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AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP

OF A FREE COMMUTATIVE ALGEBRA

A. BELOV-KANEL1, R. LIPYANSKI2

Abstract. We describe the automorphism group of the endomorphism semi-
group End(K[x1, . . . , xn]) of ring K[x1, . . . , xn] of polynomials over an arbi-
trary field K. A similar result is obtained for automorphism group of the
category of finitely generated free commutative-associative algebras of the va-
riety CA commutative algebras. This solves two problems posed by B. Plotkin
( [18], Problems 12 and 15).

More precisely, we prove that if ϕ ∈ AutEnd(K[x1, . . . , xn]) then there
exists a semi-linear automorphism s : K[x1, . . . , xn] → K[x1, . . . , xn] such
that ϕ(g) = s◦g◦s−1 for any g ∈ End(K[x1, . . . , xn]). This extends the result
by A. Berzins obtained for an infinite field K.

1. Introduction

We describe the group G = Aut(End(K[x1, . . . , xn]), where K is an arbitrary
field. A similar result is obtained also for automorphism group of the category of
finitely generated free commutative-associative algebras of the variety commutative
algebras. This solves two problems posed by B. Plotkin ( [18], Problems 12 and
15).

More precisely, we prove that if ϕ ∈ AutEnd(K[x1, . . . , xn]) then there exists a
semi-linear automorphism s : K[x1, . . . , xn] → K[x1, . . . , xn] such that ϕ(g) = s◦g◦
s−1 for any g ∈ End(K[x1, . . . , xn]) (see Theorem 3.8). Here “semi-linearity” means
that s is a composition of an automorphism of the field K and an automorphism of
the ring K[x1, . . . , xn]. We note that for an infinite ground field K is infinite such
result was obtained earlier by A. Berzins [3].

A problem of description of the group G = Aut(End(K[x1, . . . , xn]) is also inter-
esting in the context of Universal Algebraic Geometry (UAG). Let Θ be a variety
of algebras over a field K and F = F (X) be a free algebra from Θ generated by a
finite subset X of some infinite universum X0. We refer to [17, 18] (see also [8]) for
the Universal Algebraic Geometry (UAG) notions used in our work.

If an algebra G belongs to Θ one can consider the category of algebraic sets
KΘ(G) over G. Objects of this category are algebraic sets in affine space over G;
the category KΘ(G) defines a geometry of the algebra G in Θ. One of the main
problems in UAG is to determine whether two different algebrasG1 and G2 have the
same geometry. The coincidence of geometries means that the categories KΘ(G1)
and KΘ(G2) are equivalent. It is known that coincidence of geometries of G1 and
G2 is determined by the structure of the group AutΘ0, where Θ0 is the category of
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2 A. BELOV-KANEL1, R. LIPYANSKI2

free finitely generated algebras of Θ. On the other hand, there is a natural relation
between the structure of the groups AutEndF and AutΘ0. The structure of the
latter is determined by the group AutEndF . Should be mentioned that a problem
of investigation of the groups Aut EndF, F ∈ Θ, for different varieties Θ is quite
interesting by itself and has been considered in many papers (see [1]-[3], [5], [8]
-[11], [13]-[19],[22]

Let CA be the variety of a commutative-associative algebras with 1 over a fieldK,
A = K[x1, ..., xn] be a free commutative-associative algebra in CA freely generated
over K by a set X = {x1, ..., xn}, i.e., a polynomial algebra in variables x1, ..., xn.
In this work we obtain a description of the group Aut CA0 of automorphisms of
the category CA. A similar result for a polynomial algebra A over an infinite field
K was also obtained earlier in [3].

Our description is based on new characteristics of endomorphisms of A such as
rank of endomorphisms of A. We discuss external and internal definition of this
notation. The former are expressed in terms of the action of the semigroup EndA
on A, while the latter can be written in terms of the semigroup itself. This approach
allows us to describe the above mentioned properties of endomorphisms of A in an
invariant manner and paves the way for proof of the main assertions in the paper:
the group Aut EndA is generated by semi-inner of EndA.

