponding to every µ which

is ≥ µ0.

Corollary 11.2. Extending scalars to a larger field we may assume the algebra B
is finite dimensional over F .

Proof. (of proposition)
Our first goal is to construct a representable algebra B with Id(B) ⊆ Γ and

pB = pΓ. To this end, we assume pA > pΓ. It follows that there exists µ0, such
that any Kemer polynomial of A with at least µ0 small sets is in Γ (indeed, if there
is no such µ0, then for any µ0, there is a Kemer polynomial of A with µ0 small
sets of cardinality d and s big sets of cardinality d + 1 (where pA = (d, s)) which
is not in Γ. This says, by definition of the Kemer index, that (d, s) ≤ pΓ, contrary
to our assumption). Let I be the T -ideal generated by all Kemer polynomials of A

with at least µ0 small sets and let Î be the ideal of A consisting of all evaluations
of polynomials in I on A. Due to Corollary 10.6 and Lemma 8.5 we know A/Î is

representable and Id(A/Î) = Id(A) + I ⊆ Γ. Let us show that pA/Î < pA. Clearly,

pA/Î ≤ pA = pA. Suppose pA/Î = pA and let f be a Kemer polynomial of A/Î with

at least µ0 small sets. Since Id(A/Î) ⊇ Id(A), the polynomial f is a nonidentity
of A. It follows that f is a Kemer polynomial of A and hence is in I. We obtain

that f ∈ Id(A/Î) contradicting our assumption on f . It is clear that repeating the
process above (a finite number of times) we obtain a representable algebra B with
Id(B) ⊆ Γ and pB = pΓ.

In order to complete the proof of the proposition let us assume we have a finite
dimensional algebra A with Id(A) ⊆ Γ and pA = pΓ. We need to construct a
representable algebra B with Id(A) ⊆ Id(B) ⊆ Γ (and hence pB = pΓ) such that B
and Γ have the same Kemer polynomials (with at least µ0 small sets). Let I be the

T -ideal generated by all Kemer polynomials of A which are contained in Γ and let Î
the corresponding ideal of A. Note that in this final step, it is necessarily not true
that all Kemer polynomials of A are contained in Γ since any Kemer polynomial
of Γ is a Kemer polynomial of A. Consider the algebra B = A/Î. We know B is
representable and has the same Kemer polynomials as Γ. �

Theorem 11.3. (Γ-Phoenix property of Kemer polynomials)
Let Γ be a T -ideal as above and let f be a Kemer polynomial of Γ. Then it

satisfies the Γ-Phoenix property.

Proof. Let 〈f〉 be the T -ideal generated by f and let h ∈ 〈f〉 be a polynomial not
in Γ. We need to show there is f ′ ∈ 〈h〉 which is Kemer of Γ. By the proposition
there is a finite dimensional algebra A with Id(A) ⊆ Γ whose Kemer polynomials
are precisely those of Γ. Hence f is a Kemer polynomial of A and assuming (as we
may) that A = A1 × · · · ×As where Ai are basic, the polynomial f is Kemer of Ai

for some i. But more than that, f is Kemer with respect to each basic algebra Aj

as long as f /∈ Id(Aj). Note that for any such j, pj = pA = pΓ. Now the polynomial
h is not in Γ and hence is not in Id(A). It follows that h /∈ Id(Aj0) for some j0
showing that f /∈ Id(Aj0 ). As mentioned above, f must be Kemer for Aj0 and so
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we may apply the Phoenix property for Kemer polynomials of the basic algebra
Aj0 (see Corollary 7.16). This says that there is f ′ ∈ 〈h〉 which is Kemer for Aj0

and hence Kemer for A. Applying once again Proposition 11.1 we have that f ′ is
Kemer of Γ. The theorem is now proved.

�

12. Technical tools

12.1. Zubrilin-Razmyslov Traces. We have seen already the usefulness of traces
for the purpose of representability (via the Cayley-Hamilton theorem). The theme
of this section is to get a version of this theorem to a more general PI setting. We
start by introducing the analogue of “characteristic values” (this terminology will
be clearer below).

Definition 12.1. Let f(x1, . . . , xn,Λ) be a polynomial and let z be any variable
where z 6= xi, i = 1, . . . , n. We define the polynomial

δzk|x1,...,xn
(f) =

∑

1≤i1<···<ik≤n

fi1,...,ik

where fi1,...,ik is the polynomial obtained from f by substituting zxij in xij for
j = 1, . . . , k. Using Zubrilin’s notation fi1,...,ik = f |zxi1→xi1 ,...,zxik

→xik
.

For k = 0, we set δz0 |x1,...,xn
(f) = f .

