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AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP
OF A FREE COMMUTATIVE ALGEBRA

A. BELOV-KANEL!, R. LIPYANSKI?2

ABSTRACT. We describe the automorphism group of the endomorphism semi-
group End(K|[z1,...,2zn]) of ring K[z1,...,zn] of polynomials over an arbi-
trary field K. A similar result is obtained for automorphism group of the
category of finitely generated free commutative-associative algebras of the va-
riety CA commutative algebras. This solves two problems posed by B. Plotkin
( [18], Problems 12 and 15).

More precisely, we prove that if ¢ € AutEnd(K][z1,...,2n]) then there
exists a semi-linear automorphism s : K[z1,...,2n] — K[z1,...,Zn] such
that (g) = sogos™! for any g € End(K[x1,...,2n]). This extends the result
by A. Berzins obtained for an infinite field K.

1. INTRODUCTION

We describe the group G = Aut(End(K([z1,...,z,]), where K is an arbitrary
field. A similar result is obtained also for automorphism group of the category of
finitely generated free commutative-associative algebras of the variety commutative
algebras. This solves two problems posed by B. Plotkin ( [18], Problems 12 and

15).

More precisely, we prove that if ¢ € AutEnd(K[z1,...,2,]) then there exists a
semi-linear automorphism s : K[z1,...,2,] — K[z1,...,z,] such that ¢(g) = sogo
s~1for any g € End(K|x1,...,2,]) (see Theorem[3.8). Here “semi-linearity” means

that s is a composition of an automorphism of the field K and an automorphism of
the ring K[x1,...,z,]. We note that for an infinite ground field K is infinite such
result was obtained earlier by A. Berzins [3].

A problem of description of the group G = Aut(End(K |z, ..., z,]) is also inter-
esting in the context of Universal Algebraic Geometry (UAG). Let © be a variety
of algebras over a field K and F = F(X) be a free algebra from © generated by a
finite subset X of some infinite universum X°. We refer to [17, 18] (see also [8]) for
the Universal Algebraic Geometry (UAG) notions used in our work.

If an algebra G belongs to © one can consider the category of algebraic sets
Ko(G) over G. Objects of this category are algebraic sets in affine space over G;
the category Ko(G) defines a geometry of the algebra G in ©. One of the main
problems in UAG is to determine whether two different algebras G; and G2 have the
same geometry. The coincidence of geometries means that the categories Keo(G1)
and Ko(G3) are equivalent. It is known that coincidence of geometries of G and
G is determined by the structure of the group Aut ©°, where 0° is the category of
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free finitely generated algebras of ©. On the other hand, there is a natural relation
between the structure of the groups Aut End F' and Aut ©°. The structure of the
latter is determined by the group Aut End F'. Should be mentioned that a problem
of investigation of the groups Aut End F, F' € O, for different varieties © is quite
interesting by itself and has been considered in many papers (see [1-[3], [El, [S]
-1, [13-[19], 22

Let CA be the variety of a commutative-associative algebras with 1 over a field K,
A = K|z, ...,x,] be a free commutative-associative algebra in C.A freely generated
over K by a set X = {x1,...,z,}, i.e., a polynomial algebra in variables z1, ..., .
In this work we obtain a description of the group Aut CA° of automorphisms of
the category CA. A similar result for a polynomial algebra A over an infinite field
K was also obtained earlier in [3].

Our description is based on new characteristics of endomorphisms of A such as
rank of endomorphisms of A. We discuss external and internal definition of this
notation. The former are expressed in terms of the action of the semigroup End A
on A, while the latter can be written in terms of the semigroup itself. This approach
allows us to describe the above mentioned properties of endomorphisms of A in an
invariant manner and paves the way for proof of the main assertions in the paper:
the group Aut End A is generated by semi-inner of End A.

Our approach employs this technique (developed in [B, [@]) supplemented by
algebro-geometric methods of investigations

2. ON THE ENDOMORPHISM SEMIGROUP OF A FREE ASSOCIATIVE-COMMUTATIVE
ALGEBRA

2.1. Rank of an endomorphism of polynomial algebra. Let A = K([z1,...,z,]
be a free commutative-associative algebra over a field K generated by X = {x1,...,z,}
(below polynomial algebra over K in variables X). Earlier, in [5], we defined the
endomorphism of free associative algebra K{xi,...,x,) of rank 0 and 1. In this
section we introduce a definition of endomorphisms of arbitrary rank m in a free
commutative-associative K[x1, ..., Z,].

First, we introduce the “external” and “internal” definitions of rank of endomor-
phism ¢ of algebra A and show their equivalence.

Definition 2.1. (“External” definition of an endomorphism of rank m.) An endo-
morphism

p:A— A
has rank m if trdeg(Im ) = m, i.e., the transcendence degree of the K-algebra
M =TIme C A is equal to m. We denote this as rk(¢) = m. It is evident that
there exist endomorphisms of Klx1,...,x,] of arbitrary rank < n. For instance,
the identical mapping on Klx1,...,2,] is the endomorphism of rank n.

For the internal definition of rank m endomorphisms, we need to define a con-
gruence on the semigroup End(A) with respect to a fixed endomorphism ¢ of A.

Definition 2.2. Endomorphisms ¢; and @2 of A are @-equivalent if pp1 = @pa.
In this case we write p1 v, @2.