Our approach employs this technique (developed in [5, 9]) supplemented by
algebro-geometric methods of investigations

2. On the endomorphism semigroup of a free associative-commutative

algebra

2.1. Rank of an endomorphism of polynomial algebra. LetA = K[x1, . . . , xn]
be a free commutative-associative algebra over a fieldK generated byX = {x1, . . . , xn}
(below polynomial algebra over K in variables X). Earlier, in [5], we defined the
endomorphism of free associative algebra K〈x1, . . . , xn〉 of rank 0 and 1. In this
section we introduce a definition of endomorphisms of arbitrary rank m in a free
commutative-associative K[x1, . . . , xn].

First, we introduce the “external” and “internal” definitions of rank of endomor-
phism ϕ of algebra A and show their equivalence.

Definition 2.1. (“External” definition of an endomorphism of rank m.) An endo-
morphism

ϕ : A→ A

has rank m if trdeg(Imϕ) = m, i.e., the transcendence degree of the K-algebra
M = Imϕ ⊆ A is equal to m. We denote this as rk(ϕ) = m. It is evident that
there exist endomorphisms of K[x1, . . . , xn] of arbitrary rank ≤ n. For instance,
the identical mapping on K[x1, . . . , xn] is the endomorphism of rank n.

For the internal definition of rank m endomorphisms, we need to define a con-
gruence on the semigroup End(A) with respect to a fixed endomorphism ϕ of A.

Definition 2.2. Endomorphisms ϕ1 and ϕ2 of A are ϕ-equivalent if ϕϕ1 = ϕϕ2.
In this case we write ϕ1 ∽ϕ ϕ2.

It is clear that ∽ϕ is an equivalence relation on EndA. Let S be the set of all
ϕ-equivalences on EndA. We determine the preorder E on the set S as follows.
We say that ∽φ E ∽ψ, where φ, ψ ∈ EndA, if
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φϕ1 = φϕ2 ⇒ ψϕ1 = ψϕ2,

for any ϕ1, ϕ2 ∈ EndA. The preorder E can be extended up to the order � on the

quotient set S̃ = S/R under equivalence R, where ∽φ R ∽ψ if and only if ∽φ E ∽ψ

and ∽ψ E ∽φ. Denote by ∽ψR
the R-equivalence class of a relation ∽ψ.

Definition 2.3. We say that φ � ψ iff ∽φR
�∽ψR

.

Definition 2.4. We say that φ ≺ ψ if ∽φR
�∽ψR

and ∽ψR
6∼∽φR

.

It is clear that relations � and ≺ are an order and a strong order, respectively,
on EndA. Note that the smaller endomorphism ϕ (in the sense of �) corresponds
to stronger equivalence relation ∼ϕ. The proof of the following Lemma is straight-
forward.

Lemma 2.5. Let ϕ = (ϕ1(~x) . . . , ϕn(~x)) and φ = (ψ1(~x), . . . , ψn(~x)) be two endo-
morphisms of K[x1, . . . , xn]. Then

(1) φ ∼ ψ iff for all H(~x) ∈ K[x1, . . . , xn] the condition H(ϕ1(~x) . . . , ϕn(~x)) =
0 is equivalent to H(ψ1(~x), . . . , ψn(~x)) = 0.

(2) φ � ψ iff for all H(~x) ∈ K[x1, . . . , xn] the condition H(ϕ1(~x), . . . , ϕn(~x)) =
0 implies H(ψ1(~x), . . . , ψn(~x)) = 0.

(3) φ ≺ ψ iff for all H(~x) ∈ K[x1, . . . , xn] the condition H(ϕ1(~x) . . . , ϕn(~x)) =
0 implies H(ψ1(~x), . . . , ψn(~x)) = 0 and there exists R(~x) ∈ K[x1, . . . , xn]
such that R(ϕ1(~x), . . . , ϕn(~x)) = 0 but H(ψ1(~x), . . . , ψn(~x)) 6= 0.

Definition 2.6. (“Internal” definition of an endomorphism of rank m.) An en-
domorphism ψ : A → A is of rank m, if maximum of the lengths of all chains of
endomorphisms of A of the form

(2.1) ψ � ψm−1 � · · · � ψ1 � ψ0,

is equal to m. If there is no endomorphism ψ such that ψ � ψ0, then ψ has rank 0.