Remark 12.2. Notice that the operators δzk’s are F -linear. They depend on the
variables x1, . . . , xn, however since we always refer to the same variables x1, . . . , xn

we adopt the abbreviated notation δzk.

Remark 12.3. Notice that this definition makes sense also in case f does not de-
pend on some of the variables x1, . . . , xn and in particular, for polynomials f which
are free of these variables (e.g. δz4 |x1,...,x6(x1y1x2y2) =

∑
1≤i1<i2<i3<i4≤6

fi1,...,i4 =.

We have 15 tuples (i1 < i2 < i3 < i4)

{(1234), (1235), (1236), (1245), (1246), (1256)

(1345), (1346), (1356), (1456)

(2345), (2346), (2356), (2456)

(3456)}.

This yields the following polynomial:

6zx1y1zx2y2 + 4zx1y1x2y2 + 4x1y1zx2y2.

Remark 12.4. We may consider the operation δzk in the following setting. Let
F 〈x1, . . . , xn,Σ〉 be an affine free algebra where Σ is a finite set of variables. Let
z = p(Σ) be any polynomial which is free of the variables x1, . . . , xn. We define the
operator δpk on F 〈x1, . . . , xn,Σ〉 by

δ
p(Σ)
k |x1,...,xn

(f) =
∑

1≤i1<···<ik≤n

fi1,...,ik

where fi1,...,ik is the polynomial obtained from f by substituting p(Σ)xij in xij for
j = 1, . . . , k.
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Remark 12.5. Another way to view δzk|x1,...,xn
(f), in case f is independent of the

variable z and multilinear in x1, . . . , xn, is by taking the homogenous component
of degree k in z in the polynomial f((1 + z)x1, . . . , (1 + z)xn,Λ).

Lemma 12.6. Notation as above. Suppose that z = p(Σ) is independent of the
variables x1, . . . , xn. The following hold.

(1) If f is multilinear and alternating on x1, . . . , xn then so does δzk(f).
(2) δzk and δzk′ commute.

Proof. (1) Suppose k > 1 and 1 ≤ i 6= j ≤ n. Write:

(1) δzk(f) =
∑

S∈Ak

f |∀t∈S: zxt→xt
+

∑

S∈Ak−1

f |zxi→xi, ∀t∈S: zxt→xt
+

+
∑

S∈Ak−1

f |zxj→xj , ∀t∈S: zxt→xt
+

∑

S∈Ak−2

f |zxi→xi,zxj→xj , ∀t∈S: zxt→xt

where Ak contains all the subsets of {1, . . . , n} of size k not containing i nor j. We
need to show that δzk(f)|xi=xj

= 0. We do so by showing that the first sum, the
last sum and the sum of the two middle sums are zero separately:

∑

S∈Ak

(f |∀t∈S: zxt→xt
) |xi=xj

=

(∑

S∈Ak

(
f |xi=xj

)
|∀t∈S: zxt→xt

)
|xi=xj

= 0

∑

S∈Ak−2

(
f |zxi→xi,zxj→xj , ∀t∈S: zxt→xt

)
|xi=xj

=


 ∑

S∈Ak−2

(
f |zxi→xi,zxi→xj

)
|∀t∈S: zxt→xt


 |xi=xj

= 0

and

 ∑

S∈Ak−1

(f |zxi→xi, ∀t∈S: zxt→xt
) +

∑

S∈Ak−1

(
f |zxj→xj ∀t∈S: zxt→xt

)

 |xi→xj

=

∑

S∈Ak−1

f |zxi→xi,xi→xj ∀t∈S: zxt→xt
−


 ∑

S∈Ak−1

(
f |xi↔xj

)
|zxj→xj , ∀t∈S: zxt→xt


 |xi→xj

=

∑

S∈Ak−1

f |zxi→xi,xi→xj ∀t∈S: zxt→xt
−


 ∑

S∈Ak−1

f |xi→xj,zxj→xi, ∀t∈S: zxt→xt


 |xi→xj

=

∑

S∈Ak−1

f |zxi→xi,xi→xj ∀t∈S: zxt→xt
−


 ∑

S∈Ak−1

f |zxi→xi,xi→xj , ∀t∈S: zxt→xt


 = 0

All in all we get 0. We still need to consider the cases k = 0 and k = 1. The case
k = 0 is trivial since δz0(f) = f . In case k = 1 we get the same proof as for k > 1
with the only difference that the last sum in (1) does not appear here.