It is clear that «, is an equivalence relation on End A. Let S be the set of all
p-equivalences on End A. We determine the preorder < on the set S as follows.
We say that vy < vy, where ¢, € End A4, if
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dp1 = P2 = Y1 = Y2,
for any 1,2 € End A. The preorder < can be extended up to the order < on the
quotient set S = S/R under equivalence R, where vwe Ry ifand only if vy <y
and vy < vy, Denote by v, the R-equivalence class of a relation «y,.

Definition 2.3. We say that ¢ <9 iff vy, < yp.
Definition 2.4. We say that ¢ < ¢ if vy, <y, and vy, £ gy

It is clear that relations < and < are an order and a strong order, respectively,
on End A. Note that the smaller endomorphism ¢ (in the sense of <) corresponds
to stronger equivalence relation ~,. The proof of the following Lemma is straight-
forward.

Lemma 2.5. Let ¢ = (01(Z) ..., on(Z)) and ¢ = (Y1(Z), ..., Yn(Z)) be two endo-
morphisms of K[x1,...,x,]. Then
(1) ¢~ iff for all H(Z) € K[x1,...,2y] the condition H(p1(Z) ..., pn(Z)) =
0 is equivalent to H(11(Z), ..., (%)) = 0.
(2) ¢ XY iff for all H(T) € K[x1,...,x,] the condition H(p1(Z),...,pn(T)) =
0 implies H(1(Z), ..., ¥n(Z)) =0.
(3) ¢ < iff for all H(Z) € K[x1,...,2y] the condition H(p1(Z) ..., pn(Z)) =
0 implies H(Y1(Z),...,¥n(Z)) = 0 and there exists R(Z¥) € K[x1,...,Zn
such that R(p1(Z),...,on(Z)) =0 but H(41(Z),...,¥n(Z)) #£0.

Definition 2.6. (“Internal” definition of an endomorphism of rank m.) An en-
domorphism @ : A — A is of rank m, if maximum of the lengths of all chains of
endomorphisms of A of the form

(2.1) Y X m-1 3 Y1 3 o,
is equal to m. If there is no endomorphism 1) such that ¢ 3 v, then ¢ has rank 0.

Remark 2.7. If rk(p) = 0, then image of ¢ is the ground field. The definition
of endomorphisms of rank 0 and 1 for associative commutative algebra are in ac-
cordance with the definition for a free associative algebra given in [5]. The internal
definition of rank 0 is pretty similar.

Proposition 2.8. Definitions and 2] are equivalent.

We precede the proof of this proposition by several lemmas. Denote by A%
an n-dimensional affine space over the algebraic closure K of the field K. It is
clear that A% ~ Specm (K |[z1,...,zy]), where Specm(K [x1, ..., xy,] is the set of all
maximal ideals. Let us investigate the algebro-geometric properties of polynomial
endomorphisms of K[x1,...,z,] and their relation to polynomial maps of A’ into
itself.

Each endomorphism ¢ : K|x1,...,2,] — Klz1,...,2,] such that

o) = pi(x1,...,xn), where p; = @i(x1,...,2,) € K[z1,...,25],

determines a polynomial map ¢* = (¢1,...,¢n) : A — A’ of the affine space
A’ into itself of the form

(2.2) (1, 2n) = (P1(T1, -y Tn), o On(T1, -, Tp))



4 A. BELOV-KANEL!, R. LIPYANSKI?

The converse is also true: to each polynomial map ¢* : A% — A% of the form
[22) corresponds the above mentioned endomorphism ¢ of the algebra K[z, ..., x,].
We will make use of this relation below.

Denote by M, the variety ¢*(A’%). We shall say that the variety M., corresponds
to the endomorphism ¢ of the polynomial algebra Klz1,...,z,]. The coordinate
ring K[M,] of the variety M, is K[M,] = K[z1,...,x,]/I, where

I={H(z1,....2.)| Hp1 (@), ... u(®) = 0}

is the ideal in K{[z1,...,2,]| corresponding to the variety M,. It is clear that
K[M,] ~ K[p1(Z),...,on(@)] and dim M, = trdegK[p1(Z), . .., pn(Z)].

Lemma 2.9. The variety M, is irreducible.

Proof. Since the affine variety A’ corresponding to the algebra Klzi,...,z,] is
irreducible and the image of an irreducible algebraic variety is also irreducible [6] 2],
the variety M, is irreducible. Hint: coordinate ring of an image isomorphic to
subring of the coordinate ring of the preimage, hence has no zero divisors.) ([l

Lemma 2.10. Let ¢1, ¢2 be endomorphisms of K[x1, ..., xn] and Mg, , My, be two
corresponding varieties, respectively. The following properties hold:

(1) If ¢1 ~ ¢, then My, = My, and the corresponding coordinate rings are
isomorphic.

(2) ¢1 = 2 if and only if the coordinate ring of My, is a quotient ring of the
coordinate ring of My,. In this case dim My, < dim My, , where dim X is
the Krull dimension of a variety X. If the quotient ring is proper, then the
inequality is strict.

Proof. (1) By item (3) of Lemma[2.5] the coordinate rings of the varieties My,
and Mgy, are isomorphic. Therefore, the above varieties themselves are
isomorphic.

(2) By item (2) of Lemma 25 the coordinate ring of the varietyMy, is a
quotient ring of the coordinate ring of the variety My, by some its ideal.