Remark 2.7. If rk(ϕ) = 0, then image of ϕ is the ground field. The definition
of endomorphisms of rank 0 and 1 for associative commutative algebra are in ac-
cordance with the definition for a free associative algebra given in [5]. The internal
definition of rank 0 is pretty similar.

Proposition 2.8. Definitions 2.6 and 2.1 are equivalent.

We precede the proof of this proposition by several lemmas. Denote by An
K

an n-dimensional affine space over the algebraic closure K̄ of the field K. It is
clear that An

K ≃ Specm(K[x1, . . . , xn]), where Specm(K[x1, . . . , xn] is the set of all
maximal ideals. Let us investigate the algebro-geometric properties of polynomial
endomorphisms of K[x1, . . . , xn] and their relation to polynomial maps of An

K into
itself.

Each endomorphism ϕ : K[x1, . . . , xn] → K[x1, . . . , xn] such that

ϕ(xi) = ϕi(x1, . . . , xn), where ϕi = ϕi(x1, . . . , xn) ∈ K[x1, . . . , xn],

determines a polynomial map ϕ∗ = (ϕ1, . . . , ϕn) : An
K → An

K of the affine space
An
K into itself of the form

(2.2) (x1, . . . , xn) → (ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn))
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The converse is also true: to each polynomial map ϕ∗ : An
K → An

K of the form
(2.2) corresponds the above mentioned endomorphism ϕ of the algebraK[x1, . . . , xn].
We will make use of this relation below.

Denote byMϕ the variety ϕ∗(An
K). We shall say that the varietyMϕ corresponds

to the endomorphism ϕ of the polynomial algebra K[x1, . . . , xn]. The coordinate
ring K[Mϕ] of the variety Mϕ is K[Mϕ] = K[x1, . . . , xn]/I, where

I = {H(x1, . . . , xn)|H(ϕ1(~x), . . . , ϕn(~x)) = 0}

is the ideal in K[x1, . . . , xn] corresponding to the variety Mϕ. It is clear that
K[Mϕ] ≃ K[ϕ1(~x), . . . , ϕn(~x)] and dimMϕ = trdegK[ϕ1(~x), . . . , ϕn(~x)].

Lemma 2.9. The variety Mϕ is irreducible.

Proof. Since the affine variety An
K corresponding to the algebra K[x1, . . . , xn] is

irreducible and the image of an irreducible algebraic variety is also irreducible [6, 21],
the variety Mϕ is irreducible. Hint: coordinate ring of an image isomorphic to
subring of the coordinate ring of the preimage, hence has no zero divisors.) �

Lemma 2.10. Let φ1, φ2 be endomorphisms of K[x1, . . . , xn] and Mφ1 ,Mφ2 be two
corresponding varieties, respectively. The following properties hold:

(1) If φ1 ∼ φ2, then Mφ1
∼= Mφ2 and the corresponding coordinate rings are

isomorphic.
(2) φ1 � φ2 if and only if the coordinate ring of Mφ1 is a quotient ring of the

coordinate ring of Mφ2 . In this case dimMφ2 ≤ dimMφ1 , where dimX is
the Krull dimension of a variety X. If the quotient ring is proper, then the
inequality is strict.

Proof. (1) By item (3) of Lemma 2.5, the coordinate rings of the varieties Mφ1

and Mφ2 are isomorphic. Therefore, the above varieties themselves are
isomorphic.

(2) By item (2) of Lemma 2.5, the coordinate ring of the varietyMφ1 is a
quotient ring of the coordinate ring of the variety Mφ2 by some its ideal.
As a consequence, dim Mφ1 ≤ dim Mφ2 (see also [6, 21]).

�

Let ψ be an endomorphism of K[x1, . . . , xn] of “external” rank m. The last
lemma shows that there exists no chains of endomorphisms ψi of the form (2.1) of
length more than m beginning with ψ. It means that the inner rank of ψ is less
or equal than the outer its rank. In order to prove the proposition 2.8 we need
to establish an opposite inequality, i.e., to prove that there exists a chain (2.1) of
length m beginning with ψ.