(2) Denote by Lk the set containing all the subsets of {1, . . . , n} of size k. Then

δzk(f) =
∑

S∈Lk

f |∀i∈S: zxi→xi

and

δzk′(δzk(f)) =
∑

S2∈Lk′

∑

S1∈Lk

(f |∀i∈S1: zxi→xi
) |∀j∈S2: zxj→xj

=
∑

S1∈Lk,S2∈Lk′

f |∀i∈S1∩S2: z2xi→xi, ∀i∈S1⊕S2: zxi→xi
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where S1⊕S2 = (S1 \S2)∪ (S2 \S1). This proves the claim. Notice that the second
equality holds because z is independent of {x1, . . . , xn}. �

Suppose W is an affine algebra with Kemer index (n, r). We let µ be the minimal
number of small sets in its Kemer polynomials. Let f = f(X,Λ) be a Kemer
polynomial of W (X and Λ are sets of variables) and suppose that (already) µ
small sets and all big sets of variables are contained in Λ.

Lemma 12.7. Suppose f(x1, . . . , xn+1,Λ) is such a Kemer polynomial which in
addition is multilinear on x1, . . . , xn+1 and alternates on x1, . . . , xn. Then

n∑

t=0

(−1)tδzt
(
f |zn−txn+1→xn+1

)
∈ Id(W )

Proof. It easy to check that if g(x1, . . . , xn+1, E) , E any set of variables, is multi-
linear on x1, . . . , xn+1 and alternates on x1, . . . , xn, then

g̃ = g(x1, . . . , xn+1, E)−

n∑

k=1

g(x1, . . . , xk−1, xn+1, xk+1, .., xn, xk, E)

alternates on x1, . . . , xn+1. Therefore, if we replace g by δzt (f) we obtain that

δ̃zt (f) = (δzt (f))−

n∑

k=1

(δzt (f)) |xk↔xn+1

has µ alternating small sets and r+1 alternating big sets. Thus, δ̃zt (f) is an identity
of W .

Substituting zn−txn+1 in xn+1 yields:

(δzt (f)) |zn−txn+1→xn+1
≡

n∑

k=1

(
(δzt (f)) |xk↔xn+1

)
|zn−txn+1→xn+1

mod (Id(W ))

=

n∑

k=1

(δzt (f)) |xk→xn+1,zn−txn+1→xk

Since the operator δzt “has no effect” on xn+1, one can see easily that the operation
of δzt commutes with the substitution zn−txn+1 → xn+1, that is (δ

z
t (f)) |zn−txn+1→xn+1

=

δzt
(
f |zn−txn+1→xn+1

)
and so we have

δzt
(
f |zn−txn+1→xn+1

)
≡

n∑

k=1

(δzt (f)) |xk→xn+1,zn−txn+1→xk
mod (Id(W )).

Therefore, the lemma will be proved if we show

n∑

t=0

n∑

k=1

(−1)t (δzt (f)) |xk→xn+1,zn−txn+1→xk
∈ Id(W )

and after changing the order of summation, it is clear that it is enough to show
that for every k

n∑

t=0

(−1)t (δzt (f)) |xk→xn+1,zn−txn+1→xk
= 0.
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For simplicity (and in fact, without loss of generality) we show the statement in
case k = 1. The following equality holds

(δzt (f)) |x1→xn+1,zn−txn+1→x1
=

∑

1<i1<···<it≤n

(fi1,...,it) |x1→xn+1,zn−txn+1→x1

︸ ︷︷ ︸
gt

+
∑

1=i1<i2<···<it≤n

(fi1,...,it) |x1→xn+1,zn−txn+1→x1

︸ ︷︷ ︸
ht

Thus,

gt =
∑

1<i1<···<it≤n

f |x1←zn−txn+1,xi1←zxi1 ,...,xit←zxit ,xn+1←x1

ht =
∑

1<i2<···<it≤n

f |x1←zn−t+1xn+1,xi2←zxi2 ,...,xit←zxit ,xn+1←x1
.

Observe that gn = h0 = 0 and ht+1 = gt for t = 0, . . . , n− 1 and so

n∑

t=0

(−1)t (δzt (f)) |x1→xn+1,zn−txn+1→x1
=

n∑

t=0

(−1)t(ht + gt) = 0.

�

We will use the above lemma in the following setting.

Corollary 12.8. Let f(x1, . . . , xn+1,Λ) =
∑

σ f1,σxn+1f2,σ be a Kemer polynomial
which is multilinear on x1, . . . , xn+1 and alternating on x1, . . . , xn. Suppose the
variable z is not one of the variables x1, . . . , xn. Then

n∑

t=0

(−1)tδzt

(∑

σ

f1,σz
n−t+1f2,σ

)
∈ Id(W ).

Proof. Use the previous lemma to obtain:

n∑

t=0

(−1)tδzt

(∑

σ

f1,σz
n−txn+1f2,σ

)
∈ Id(W ).