As a consequence, dim My, < dim My, (see also [6] 21]).
O

Let 1 be an endomorphism of Klx1,...,x,] of “external” rank m. The last
lemma shows that there exists no chains of endomorphisms ; of the form (2.1 of
length more than m beginning with . It means that the inner rank of v is less
or equal than the outer its rank. In order to prove the proposition 2.8 we need
to establish an opposite inequality, i.e., to prove that there exists a chain (21I) of
length m beginning with .

Lemma 2.11. Notations being as above, let dim M, = m. Then there exists an
endomorphism ¢’ of K[z1,...,x,] such that ¢' < ¢ and dim M, =m — 1.

The assertion of this lemma is evident for m = 1: in this case it is sufficient to
consider specialization x; — &;, & € K, into ground field K.
Now we pass to the general case. We need the following lemma

Lemma 2.12. Let R be a subalgebra of K[x1,...,x,] of a transcendence degree m
(m < mn). Then there exists an embedding from R into K[x1,...,Tpn].

Remark 2.13. A similar statement for field embeddings was established in [4].
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Proof. It is known that any transcendence base of a subalgebra A of a algebra B
can be extended to a transcendence base of the algebra B. Let y1,. .., ym be a tran-
scendence base of R. We can complete this base to a base y1,...,%m,21,---,2n—m
of K[z1,...,x,]. It is clear that the elements z1,. .., z,_, are algebraically inde-
pendent over R and they generate a subalgebra R[z1,...,2n—m] of K[z1,...,2,].
Therefore, the affine domain R[z1,...,2,—m] can be embedded into an affine do-
main K(x1,...,Zm][21,...,Tn_m]|. However, it is known that if A and B are two
domains such that A[zq,...,xs] can be embedded into Blxy,...,zs], then A can
be embedded into B (see [4]). Therefore, R can be embedded into the polynomial
algebra K[z1,...,%m]. O

Now, by Lemma [2.12] one can assume that polynomials ¢, ..., y, defining the
mapping ¢ belong to K[z1,..., %] and trdeg(¢1, ..., ¢on) =m, m < n.

Lemma 2.14. Let v1(x1,. .. &m)y- -y @n(T1,. .., Tm), where n > m, be a collec-
tion of polynomials from K[x1,...,xy] which generates the subalgebra of K[x1,. .., xy]
of transcendence degree m. Then for any specialization x,, — &, £ € K, except a fi-
nite set of values of £ € K, the algebra K[p1(21, ..., Tm-1,&),- -, @n(T1,. .., Tm-1,&)]
has the transcendence degree m — 1.

Proof. Without loss of generality it is sufficient to consider the case when K is an
algebraically closed field (tensoring over algebraic closure, if necessary). Consider
a mapping ® : A% — A% such that (%) = (@1 (), ..., n(T), Ty) where T =
(z1,...,Zm). Denote by M the image of ®. Since trdeg(¢1,...,pn) = m and the
dimension of image ® is at most m, we have dim M = m. Now we consider a
projection 7 : A}?H — Al such that 7(21,...,2n,Zm) = Tm. Denote by 7 the
restriction of m to M. It is clear that m; is an epimorphic mapping. Further we use
the following

Theorem 2.15. [6l 21] If f : X — Y is a reqular mapping between irreducible
varieties X and Y: f(X)=Y,dim X =n,dim Y =m, then m <n and

(1) dim f~1(y) > n —m for every pointy €Y.
(2) There exists a non empty set U CY such that dim f~1(y) = n —m for all
yeU.

In our case Y = A}, dimY =1, dim X = m. Therefore, for all points of Aj,,
except points of closed subvariety T of A}, the fiber 7=!(¢) has the dimension
m — 1. Therefore,

trdeg K[Pi (21, ..y Zm—1,&)s- -, Pu(x1,. .., Tm-1,&)] =m — 1.
except a finite set of £ € K. This concludes the proof of Lemma 2141 O

Remark 2.16. A proof of Lemma[ZTTl follows immediately from the above Lemma
in the case of an infinite ground field. Indeed, if a field K is infinite, by
Lemma [2.T4 we can choose £ € K such that ¢} = ¢1(z1,22,...,2n-1,8),..., ¢, =
on(T1, .. xn-1,&) and trdegK[p)(Z),..., ¢l ()] = m — 1. As a corollary, we
have dimM, = k — 1, where ¢’ = (¢/,...,¢}). Hence, our Lemma [ZTIT] is
proven in the case of an infinite field. This provides a description of the group
Auwt(End(K |z, ...,z,])) for the case of an infinite ground field K as was obtained
earlier by Berzins [3].
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However, in the case of a finite ground field there can be no such small jumps
from ¢; to ¢}, such that dimM,» = dimM,, — 1, for any specialization of variables
into a ground field K.

Example 2.17. Let |K| = ¢ and ¢; = [[}_, (2} — ax) - 2;. It is evident that
trdeg (o1, ..., vn) = n. However, any specialization of ¢; of the form: z,, — &, £ €
K, yields us ¢} = 0.

If a field K is finite instead of specializations of x,, into ground field we consider

substitutions into polynomials depending on other variables, in particular, on powers
of other variables. We need the following

Theorem 2.18. [] Let &1, ..., & be algebraic over K[z, ..., xy)], the polynomials
Ql(t_: z, {), i =1,...,n, are algebraically independent for some value of set of pa-
rameter t = (t1,...,tn) in some extension field k1 of the ground field k. Then there
exists polynomials R; € ®[x1],i=1,2,...,r, R= (R1,...,R;) such that the set of
polynomaal B .