Lemma 2.11. Notations being as above, let dimMϕ = m. Then there exists an
endomorphism ϕ′ of K[x1, . . . , xn] such that ϕ′ ≺ ϕ and dim Mϕ′ = m− 1.

The assertion of this lemma is evident for m = 1: in this case it is sufficient to
consider specialization xi → ξi, ξi ∈ K, into ground field K.

Now we pass to the general case. We need the following lemma

Lemma 2.12. Let R be a subalgebra of K[x1, . . . , xn] of a transcendence degree m
(m ≤ n). Then there exists an embedding from R into K[x1, . . . , xm].

Remark 2.13. A similar statement for field embeddings was established in [4].
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Proof. It is known that any transcendence base of a subalgebra A of a algebra B
can be extended to a transcendence base of the algebra B. Let y1, . . . , ym be a tran-
scendence base of R. We can complete this base to a base y1, . . . , ym, z1, . . . , zn−m
of K[x1, . . . , xn]. It is clear that the elements z1, . . . , zn−m are algebraically inde-
pendent over R and they generate a subalgebra R[z1, . . . , zn−m] of K[x1, . . . , xn].
Therefore, the affine domain R[z1, . . . , zn−m] can be embedded into an affine do-
main K[x1, . . . , xm][x1, . . . , xn−m]. However, it is known that if A and B are two
domains such that A[x1, . . . , xs] can be embedded into B[x1, . . . , xs], then A can
be embedded into B (see [4]). Therefore, R can be embedded into the polynomial
algebra K[x1, . . . , xm]. �

Now, by Lemma 2.12 one can assume that polynomials ϕ1, . . . , ϕn defining the
mapping ϕ belong to K[x1, . . . , xm] and trdeg(ϕ1, . . . , ϕn) = m, m ≤ n.

Lemma 2.14. Let ϕ1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm), where n ≥ m, be a collec-
tion of polynomials from K[x1, . . . , xm] which generates the subalgebra of K[x1, . . . , xn]
of transcendence degree m. Then for any specialization xm → ξ, ξ ∈ K, except a fi-
nite set of values of ξ ∈ K, the algebra K[ϕ1(x1, . . . , xm−1, ξ), . . . , ϕn(x1, . . . , xm−1, ξ)]
has the transcendence degree m− 1.

Proof. Without loss of generality it is sufficient to consider the case when K is an
algebraically closed field (tensoring over algebraic closure, if necessary). Consider
a mapping Φ : Am

K → An+1
K such that Φ(~x) = (ϕ1(~x), . . . , ϕn(~x), xm) where ~x =

(x1, . . . , xm). Denote by M the image of Φ. Since trdeg(ϕ1, . . . , ϕn) = m and the
dimension of image Φ is at most m, we have dim M = m. Now we consider a
projection π : An+1

K → A1
K such that π(z1, . . . , zn, xm) = xm. Denote by π1 the

restriction of π to M . It is clear that π1 is an epimorphic mapping. Further we use
the following

Theorem 2.15. [6, 21] If f : X → Y is a regular mapping between irreducible
varieties X and Y : f(X) = Y, dim X = n, dim Y = m, then m ≤ n and

(1) dim f−1(y) ≥ n−m for every point y ∈ Y .
(2) There exists a non empty set U ⊂ Y such that dim f−1(y) = n−m for all

y ∈ U .

In our case Y = A1
K , dimY = 1, dim X = m. Therefore, for all points of A1

K ,
except points of closed subvariety T of A1

K , the fiber π−1(ξ) has the dimension
m− 1. Therefore,

trdegK[P1(x1, . . . , xm−1, ξ), . . . , Pn(x1, . . . , xm−1, ξ)] = m− 1.

except a finite set of ξ ∈ K. This concludes the proof of Lemma 2.14. �

Remark 2.16. A proof of Lemma 2.11 follows immediately from the above Lemma
in the case of an infinite ground field. Indeed, if a field K is infinite, by
Lemma 2.14 we can choose ξ ∈ K such that ϕ′