Now substitute xn+1 ← z. �

We will be interested in the following special case.

Corollary 12.9. Let f(x1, . . . , xn+1,Λ) =
∑

σ f1,σxn+1f2,σ as in the corollary
above. Let F 〈x1, . . . , xn,Σ〉 be an affine free algebra where Σ is any set of variables
disjoint to the set {x1, . . . , xn} and let p = p(Σ) ∈ F 〈x1, . . . , xn,Σ〉. Then

n∑

t=0

(−1)tδpt

(∑

σ

f1,σp
n−t+1f2,σ

)
∈ Id(W ) ∩ F 〈x1, . . . , xn,Σ〉.
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12.2. Interpretation Lemma.

Lemma 12.10. Let A be an F -algebra and let L be an ideal of A. Suppose the
polynomial ring R = F [t1, . . . , tn] acts F−linearly on L such that f ·(ax) = (f · a)x
and f · (xa) = x (f · a), for all x ∈ A, a ∈ L and f ∈ R (that is the action of
R on L commutes with the A-bimodule structure on L). Then the natural map
A→ A′ = R⊗F A/(ti ⊗ a− 1⊗ (ti · a))|a ∈ L, i = 1, . . . , n) is an embedding.

Proof. Consider the exact sequence 0 → ker ν → R ⊗F L → R ⊗R L ∼= L → 0
where ν : R ⊗F L → R ⊗R L is the natural map of F -algebras. Clearly ker ν =
〈ti ⊗ a− 1⊗ (ti · a)|a ∈ L, i = 1, . . . , n〉R⊗FL. However, the ideal ker ν ⊆ R⊗F L is
invariant under the action of R⊗F A and hence if we denote by V the vector space
that supplements L in A, we have

A′ = R⊗F A/ ker ν ∼= R⊗F (L⊕ V )/ ker ν

= (R ⊗F L⊕R⊗F V )/ ker ν ∼= (R ⊗F L/ ker ν)⊕R⊗F V ∼= (L⊕R⊗F V ).

This shows the natural map A→ A′ is an embedding and the lemma is proved. �

13. Representable spaces

Let us summarize what we have and what remains to be done. We are assuming
that Γ is the T -ideal of an affine algebra W with Kemer index p = (n, r) and Sp is
the T -ideal generated by its Kemer polynomials (with at least µ small sets). The
idea is to proceed by induction on the Kemer index of Γ. We assume the main
theorem holds for all affine algebras with Kemer index smaller than p and prove it
for Γ (note that p = (0, 0) if and only if W = 0). Consider the T -ideal Γ′ = Γ+Sp.
Clearly, its Kemer index p′ is smaller than p (for otherwise, any Kemer polynomial
of Γ′ is a Kemer polynomial of Γ and hence in Sp) and hence there is a representable
algebra A′ (or a finite dimensional algebra over a field extension) with Id(A′) = Γ′.

The ingredient we are still missing is the existence of a representable algebra Bp

satisfying all the identities of W and such that any polynomial in Sp (which is not
in Γ) is a nonidentity of Bp. Then it will be easy to conclude that the representable
algebra A′ ×Bp is PI equivalent to W .

Let W0 = F 〈Σ〉/ IdF 〈Σ〉(W ) be an affine relatively free algebra of W . Here,
IdR(W ) denotes the ideal of an algebra R generated by all evaluations of Id(W ) on
R. Denote by Xp a set of n(µ + 1) + (n+ 1)r variables (i.e. precisely the number
of variables needed to support the µ + 1 small sets and r big sets in a Kemer
polynomial). Suppose the set Xp is disjoint to the variables Σ (that generate W0)
and denote byW = F 〈Xp,Σ〉/ IdF 〈Xp,Σ〉(W ) the affine relatively free algebra of W
generated by Σ and Xp.

Let us fix (for the rest of this section) a decomposition of Xp into µ + 1 sets of
variables X1, . . . , Xµ+1, each containing exactly n elements, and r additional sets
Xµ+2, . . . , Xµ+1+r, each containing n+ 1 variables.