{Q(67,6),...,Qu(,7,6)}
is algebraically independent. Moreover, if the growth of the sequence

nK<ne L - KNy

is sufficiently large, we may be assume R; = x7*. The above statement is still
valid if we replace “k[x1,...,xm])" by “k(x1,...,2m)" and “polynomial” for rational
function. In this case we can put Ry = x1™".

Instead of x1 one can take any other variable x;; ® = 7Z, if char K = p and
® =7 if char K = 0.

We use a special case of this Theorem for r = 1 and s = 0, i.e, a variant of this
Theorem without &;. The next Assertion is also needed for the proof of Lemma
21Tl in the case of a finite ground field K.

Assertion 2.19. Let Q1(z1,...,@m), ..., Qn(21,...,Tm) be a set of polynomials
from K[z1,...,2n], |K| < oo, and the transcendence degree of the algebra
K[Ql('rl? et Im), et Qn(xl, A ,Im)]

equal to m, where m > 1 and m < n. If r € N is sufficiently large, then
trdeg(K[Q1(z1,. .., 27),...,Qn(z1,...,2])]) =m — L

Proof. Denoteby A = K[Q1(21,.--yTm—1,27), ..., Qn(x1, ..., Tm-1,27)]. It is clear
that A C K[z1,...,Zm—1], i.e., trdeg(A) < m — 1. We have to prove that the op-
posite inequality is also fulfilled for sufficiently large r. Since

trdeg(K[Ql(UCh . 7$m)7 .- '7Qn(x17 cee 7$m)]) =m,

we can choose m algebraically independent polynomials between ;. Without loss
of generality, we can set that these polynomials are Q1,...,Qm. By Lemma .14
there exists n € K, where K is the algebraic closure of field K, such that

trdeg(K[Q1(z1, .., Tm—1,1); -+ s Qum(T1, -, Zin—1,7m)]) =m — 1.

Without loss of generality, we can suppose that the first m — 1 polynomials
Qi(z1, ..., Zm-1,m), 1 < i < m — 1, are algebraically independent over K. By
Theorem 2.18] there exists a natural rg, such that the polynomials

T T
(;2 X, Ty—1, L (;2 _1lx Ty—1, L
1(1---7 m—1, );---; ml( 1y---ry4m—1, )
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are algebraically independence over K for any r > rg. Since the dimension of the

subring K[Q1(z1,.- -, Tm-1,2"), ..., Qm-1(x1, ..., 2y, z")] is not less than the di-
mension of its subring K[Q1(x1, ..., Tm-1,2"),. .., Qn(Z1,. .., Tm—1,2")], the proof
is complete. (Il

We summarize our results in the following

Assertion 2.20. Let ¢ = (o1(21,...,2n),...,on(z1,...,2,)) be an endomor-
phisms of K([z1,...,z,] of “internal” rank m. Then there exists an endomorphism
Y = (V1(x1,. o)y Un (X1, X))y Vi, ) € KX, ..., &), such
that ¢ ~ 7. In addition, an endomorphism

z/JET) = (W1(x1, .y Tme1,27)s oy V(@1 1, 2))

has the rank at most m — 1 for any » € N. Moreover, there exists 7o € N such that
for all r > rg holds: ‘/’Zr) < 1. As consequence, ‘/’Zr) < ¢ and an “internal” rank of

‘/’Zr) is equal to m — 1 for all » > 7.

With these Assertion, the proof of LemmaR2.TT]is straightforward. Now we ready
to prove Proposition 2.§]

Proof of Proposition [2.8] Suppose that ¢ has an “internal” rank m, i.e., there
exists a maximal chain of length m beginning with ¢:

(2.3) O X Pm-13" X P1 = Po,
We have a descending chain of the corresponding varieties M., :
(2.4) Myy © My, ©--- C My, _, © M,

The induction argument on the length m of the chain ([24) leads us to the case
m = 0 for which our assertion is evident. Therefore, the “external” rank of ¢ is
also equal to m.

Conversely, let an endomorphism ¢ be of “external” rank m, i.e., trdeg Im ¢ = m.
By Lemma [ZTT], there exists an endomorphism t,,,—1 of K[z1,...,2,] such that
Ym—1 < @ and dim My, , = m — 1. In the same way, we can construct a chain
of the form (Z3) beginning with . It is clear that this chain has the length m, as
desired.

Since the chain (2] is invariant under automorphisms of End K [x1, ..., z,], we
have

Corollary 2.21. Let ® € Aut(End(A)), v € End(A), and rk () = m. Then
rk (®(1)) = m.

Remark 2.22. Below we need endomorphisms of rank zero and one. By Definition
21 an endomorphism v of A is of rank zero if ¥)(A) = K. An endomorphism ¢
of A is of rank one if trdeg(Im ¢) = 1. It is known [4], [20], that every integrally
closed subalgebra B of A = K|x1,...,2,] of transcendence degree 1 is isomorphic
to a polynomial algebra K[t] in variable ¢. Taking into account that the integer
closure B of the algebra p(A) in A is an algebra of the same transcendence degree
as ¢(A), we conclude that the algebra B is isomorphic to a polynomial algebra K [¢]
in variable ¢. As a consequence, the algebra ¢(A) is a polynomial algebra K[y,
where y is an element in K[z1,...,2,].
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2.2. Representations of Kronecker semigroup of rank n. Recall the defini-
tion of Kroneker endomorphisms of the free associative algebra A.