1 = ϕ1(x1, x2, . . . , xn−1, ξ), . . . , ϕ
′
n =

ϕn(x1, . . . , xn−1, ξ) and trdegK[ϕ′
1(~x), . . . , ϕ

′
n(~x)] = m − 1. As a corollary, we

have dimMϕ′ = k − 1, where ϕ′ = (ϕ′
1, . . . , ϕ

′
n). Hence, our Lemma 2.11 is

proven in the case of an infinite field. This provides a description of the group
Aut(End(K[x1, . . . , xn])) for the case of an infinite ground field K as was obtained
earlier by Berzins [3].
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However, in the case of a finite ground field there can be no such small jumps
from ϕi to ϕ′

i, such that dimMϕ′ = dimMϕ − 1, for any specialization of variables
into a ground field K.

Example 2.17. Let |K| = q and ϕi =
∏n
k=1(x

q
k − xk) · xi. It is evident that

trdeg (ϕ1, . . . , ϕn) = n. However, any specialization of ϕi of the form: xn → ξ, ξ ∈
K, yields us ϕ′

i = 0.

If a field K is finite instead of specializations of xn into ground field we consider
substitutions into polynomials depending on other variables, in particular, on powers
of other variables. We need the following

Theorem 2.18. [4] Let ξ1, . . . , ξs be algebraic over K[x1, . . . , xm], the polynomials

Qi(~t, ~x, ~ξ), i = 1, . . . , n, are algebraically independent for some value of set of pa-

rameter ~t = (t1, . . . , tn) in some extension field k1 of the ground field k. Then there

exists polynomials Ri ∈ Φ[x1], i = 1, 2, . . . , r, ~R = (R1, . . . , Rr) such that the set of
polynomial

{Q1(~t, ~x, ~ξ), . . . , Qn(~t, ~x, ~ξ)}

is algebraically independent. Moreover, if the growth of the sequence

n1 ≪ n2 ≪ · · · ≪ nr

is sufficiently large, we may be assume Ri = xni

1 . The above statement is still
valid if we replace “k[x1, . . . , xm]” by “k(x1, . . . , xm)” and “polynomial” for rational
function. In this case we can put Ri = x−ni

1 .
Instead of x1 one can take any other variable xi; Φ = Zp if charK = p and

Φ = Z if charK = 0.

We use a special case of this Theorem for r = 1 and s = 0, i.e, a variant of this
Theorem without ξi. The next Assertion is also needed for the proof of Lemma
2.11 in the case of a finite ground field K.

Assertion 2.19. Let Q1(x1, . . . , xm), . . . , Qn(x1, . . . , xm) be a set of polynomials
from K[x1, . . . , xm], |K| <∞, and the transcendence degree of the algebra

K[Q1(x1, . . . , xm), . . . , Qn(x1, . . . , xm)]

equal to m, where m > 1 and m ≤ n. If r ∈ N is sufficiently large, then

trdeg(K[Q1(x1, . . . , x
r
1), . . . , Qn(x1, . . . , x

r
1)]) = m− 1.

Proof. Denote byA = K[Q1(x1, . . . , xm−1, x
r
1), . . . , Qn(x1, . . . , xm−1, x

r
1)]. It is clear

that A ⊆ K[x1, . . . , xm−1], i.e., trdeg(A) ≤ m− 1. We have to prove that the op-
posite inequality is also fulfilled for sufficiently large r. Since

trdeg(K[Q1(x1, . . . , xm), . . . , Qn(x1, . . . , xm)]) = m,

we can choose m algebraically independent polynomials between Qi. Without loss
of generality, we can set that these polynomials are Q1, . . . , Qm. By Lemma 2.14,
there exists η ∈ K̄, where K̄ is the algebraic closure of field K, such that

trdeg(K̄[Q1(x1, . . . , xm−1, η), . . . , Qm(x1, . . . , xm−1, η)]) = m− 1.