Let f be a Kemer polynomial of W with at least µ+ 1 small sets.
Before getting into the definitions and the precise construction of the repre-

sentable algebra Bp, let us give here a short outline of the construction. We con-
sider the affine relatively free algebra W = F 〈Xp,Σ〉/ IdF 〈Xp,Σ〉(W ) of W gen-
erated by Σ and Xp. The set Xp was already “fragmented” into µ + 1 sets of
variables X1, . . . , Xµ+1, each containing exactly n elements, and r additional sets
Xµ+2, . . . , Xµ+1+r, each containing n+1 variables, in particular, sufficiently many
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small sets and big sets to support nonvanishing evaluations of any Kemer polyno-
mial f on W = F 〈Xp,Σ〉/ IdF 〈Xp,Σ〉(W ) in such a way that precisely µ + 1 small
sets of such f take values precisely in the µ + 1 small sets X1, . . . , Xµ+1 (modulo
IdF 〈Xp,Σ〉(W )) and all big sets of f are evaluated (in one to one correspondence) on
the sets Xµ+2, . . . , Xµ+1+r. It is not difficult to show that any Kemer polynomial
f has a nonzero evaluation of that kind. These are by definition, the admissible
evaluations. All such (nonzero evaluations) evaluations span a vector space V in
W . Our goal is to mod out ideals of W such that at the end we obtain a rep-
resentable algebra Bp, and yet the space V embeds in Bp. This will show that
the Kemer polynomials are nonidentities of Bp. What are the ideals we mod out
by? We consider a Shirshov base in W = F 〈Xp,Σ〉/ IdF 〈Xp,Σ〉(W ) represented by
monomials z which either contain elements of Xp or not. If z is such a monomial
(i.e. z + IdF 〈Xp,Σ〉(W ) is an element of the Shirshov base) that contains a variable
of Xp, then by modding out with the ideal I of W generated (or in fact consisting)
of elements of F 〈Xp,Σ〉 in which at least one element of Xp appears twice, then the
element z + IdF 〈Xp,Σ〉(W ) is nilpotent modulo I and hence integral. On the other
hand it is easy to see that the space V intersects trivially the ideal I. Most of the
efforts are devoted to construct ideals such that by modding out them successively,
each element of the Shirshov base which is free of elements of Xp, one at a time,
becomes integral and yet the space V embeds.

Definition 13.1. An evaluation of f on F 〈Xp,Σ〉 is admissible if the following
conditions are satisfied.

(1) Precisely µ+ 1 small sets of f , say Ẋ1, . . . , Ẋµ+1, are evaluated bijectively
on the sets X1, . . . , Xµ+1

(2) All big sets of f are evaluated bijectively on the sets Xµ+2, . . . , Xµ+1+r

(3) The rest of the variables of f are evaluated on F 〈Σ〉

An evaluation of f on W is admissible if it is represented by an admissible
evaluation on F 〈Xp,Σ〉.

We denote by Sp the F -span (in W) of all admissible evaluations of all Kemer
polynomials of W .

Our goal in this section is to prove that Sp is a representable space of W . Here
is the precise definition.

Definition 13.2. Let W be a PI F -algebra and let S be an F -subspace of W . We
say that S is an representable space of W if there exist a representable algebra B
with Id(B) ⊇ Id(W ) and a homomorphism

φ : W → B

such that φ maps S isomorphically into B.

Remark 13.3. Our main difficulty in the construction of B is that on one hand it
should be not “too big” so that it is representable and on the other hand not “too
small” so that Sp embeds.

The compromise is achieved by “forcing” a Shirshov base of W to be integral
over some commutative Noetherian F -algebra.

Let Y be a Shirshov base of W consisting of elements which are represented
by monomials on the set Σ ⊔ Xp. Denote by Y0 = {b1 + IdF 〈Xp,Σ〉(W ), . . . , bt +
IdF 〈Xp,Σ〉(W )} the elements of the Shirshov base where the representing monomials
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are independent of Xp and let Y1 = Y \Y0 be the remaining elements of the Shirshov
base.

Consider the algebra U = W/I where I is generated by elements of the form
xwx + IdF 〈Xp,Σ〉(W ) and x2 + IdF 〈Xp,Σ〉(W ) where x ∈ Xp and w ∈ F 〈Xp,Σ〉.
Denote by φ : W → U the natural map. It is clear from the definition of Sp that
Sp∩I = 0 and so, by abuse of notation, we write Sp also for the (isomorphic) image

φ(Sp) in U . Note that the elements of Y 1 = φ(Y1) are nilpotent and hence integral
over F . Our goal is then to “force” φ(Y0), the remaining elements of the Shirshov
base, to become integral over a suitable Noetherian ring, yielding a representable
algebra and yet an algebra where the space Sp embeds.

Remark 13.4. As defined above, the elements bi, i = 1, . . . , t, are monomials in
the affine free algebra F 〈Xp,Σ〉. In the sequel, these elements will be considered
in different quotients of F 〈Xp,Σ〉. By abuse of notations we denote them by b̄i,
i = 1, . . . , t. This should not confuse the reader.