Definition 2.23. (cf. [9 [1I]) Kroneker endomorphisms of A in the base X =
{z1,...,2n}, ®; € A, are the endomorphisms e;;, %,j € [In], of A which are deter-
mined on free generators z € X by the rule: e;;(xx) = djuxi, x; € X, 1,5,k € [1In]
and ;5 is the Kronecker delta.

It is clear that any Kronecker endomorphism of A has rank 1.

Definition 2.24. A semigroup I',, with an adjoint zero element 0 generated by
bij, ij € [In], with defining relations

bij - bem = 0jkbim, bij -0=0-b;; =0
is called a Kronecker semigroup of rank n.

Denote by E, a semigroup generated by e;;, 4,5 € [1n], and an adjoint zero.
Clearly, the semigroup F, is a Kronecker semigroup of rank n.

Remark 2.25. We have a notion of the rank of a Kronecker semigroup I". Don’t
confuse it with the rank of an endomorphism of A.

Definition 2.26. A representation of a semigroup T in the semigroup End A4 is a
homomorphism v : T'— End A.

Definition 2.27. Let p : I, — End A be a representation of the Kronecker
semigroup I' of rank n in End A. We say that the representation p is singular
if rk p(b;;) = 0 for any 4, j € [1n].

In fact, it is sufficient to require that rk p(b11) = 0.

Proposition 2.28. Let p : I, — End A be a singular representation of the Kro-
necker semigroup I' of rank n in End A and ¢ = p - p~! the kernel congruence
on I',. Then T',,/qg = A, where A = (p) is a one-element semigroup such that
p(0) = ¢, ¢ € End A, and rk(¢) = 0. Conversely, if ¢ € End A is an endomor-
phism of rank 0, then there exists a representation p : I';, — End A such that

p(0) = ¢.

Proof. From 0-b;; = 0, 4,5 € [1n], it follows pp(b;;) = ¢, where p(0) = ¢. Since
¢ is the identical mapping on K and rk(p(b;;)) = 0, we have p(b;;) = ¢ for any
i,j € [In]. Thus, I';,/qg = A, where A = ().

Conversely, if ¢ is an endomorphism of End A such that rk(¢) = 0. Define a
representation p : I';, — End A by the rule p(0) = p(b;;) = ¢ for all 4,5 € [In]. It is
clear that we obtained a required representation p. O

Remark 2.29. Let p:I';, — End A be a singular representation of the Kronecker
semigroup I'), of rank n in End A such that p(0) = ¢, ¢ € End A, and rk(¢) = 0.
We can set p(z;) = «;, @; € K. Denote by ¢ : K™ — K" the mapping on K™ such
that ¥(x1,...,2,) = (x1—au, ..., 2, —ay). Define a representation p : I';, — End A
of I';, in End A by the rule p(0) = p(b;;) = ¢t for all 4, j € [1n]. Then p¢p = O and
p(0) = 0.

Proposition 2.30. Let p : I, — End A be a non-singular representation of a
Kronecker semigroup I',,. Then, rk(p(b;;)) =1 for all 4, j € [1n].
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Proof. We will make use below relations between polynomial map ¢ : K™ — K™
and endomorphisms of the polynomial algebra K[z1,...,z,], described on the page
Denote p(b;j) by @ij, 4,7 € [In]. Let @;; be the endomorphisms of the algebra
B = K|z, ...,2,] of commutative polynomials in variables x1,...,x, induced by
the endomorphisms ;; of the algebra A. Clearly, ®ij@rm = 0jkPim. Let us note
0 Qim = O. For a fix j € [1n] consider @;; as a polynomial mapping from K™ into
K™, ie., @jj(1,..,2n) = (@55(21),...,@jj(2zn)). Since @7, = @j;, the mapping
©;; has a fixed point in K™. This point d = (d1,...,dy), di € K, can be chosen
arbitrarily from the image of @;;. Therefore, we have @;;(d1,...,dn) = (d1,...,dn).
Denote by T': K™ — K™ the polynomial mapping on K™ such that T'(x1,...,2,) =
(x1+dy,...,xn+dy). Let @i = T_lcﬁijT be a mapping K™ into itself. Denote by

pz(-f) the element 7'¢;;T(zy). Since the mapping $;; has the fixed point 0 € K™,

Ef ) do not have constant terms for any i, k € [1n]. Now we will prove
(k)
ij
the contrary, that there exist i,7,k € [In], i # j, such that the element pl(-;-c) has
(

J

the elements p

that the elements p;:”, i, j,k € [In], also do not have constant terms. Assume, on

a constant term. Since the elements p
term for any m, j € [1n], we obtain

(T @y T)T 3 T) (@) = (T @ T)pt) #0.
On the other hand, since i # j
(T 5T T @i T) () = (T~"@;;6:;T) (k) = 0.

This contradiction proves that the elements pgf) = T7'%;;T(z}) do not have a

constant term for any i, j, k € [In]. As a consequence, the elements T ¢;; T'(zy)
do not have constant terms for any 1, j, k € [1n], too.