Without loss of generality, we can suppose that the first m − 1 polynomials
Qi(x1, . . . , xm−1, η), 1 ≤ i ≤ m − 1, are algebraically independent over K̄. By
Theorem 2.18, there exists a natural r0, such that the polynomials

Q1(x1, . . . , xm−1, x
r), . . . , Qm−1(x1, . . . , xm−1, x

r)
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are algebraically independence over K for any r ≥ r0. Since the dimension of the
subring K[Q1(x1, . . . , xm−1, x

r), . . . , Qm−1(x1, . . . , xn, x
r)] is not less than the di-

mension of its subringK[Q1(x1, . . . , xm−1, x
r), . . . , Qn(x1, . . . , xm−1, x

r)], the proof
is complete. �

We summarize our results in the following

Assertion 2.20. Let ϕ = (ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)) be an endomor-
phisms of K[x1, . . . , xn] of “internal” rank m. Then there exists an endomorphism
ψ = (ψ1(x1, . . . , xm), . . . , ψn(x1, . . . , xm)), ψi(x1, . . . , xm) ∈ K[x1, . . . , xm], such
that ϕ ∼ ψ. In addition, an endomorphism

ψ′

(r) = (ψ1(x1, . . . , xm−1, x
r
1), . . . , ψn(x1, . . . , xm−1, x

r
1))

has the rank at most m− 1 for any r ∈ N. Moreover, there exists r0 ∈ N such that
for all r ≥ r0 holds: ψ′

(r) ≺ ψ. As consequence, ψ′

(r) ≺ ϕ and an “internal” rank of

ψ′

(r) is equal to m− 1 for all r ≥ r0.

With these Assertion, the proof of Lemma 2.11 is straightforward. Now we ready
to prove Proposition 2.8

Proof of Proposition 2.8 Suppose that ϕ has an “internal” rank m, i.e., there
exists a maximal chain of length m beginning with ϕ:

(2.3) ϕ � ϕm−1 � · · · � ϕ1 ≺ ϕ0,

We have a descending chain of the corresponding varieties Mϕi
:

(2.4) Mϕ0 ⊆Mϕ1 ⊆ · · · ⊆Mϕm−1 ⊆Mϕ

The induction argument on the length m of the chain (2.4) leads us to the case
m = 0 for which our assertion is evident. Therefore, the “external” rank of ϕ is
also equal to m.

Conversely, let an endomorphism ϕ be of “external” rankm, i.e., trdeg Imϕ = m.
By Lemma 2.11, there exists an endomorphism ψm−1 of K[x1, . . . , xn] such that
ψm−1 ≺ ϕ and dim Mψm−1 = m − 1. In the same way, we can construct a chain
of the form (2.3) beginning with ϕ. It is clear that this chain has the length m, as
desired.

Since the chain (2.1) is invariant under automorphisms of EndK[x1, . . . , xn], we
have

Corollary 2.21. Let Φ ∈ Aut(End(A)), ψ ∈ End(A), and rk (ψ) = m. Then
rk (Φ(ψ)) = m.

Remark 2.22. Below we need endomorphisms of rank zero and one. By Definition
2.1, an endomorphism ψ of A is of rank zero if ψ(A) = K. An endomorphism ϕ
of A is of rank one if trdeg(Imϕ) = 1. It is known [4], [20], that every integrally
closed subalgebra B of A = K[x1, . . . , xn] of transcendence degree 1 is isomorphic
to a polynomial algebra K[t] in variable t. Taking into account that the integer
closure B of the algebra ϕ(A) in A is an algebra of the same transcendence degree
as ϕ(A), we conclude that the algebra B is isomorphic to a polynomial algebra K[t]
in variable t. As a consequence, the algebra ϕ(A) is a polynomial algebra K[y],
where y is an element in K[x1, . . . , xn].
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2.2. Representations of Kronecker semigroup of rank n. Recall the defini-
tion of Kroneker endomorphisms of the free associative algebra A.

Definition 2.23. (cf. [9, 11]) Kroneker endomorphisms of A in the base X =
{x1, . . . , xn}, xi ∈ A, are the endomorphisms eij , i, j ∈ [1n], of A which are deter-
mined on free generators xk ∈ X by the rule: eij(xk) = δjkxi, xi ∈ X, i, j, k ∈ [1n]
and δjk is the Kronecker delta.

It is clear that any Kronecker endomorphism of A has rank 1.