Let Y 0 = φ(Y0) = {b̄1, . . . , b̄t} and define by induction for i = 1, . . . , t

B(i)
p =

F
[
θ
(i)
1 , . . . , θ

(i)
n

]
⊗B

(i−1)
p

Ji
, B(0)

p = U

where F
[
θ
(i)
1 , . . . , θ

(i)
n

]
is a polynomial F -algebra and Ji is the ideal generated by

the element

1⊗ b̄n+1
i +

n∑

k=1

(−1)kθ
(i)
k ⊗ b̄n−k+1

i .

(We remind the reader that n is the size of a small set in Kemer polynomials)
In other words,

B(i)
p =

Ri ⊗ F 〈Xp,Σ〉

J (i) + I + IdRi〈Xp,Σ〉(W )

where Ri = F
[
θ
(1)
1 , . . . , θ

(1)
n , . . . , θ

(i)
1 , . . . , θ

(i)
n

]
and J (i) is generated by

1⊗ bn+1
j +

n∑

k=1

(−1)kθ
(j)
k ⊗ bn−k+1

j , j = 1, . . . , i.

Denote by S
(i)
p the ideal generated by the projection of Sp into B

(i)
p , and by J (i)

the ideal J (i) + I + IdRi〈Xp,Σ〉(W ).

Lemma 13.5. Let X be any subset of Xp of cardinality m and z be any monomial
consisting of variables of Σ. Then the following actions on Ri 〈Xp,Σ〉 preserve

the ideal J (i) (note that here we do not insist in the decomposition of Xp into the
subsets Xi we fixed above).

(1) The Zubrilin-Razmyslov traces δzk = δzk|X , where k = 0, . . . ,m.
(2) The alternation of the set X which is defined by

AltX(f) =
∑

σ∈SX

(−1)σf |∀x∈X:σ(x)→x.

(3) Zero substitution on elements of X. That is

FX(f) = f |∀x∈X: 0→x.
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Proof. Since the actions above are linear, it is sufficient to check that they preserve
the ideals IdRi〈Xp,Σ〉(W ), I and J (i).

Since IdRi〈Xp,Σ〉(W ) is a T -ideal it is clearly preserved by each of the actions

defined in (1) − (3). Next we turn to the ideal J (i), starting with (3). Suppose
g, h ∈ Ri 〈Xp,Σ〉 are monomials. Then for any j = 1, . . . , i and any nonnegative
integer k, FX

(
gbkjh

)
= 0 if some variable of X is in gh whereas FX

(
gbkjh

)
= gbkjh

if no variable of Xp is in gh. Hence

FX

(
1⊗ g

(
1⊗ bn+1

j +

n∑

k=1

(−1)kθ
(j)
k ⊗ bn−k+1

j

)
1⊗ h

)

is zero or 1⊗ g
(
1⊗ bn+1

j +
∑n

k=1(−1)
kθ

(j)
k ⊗ bn−k+1

j

)
1⊗ h which are elements of

J (i).
Let us show Alt|X preserves J (i). Since the element 1⊗ bn+1

j +
∑n

k=1(−1)
kθ

(j)
k ⊗

bn−k+1
j does not contain any variable of X , we have for j = 1, . . . , i

Alt|X

(
1⊗ g

(
1⊗ bn+1

j +

n∑

k=1

(−1)kθ
(j)
k ⊗ bn−k+1

j

)
1⊗ h

)

is a sum of polynomials of the type

1⊗ gσ

(
1⊗ bn+1

j +

n∑

k=1

(−1)kθ
(j)
k ⊗ bn−k+1

j

)
1⊗ hσ ∈ J (i).

Finally, a similar reasoning shows that δzk also preserves J (i).
We now turn to show the invariance of the ideal I. Consider elements 1⊗ g, 1⊗

h, 1 ⊗ w ∈ Ri ⊗ F 〈Xp,Σ〉 where g, h, w are monomials. Let x0 ∈ X . As we
mentioned above the action of FX on 1⊗ g is either zero or 1⊗ g. Hence, since I is
generated by elements in W represented by monomials in Ri〈Xp,Σ〉, it is evident
that I is preserved by FX . The result of acting with AltX or δzk on an element of
the form 1⊗gx2

0h or 1⊗gx0wx0h, is a sum of monomials each having some element
of Xp appearing at least twice. Therefore, I is preserved by δzk and AltX . �

For future reference we record the conclusion here.

Corollary 13.6. The operations considered above (on Ri ⊗ F 〈Xp,Σ〉), namely

δbik,Xl
, AltXl

, l = 1, . . . , µ + r + 1 and FX , where X = {x} and x ∈ Xp, determine

well defined actions on B
(i)
p , (i=1,. . . ,t).