Denote the mapping T 1¢;;T : A — A by $;;. We now prove that ¢;;(A)
is a subalgebra of K[w] for some w € A. Let I be the ideal of A generated by
Z1,...,Tn. Since the elements @;;(xy), ¢, 7,k € [In], do not have a constant term,
$i;(I%) C I° for any s > 1. Now we fix some 4,j € [In] and consider induced

maps QBE;) : I9/15+Y — I3 /151! for any s > 1. We intend to prove that Im c,bl(-;-) are
one-dimensional vector spaces over K. Let s = 1. Then @E;) cIJI?2 = I/1? is a
linear mapping from the vector space I/I? into itself. Since @Z(-;) ~57113€ = 5jm¢z(’li)’ by

Lemma 4.7 [I1] there exists a basis z,1 = 2,+1%, where z, € I, r € [1n], of I /I? such

that SZE;)(EH) = §j,zi1. For a fix number s > 2 denote z,, = 2z, + 5, r € [In]. We
have QEE;) (Ziys " Ziys) = Ojiy -+ 0ji, Z5,. Thus, c[al(-;-) (I*/I°*1) is a one-dimensional
vector space with a basis {z7,}. The latter assertion holds for any s > 2. As
a consequence, we have ¢;;(A) C KJz]. Hence, ¢;;(A) is a subalgebra of K[w],
where w = T'z;. Since the representation p of I" is non-singular, K C ¢;;(A). Thus,
tk(pi;) =1k p(bij) =1 for all 4,5 € [1n]. O

?) =T7'%,;T(x,,) do not have a constant

2.3. Bases and subbases of the semigroup End A. We need the following

Definition 2.31. A set of endomorphisms B. = {¢j;le}; € EndA and e}, #

ij
O, Vi,j € [In]} of A is called a subbase of End A if ¢};e},, = ke, Vi, j, k,m €
[1n].
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Let us note that 0 ej; = O. Denote by E’ a semigroup of End A generated by

endomorphisms e;; and the endomorphism 0. By Theorem .30, we obtain the
following

Corollary 2.32. rk(e;;) = 1 for any 4, j € [1n].

We can assume that e, (A) is a subalgebra of K|[z;;], i,j € [1n], where z;; € A.
For the sake of simplicity we write z;; = z;, @ € [1n].

Definition 2.33. (“External” definition of a base collection of End A.) We say
that the subbase B, is a base collection of endomorphisms of A (or a base of End A,
for short) if Z = {z; | z; € A such that e},(A) C K|[z],7 € [In]} is a base of A.

Now we show that there exists a subbase of End A that is not its base.

Example 2.34. Let ¢;; : K[x1,22] — K[z1,22], where 4,5 € {1,2}, be endomor-
phisms of the free associative-commutative algebra A = K[z1, 23] such that

(2 5) 9011(331) =x1 + T1T2, 9011(332) =0, <P22(l“1) =0, 9022(132) = T2,
' p12(x1) =0, p12(x2) = 1 + T122, Y21(21) = 21, P21(x2) = 0.

It is easy to see that rk(y;;) = 1 and @;jQrm = 0jxim for any i, j, k,m € {1,2},
i.e., the set of endomorphisms B, = {@ij|wi; € End A, i,j € {1,2}} is a subbase
of the semigroup End A. We will prove that B, is not its base. It is clear that
v11(A) = K[u], where u = x1 + 2122, and 92 (A) = K[x1]. We can take z; = u and
29 = x1. The elements z1 and 25 generate the algebra K[z +z1x2,x1]. Let us show
that K[z1+x129, xo] # K[x1, 22]. If, on the contrary, K[z, +x1, 22, x2] = K|x1, x2]
then 21 = a(x1 + z122) + Bxe + P(u,x2), where deg P(u,22) > 2 and o, 8 € K.
Hence § = 0,a =1 and P(u,z3) = 0. We come to a contradiction. Therefore, the
subbase B, is not a base of End A.

“Internal” definition of a base collection of End A is a bit tricky (see [I1L[Q]). It
was inspired by G.Zhitomirski (see [22]).

Definition 2.35. (“Internal” definition of a base collection of End A.) The subbase
of endomorphisms B. = {e];|e;; € End A, 4,5 € [In]} of End A is its base if for any
collection of endomorphisms «; : A — A, Vi € [In], and any subbase By = {f/;
1,7 € [In]} of End A there exist endomorphisms ¢, ¢ € End A such that

(2.6) a; o fl, =1oel op, foralli € [In].
Our aim is to prove statement similar to the proposition 2.27 in [5].

Proposition 2.36. Internal and external definitions of a base collection of End A
are equivalent.

Proof. Let a subbase of endomorphisms B, be a base according Definition
Since rk (f{;) = 1, Vi, j € [In], there exist elements y;; € A, i,j € [1n], such that
K C f;(A(X)) € Kly;;] for all 4, j € [In]. Define endomorphisms ¢ and ¢ of A as
follows:
p(z;) = 2z and ¥(z;) = a;(y;), for alli € [1n],

where e}, (A) C K[z], zi € A, and y; = yi, Vi € [In]. Since Z = (z; | z; € A,i €
[1n]) is a base of A, the endomorphism ¢ is well-defined. Now it is easy to check
that the condition (2:6) with the given ¢ and 1 is fulfilled.
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Conversely, assume that the condition (Z.0) is fulfilled for the subbase B.. Let
us prove that Z = (z; | z; € A,i € [In]) is a base of A. Choosing «; = e;; and
fi; = e€ij, 1,7 € [In], in (2.8]), we obtain