Definition 2.24. A semigroup Γn with an adjoint zero element 0 generated by
bij , ij ∈ [1n], with defining relations

bij · bkm = δjkbim, bij · 0 = 0 · bij = 0

is called a Kronecker semigroup of rank n.

Denote by En a semigroup generated by eij , i, j ∈ [1n], and an adjoint zero.
Clearly, the semigroup En is a Kronecker semigroup of rank n.

Remark 2.25. We have a notion of the rank of a Kronecker semigroup Γ. Don’t
confuse it with the rank of an endomorphism of A.

Definition 2.26. A representation of a semigroup T in the semigroup EndA is a
homomorphism ν : T → EndA.

Definition 2.27. Let ρ : Γn → EndA be a representation of the Kronecker
semigroup Γ of rank n in EndA. We say that the representation ρ is singular
if rk ρ(bij) = 0 for any i, j ∈ [1n].

In fact, it is sufficient to require that rk ρ(b11) = 0.

Proposition 2.28. Let ρ : Γn → EndA be a singular representation of the Kro-
necker semigroup Γ of rank n in EndA and q = ρ · ρ−1 the kernel congruence
on Γn. Then Γn/q ∼= A, where A = 〈ϕ〉 is a one-element semigroup such that
ρ(0) = ϕ, ϕ ∈ EndA, and rk(ϕ) = 0. Conversely, if ϕ ∈ EndA is an endomor-
phism of rank 0, then there exists a representation ρ : Γn → EndA such that
ρ(0) = ϕ.

Proof. From 0 · bij = 0, i, j ∈ [1n], it follows ϕρ(bij) = ϕ, where ρ(0) = ϕ. Since
ϕ is the identical mapping on K and rk(ρ(bij)) = 0, we have ρ(bij) = ϕ for any
i, j ∈ [1n]. Thus, Γn/q ∼= A, where A = 〈ϕ〉.

Conversely, if ϕ is an endomorphism of EndA such that rk(ϕ) = 0. Define a
representation ρ : Γn → EndA by the rule ρ(0) = ρ(bij) = ϕ for all i, j ∈ [1n]. It is
clear that we obtained a required representation ρ. �

Remark 2.29. Let ρ : Γn → EndA be a singular representation of the Kronecker
semigroup Γn of rank n in EndA such that ρ(0) = ϕ, ϕ ∈ EndA, and rk(ϕ) = 0.
We can set ϕ(xi) = αi, αi ∈ K. Denote by ψ : Kn → Kn the mapping on Kn such
that ψ(x1, . . . , xn) = (x1−α1, . . . , xn−αn). Define a representation ρ̂ : Γn → EndA

of Γn in EndA by the rule ρ̂(0) = ρ̂(bij) = ϕψ for all i, j ∈ [1n]. Then ϕψ = Ô and

ρ̂(0) = Ô.

Proposition 2.30. Let ρ : Γn → EndA be a non-singular representation of a
Kronecker semigroup Γn. Then, rk(ρ(bij)) = 1 for all i, j ∈ [1n].
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Proof. We will make use below relations between polynomial map ϕ : Kn → Kn

and endomorphisms of the polynomial algebra K[x1, . . . , xn], described on the page
3.

Denote ρ(bij) by ϕij , i, j ∈ [1n]. Let ϕ̄ij be the endomorphisms of the algebra
B = K[x1, . . . , xn] of commutative polynomials in variables x1, . . . , xn induced by
the endomorphisms ϕij of the algebra A. Clearly, ϕ̄ijϕ̄km = δjkϕ̄im. Let us note

o ·ϕim = Ô. For a fix j ∈ [1n] consider ϕ̄jj as a polynomial mapping from Kn into
Kn, i.e., ϕ̄jj(x1, . . . , xn) = (ϕ̄jj(x1), . . . , ϕ̄jj(xn)). Since ϕ̄2

jj = ϕ̄jj , the mapping
ϕ̄jj has a fixed point in Kn. This point d = (d1, . . . , dn), di ∈ K, can be chosen
arbitrarily from the image of ϕ̄jj . Therefore, we have ϕ̄jj(d1, . . . , dn) = (d1, . . . , dn).