Lemma 13.7. The following holds:

(1) Bp = B
(t)
p is representable.

(2) Sp is mapped isomorphically into B
(i)
p for i = 1, . . . , t.

Proof. By construction, the algebra Bp has an integral Shirshov base over the
polynomial algebra Rt and hence is representable by Lemma 9.3 and Theorem 9.4.
This proves the first part of the lemma. The second part however requires more
work.

We proceed by induction on i. Since Sp embeds in U we have the result for i = 0.

Let i > 0 and suppose (2) holds for i− 1, namely Sp embeds in B
(i−1)
p . We denote

the image in B
(i−1)
p again by Sp.
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Let f = f(Xp,Σ) be an admissible evaluation of a Kemer polynomial of W .

Suppose f ∈ Ji. We need to show f is zero in B
(i−1)
p .

By the definition of Ji, 1⊗ f has the form

(2) 1⊗ f =
∑

j

vj ⊗ ḡj ·

(
1⊗ b̄n+1 +

n∑

k=1

(−1)kθk ⊗ b̄n−k+1

)

︸ ︷︷ ︸
B̄

1⊗ h̄j

where gj , hj ∈ Ri−1 ⊗ F 〈Xp,Σ〉 are monomials in the variables of Σ ⊔ Xp (with

coefficients in Ri−1) and vj ∈ F [θ1, . . . , θn]. Here, b = bi, θ1 = θ
(i)
1 , . . . , θn = θ

(i)
n

and B =
(
1⊗ bn+1 +

∑n
k=1(−1)

kθk ⊗ bn−k+1
)
. Note that with this notation the

equality in (2) takes place in F [θ1, . . . , θn]⊗B
(i−1)
p .

We claim that we may assume that for every j in the summation above the
elements gj and hj are such that all variables of Xp appear exactly once in either
gj or hj (but not in both). Indeed, suppose Ax is the set of all indexes j such that
gjhj contains the variable x ∈ X . Applying F{x} to f̄ −

∑
j∈Ax

(vj⊗ ḡj) · B̄ · (1⊗ h̄j)
yields zero whereas the action of F{x} on the remaining terms is trivial and so can
be ignored in the sum above. Repeating this process to all the variables of Xp we
obtain that (we may assume) each variable of Xp appears in every gjhj . The claim
is now proved since modding by I garanties that if there is a variable of Xp that
appears more than once in some (1⊗ gj) ·B · (1⊗ hj), then (1⊗ ḡj)B̄(1⊗ h̄j) = 0.

Now we wish to apply AltX for X = X1, . . . , Xµ+r+1 on the two sides of (2). To
this end consider for each j the polynomial

Mj = (vj ⊗ gj)B(1 ⊗ hj) ∈ F [θ1, . . . , θn]⊗ (Ri−1 ⊗ F 〈Xp,Σ〉)

representing

M j = (vj ⊗ ḡj)B̄(1⊗ h̄j) ∈ F [θ1, . . . , θn]⊗B(i−1)
p .

Alternating all variables of Xp (with respect to the fixed decomposition into
small and big sets) in Mj we obtain

Lj =
∑

σ

Mj,σ

and clearly Lj =
∑

σ M j,σ ∈ F [θ1, . . . , θn]⊗B
(i−1)
p (to simplify notation we include

the sign arising from alternation in Mj,σ).
Now, by Corollary 13.6 we know that alternation of elements of Xp is well defined

on B
(i−1)
p , so we obtain

Lj =
∑

σ

M j,σ = 1⊗ αf

where α = (n!)µ+1((n+ 1)!)r.
Now, we wish to apply the interpretation lemma (Lemma 12.10) on the algebra

F [θ1, . . . , θn]⊗B
(i−1)
p with the ideal S

(i−1)
p ⊆ B

(i−1)
p (see notation above). Indeed,

we will provide an interpretation of θ1, . . . , θn via a suitable action on the ideal

S
(i−1)
p such that the image of Lj (modulo the interpretation) vanishes and hence
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also the image of
∑

j Lj , whereas the elements of B
(i−1)
p are mapped isomorphically.

This will imply that f̄ = 0 in B
(i−1)
p .

Recall once again (Corollary 13.6) that the operation δbk is well defined on B
(i−1)
p

(b is free of variables of Xp) so we may set

θk(q) = δbk(q), q ∈ B(i−1)
p .

However as shown in the lemma below, only the restriction of this action on the

ideal S
(i−1)
p commutes with the B

(i−1)
p -bimodule structure.