/
ei; =1 oey 0,

ie., (el p(x;)) = z; for any i € [In]. Denote by ¢; = e}, o(x;). We have ¢(t;) = ;.
Since A is Hopfian, i.e., any surjective endomorphism of A into itself is isomorphism,
the elements t;, ¢ € [1n], form the base of A. By Corollary and Remark 222232
K C e};(A) C K[z;]. Therefore, there exists a non-scalar polynomial x;(z;) € K[z;]
such that t; = x;(z;). Since t; = x;(z),4 = 1,...,n, forms the base of A, the
elements z;,5 = 1,...,n, forms a base of A as claimed. O

Now we deduce

Corollary 2.37. Let ® € Aut End A and F be the subsemigroup of End A gener-
ated by the Kronecker endomorphisms e;;, ¢,j € [1n] (see Definition [2Z23)). Then
C ={®(ei;) | i, € [In]} is a base of End A.

Proof. Assume that rk(®(e;;)) = 0 for some ¢,j € [In]. By Corollary Z21], we
obtain rk(e;;) = 0. We arrived at a contradiction. Thus, rk(®(e;;)) # 0. Since
D (ei;)P(erm) = 35 P(€im), the set C is a subbase of End A. It is easy to check that
the condition (2.6) is fulfilled for the subbase C. Thus, C is a base of End A. 0

Lemma 2.38. Let B. = {e}; | e}; € End A, 4,j € [In]} be a base collection of
endomorphisms of End A. Then there exists a base Z' = {z},| 2z, € A,k € [In]} of
A such that the endomorphisms egj from B, are Kronecker ones of A in Z'.

Proof. With the preceding notation from Definition 2:33] we have that the equal-
ity (el,)? = e, implies ¢€},(z;) = 2;,i € [In]. Since eéieéj (z) = e’ij(zj) and
K C €},(A) C Kl[z], there exists a non-scalar polynomial f;(z;) € KJ[z] such
that e};(z;) = f;j(2:). Similarly, there exists a non-scalar polynomial g;(2;) € K[z]
such that e’;(2;) = gi(z;). We have
zj = €j;(z5) = ejiei; (25) = €5;(£5(2i)) = fi(gi(z5)) for all i, j € [1n]

and, in a similar way, z; = ¢;(fj(z:)) for all i, € [In]. Thus f; and g; are linear
polynomials over K in variables z; and z;, respectively. Therefore,

(2.7) €i;(25) = aizi + bi, ai,b; € K and a; # 0.
Note that e};(zx) = €};(e},(2x) = 0 if k # j. Now we have for i # j
0= e}y (2)) = €y aizi + bi) = e (br) = bi,
Le., ef;(z;) = aizi, ai # 0. Let 2] = a; 'z, We obtain a base Z = {z} |2, €

Ak € [In]} of A such that ej;(z;) = djkzy, 1,5,k € [In], i.e., e; are Kronecker

endomorphisms of A in the base Z’. The proof is completed. O

3. AUTOMORPHISMS OF THE SEMIGROUP End A

3.1. On the group Aut End A. We need the following notion.
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Definition 3.1. ([7]) Let A; and Ay be algebras over K from a variety A, § be an
automorphism of K and ¢ : Ay — Az be a ring homomorphism of these algebras.
A pair (6, ¢) is called a semi-linear homomorphism from A; to Ay if

ola-u) =6(a) ¢ (u), Yae K, Yu € A.

Definition 3.2. [I7] An automorphism ® of the semigroup End A of endomor-
phisms of A is called quasi-inner if there exists an adjoined bijection s : A — A
such that ®(v) = svs™!, for any v € End A

Definition 3.3. [I7] A quasi-inner automorphism ® of End A is called semi-inner
if there exists a field automorphism ¢ : K — K such that (d,s) is a semi-linear
automorphism of A | i.e., for any o € K and a,b € A the following conditions hold:

1. s(a+0b) = s(a) + s(b),

2. s(a-b) =s(a)-s(b),

3. s(aa) =d(a)s(a).
We say that the pair (4, s) defines the semi-inner automorphism ® of A with the
adjoined ring automorphism s. If § is the identity automorphism of K, we call the
automorphism ® inner.

The description of quasi-inner automorphisms of End A is as follows.

Proposition 3.4. [3/ 9] [1T] Let ® € Aut End A be a quasi-inner automorphism of
End A. Then @ is of semi-inner automorphisms of End A.

We will use the following fact:

Proposition 3.5. [9,[11] Let ® € Aut End A and FE be the subsemigroup of End A
generated by e;;, 4,7 € [In]. Elements of the semigroup ®(E) are Kronecker
endomorphisms of A in some base U = {u1,...,u,}, u; € A, if and only if @ is a
quasi-inner automorphism of End A.

Now we obtain one of the main result of the paper
Theorem 3.6. Every automorphism of the group Aut End A is semi-inner.

Proof. By Corollary 2237 the set of endomorphisms C = {®(e;;) | Vi € [In]} is
a base collection of endomorphisms of A. By Lemma 2.38 there exists a base
S = (sk|sk € Ak € [In]) such that the endomorphisms ®(e;;) are Kronecker
endomorphisms in S. According to Proposition [3.5] we obtain that ® is quasi-
inner. By virtue of Proposition B4l every automorphism the group AutEnd A is
semi-inner and as claimed. ]

Remark 3.7. If CA is the category of commutative-associative algebras over a
field K, we take SCA to be the category with objects all associative algebras from
the category A, morphisms all pairs s = (¢,9) : A — B, A, B € ObSA, such that
1 : A — B are ring homomorphisms from A to B, § : K — K are automorphisms
of the field K and vs(\a) = X°4(a), a € A. Morphisms 15 of the category S.A
are called semi-linear homomorphisms(or semihomomorphisms) from A to B (cf.
Definition [B1]). Denote by SEnd A the semigroup of semiendomorphisms of A with
the usual composition of maps in the category SC.A.

Clearly, that the definitions of endomorphisms of rank one and zero can be
transfer to the category SCA. All results about bases and subbases from the sections
2.3 are also true. As a consequence, we obtain the following

Theorem 3.8. FEvery automorphism of the group Aut SEnd A is semi-inner.
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4. AUTOMORPHISMS OF THE CATEGORY A°

Recall the following notions of the category isomorphism and equivalence (cf.
[12]). An isomorphism ¢ : C — M of categories is a functor ¢ from C to M, which
is a bijection both on objects and morphisms. In other words, there exists a functor
1 : M — C such that o = 1¢ and v = 1.

Let 1 and o be two functors from C; to Co. A functor isomorphism s : o1 —
2 is a collection of isomorphisms sp : p1(D) — @2(D) defined for all D € Ob C;
such that for every v: D — B, v € MorCy, B € Ob C;

sB - p1(v) = 2(v) - sp
holds, i.e., the following diagram
¢1(D) == ¢2(D)
)] pa(v)
¢1(B) —= ¢2(B)

is commutative. An isomorphism of functors 1 and 9 is denoted by @1 =2 ps.
An equivalence of categories C and M is a pair of functors ¢ : C — M and
¥ : M — C such that ¢ = 1¢ and iy = 1. If C = M, then we get the notions
of automorphism and autoequivalence of the category C.
For every small category C, denote the group of all its automorphisms by Aut C.
We distinguish the following classes of automorphisms of C.

Definition 4.1. [8,[I5] An automorphism ¢ : C — C is equinumerous if (D) = D
for any object D € ObC ; ¢ is stable if p(D) = D for any object D € ObC ; and ¢
is inner if p and 1¢ are naturally isomorphic, i.e., ¢ = 1.

In other words, an automorphism ¢ is inner if for all D € ObC there exists an
isomorphism sp : A — (D) such that

p(v) = spvsp'  p(D) — ¢(B)
for any morphism v € Mor¢ (A4, B).

Denote by EqnAut C, StAut C, and Int C the collections of equinumerous, stable,
and inner automorphisms of the group Aut C, respectively.

Let © be a variety of linear algebras over K. Denote by O the full subcategory
of finitely generated free algebras F(X),|X| < oo, of the variety ©. Consider a
constant morphism vy : F(X) — F(X) such that vy(z) = zg, xg € F(X), for every
rzeX.

Theorem 4.2. (Reduction Theorem [8, I3 16, 22]) Let the free algebra F(X)
generate a variety O, and ¢ € StAut OV, If ¢ acts trivially on the monoid
Morgo (F(X), F(X)) and p(vg) = v, then ¢ is inner, i.e., ¢ € Int ©°.

Define the notion of a semi-inner automorphism of the category ©° of free finitely
generated algebras in the category ©.

Definition 4.3. [15] An automorphism ¢ € Aut ©° is called semi-inner if there
exists a family of semi-isomorphisms {spx) = (6,¢) : F(X) — ¢(F (X)), F(X) €
Ob ©°%}, where § € Aut K and ¢ is a ring isomorphism from F(X) to ¢(F (X))
such that for any homomorphism v : FI(X) — F(Y') the following diagram
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F(X) —"5 G(F(X))
v ()

F(Y) =" 3(F(Y))
is commutative.

Further, we will need the following

Proposition 4.4. [8, I5] For any equinumerous automorphism ¢ € AutC there
exist a stable automorphism ¢g and an inner automorphism ¢; of the category C
such that ¢ = pgpr.

Now we give a description of the groups AutCA° over any field. Note that a
description of this group over infinite fields was given in [2]

Theorem 4.5. All automorphisms of the group Aut A° of automorphisms of the
category CA° are semi-inner automorphisms of the category CA°.

Proof. Let ¢ € Aut A°. It is clear that ¢ is an equinumerous automorphism. By
Proposition 44l ¢ can be represented as a composition of a stable automorphism
g and an inner automorphism ¢;. Since stable automorphisms does not change
free algebras from A°, we obtain that pg € Aut End A. By Theorem B.6 ¢g is
semi-inner ofEnd A. Using this fact and Reduction Theorem (4.2, we obtain that all
automorphisms of the group Aut C.A° are semi-inner automorphisms of the category
CA°. This completes the proof. O

Problem 4.6. Describe the groups Aut B° and Aut End B, where B = B(x1, ..., 2,),
is a free algebra of a non-associative variety B of linear algebras finitely generated
by a set X = {x1,...,2,}.

Note that the above mentioned groups were described for some homogeneous
varieties of linear algebras in [B, 9, 11]. In particular, a description of these group
for the variety of all Lie algebras over any field was obtained there. A corresponding
description in the case of Lie algebras over any infinite field was obtained in [15] 22].
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