Lemma 13.8. The following hold:

(1) For every h ∈ Sp, any k and any x, y ∈ B
(i−1)
p

δb̄k(xh) = xδb̄k(h), δ
b̄
k(hy) = δb̄k(h)y

(2) for any k, s = 1, . . . , n and h ∈ Sp

δb̄kδ
b̄
s(h) = δb̄sδ

b̄
k(h)

Proof. Since b is a monomial having its variables in Σ, Lemma 12.6 implies that δbk
and δbs commute, so the same holds for δb̄k and δb̄s.

To complete the proof of the lemma it suffices to show that if h ∈ Sp and g

is a monomial in B
(i−1)
p then δb̄k(gh) = gδb̄k(h) and δb̄k(hg) = δb̄k(h)g. Indeed, if

g contains an element of Xp, then hg = 0 = gh and also gδb̄k(h) = 0 = δb̄k(h)g

verifying the condition. If g is a monomial in B
(i−1)
p free of variables of Xp, then

clearly δb̄k(hg) = δb̄k(h)g and δb̄k(gh) = gδb̄k(h). This completes the proof of Lemma
13.8.

�

We apply the interpretation lemma on the element Lj =
∑

σ M j,σ ∈ F [θ1, . . . , θn]⊗

B
(i−1)
p .
We obtain

∑

σ

M j,σ =
∑

σ

(vj ⊗ ḡj,σ)B̄(1 ⊗ h̄j,σ) =

∑

σ

(vj ⊗ ḡj,σ)

(
1⊗ b̄n+1 +

n∑

k=1

(−1)kθk ⊗ b̄n−k+1

)
(1⊗ h̄j,σ) =

putting θ0 = 1 we have

∑

σ

(vj ⊗ ḡj,σ)

(
n∑

k=0

(−1)kθk ⊗ b̄n−k+1

)
(1⊗ h̄j,σ) =

n∑

k=0

(−1)kvjθk ⊗
∑

σ

ḡj,σ b̄
n−k+1h̄j,σ

Now, since
∑

σ ḡj,σ b̄
n−k+1h̄j,σ ∈ S

(i−1)
p , we may apply the interpretation

θk ⊗ q = 1⊗ δb̄k(q), k = 0, . . . , n

(note that δ0 is the identity map) and obtain
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vj ⊗

n∑

k=0

(−1)kδb̄k

(∑

σ

ḡj,σ b̄
n−k+1h̄j,σ

)

which vanishes by Corollary 12.9.
As mentioned above, by the interpretation lemma the map

B(i−1)
p → F [θ1, . . . , θn]⊗B(i−1)

p /(θk ⊗ q − 1⊗ δb̄k(q)|q ∈ S
(i−1)
p , i = 1, . . . , n)

is an embedding and hence f̄ = 0 in B
(i−1)
p . This completes the proof of Lemma

13.7. �

Thus we have a map φ :W → Bp where Bp is a representable algebra, Id(Bp) ⊇
Id(W ) and such that the space Sp is mapped isomorphically. Consequently we have
the following corollary.

Corollary 13.9. Let f be any Kemer polynomial of the algebra W (at least µ+ 1
small sets). Then f /∈ Id(Bp).

Proof. Since W0 is an affine relatively free algebra of W , there exits an evaluation
of f onW0 which is not zero. It follows that f has a nonzero admissible evaluation
f̄ on W with f̄ ∈ Sp and hence f̄ /∈ ker(φ). This proves the Corollary.

�

14. Representability - the proof

We have all ingredients needed to prove the main theorem.

Proof. The proof is by induction on the Kemer index p associated to a T -ideal Γ
(containing a Capelli polynomial). If p = (0, 0) then Γ = F 〈X〉 and so W = 0.
Suppose the theorem is true for any affine algebra with Kemer index smaller than
p. Denote by Sp the T -ideal generated by all Kemer polynomials corresponding to
Γ, and let Γ′ = Γ+Sp. It is clear that the Kemer index of Γ′ is strictly smaller than
p. Hence, by the inductive hypothesis there is a representable algebra A′ having Γ′

as its T -ideal of identities.
Let Bp be the representable algebra constructed in the previous section. We’ll

show Γ = Id(A′ ×Bp).
It is clear that Γ ⊂ Id(A′ × Bp) since Γ is contained in Γ′ and by construction

Γ ⊆ Id(Bp). Suppose there is f /∈ Γ with f ∈ Id(A′ ×Bp) = Id(A′)∩ Id(Bp). Since
f ∈ Id(A′) = Γ′, we may assume f ∈ Sp. Using the Phoenix property, see Theorem
11.3, we obtain a Kemer polynomial f ′ (with at least µ + 1 small sets) such that
f ′ ∈ (f). But by Corollary 13.9, f /∈ Id(Bp) and this contradicts our previous
assumption on f . This completes the proof.

�
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