Denote by T : Kn → Kn the polynomial mapping onKn such that T (x1, . . . , xn) =
(x1 + d1, . . . , xn + dn). Let ϕ̃ij = T−1ϕ̄ijT be a mapping Kn into itself. Denote by

p
(k)
ij the element T−1ϕ̄ijT (xk). Since the mapping ϕ̃ii has the fixed point 0 ∈ Kn,

the elements p
(k)
ii do not have constant terms for any i, k ∈ [1n]. Now we will prove

that the elements p
(k)
ij , i, j, k ∈ [1n], also do not have constant terms. Assume, on

the contrary, that there exist i, j, k ∈ [1n], i 6= j, such that the element p
(k)
ij has

a constant term. Since the elements p
(m)
jj = T−1ϕ̄jjT (xm) do not have a constant

term for any m, j ∈ [1n], we obtain

(T−1ϕ̄jjT )(T−1ϕ̄ijT )(xk) = (T−1ϕ̄jjT )p
(k)
ij 6= 0.

On the other hand, since i 6= j

(T−1ϕ̄jjT )(T−1ϕ̄ijT )(xk) = (T−1ϕ̄jj ϕ̄ijT )(xk) = 0.

This contradiction proves that the elements p
(k)
ij = T−1ϕ̄ijT (xk) do not have a

constant term for any i, j, k ∈ [1n]. As a consequence, the elements T−1ϕijT (xk)
do not have constant terms for any i, j, k ∈ [1n], too.

Denote the mapping T−1ϕijT : A → A by ϕ̂ij . We now prove that ϕ̂ij(A)
is a subalgebra of K[w] for some w ∈ A. Let I be the ideal of A generated by
x1, . . . , xn. Since the elements ϕ̂ij(xk), i, j, k ∈ [1n], do not have a constant term,
ϕ̂ij(I

s) ⊆ Is for any s ≥ 1. Now we fix some i, j ∈ [1n] and consider induced

maps ϕ̃
(s)
ij : Is/Is+1 → Is/Is+1 for any s ≥ 1. We intend to prove that Im ϕ̃

(s)
ij are

one-dimensional vector spaces over K. Let s = 1. Then ϕ̃
(1)
ij : I/I2 → I/I2 is a

linear mapping from the vector space I/I2 into itself. Since ϕ̃
(1)
ij ϕ̃

(1)
mk = δjmϕ̃

(1)
ik , by

Lemma 4.7 [11] there exists a basis z̄r1 = zr+I
2, where zr ∈ I, r ∈ [1n], of I/I2 such

that ϕ̃
(1)
ij (z̄r1) = δjr z̄i1. For a fix number s ≥ 2 denote z̄rs = zr+Is+1, r ∈ [1n]. We

have ϕ̃
(s)
ij (z̄i1s · · · z̄iss) = δji1 · · · δjis z̄

s
is. Thus, ϕ̃

(s)
ij (Is/Is+1) is a one-dimensional

vector space with a basis {z̄sis}. The latter assertion holds for any s ≥ 2. As
a consequence, we have ϕ̂ij(A) ⊆ K[zi]. Hence, ϕij(A) is a subalgebra of K[w],
where w = Tzi. Since the representation ρ of Γ is non-singular, K ⊂ ϕij(A). Thus,
rk(ϕij) = rk ρ(bij) = 1 for all i, j ∈ [1n]. �

2.3. Bases and subbases of the semigroup EndA. We need the following

Definition 2.31. A set of endomorphisms Be = {e′ij |e
′
ij ∈ EndA and e′ij 6=

Ô, ∀i, j ∈ [1n]} of A is called a subbase of EndA if e′ije
′
km = δjke

′
im, ∀i, j, k,m ∈

[1n].
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Let us note that 0 · e′ij = Ô. Denote by E′ a semigroup of EndA generated by

endomorphisms e′ij and the endomorphism Ô. By Theorem 2.30, we obtain the
following

Corollary 2.32. rk(e′ij) = 1 for any i, j ∈ [1n].

We can assume that e′ij(A) is a subalgebra of K[zij ], i, j ∈ [1n], where zij ∈ A.

For the sake of simplicity we write zii = zi, i ∈ [1n].

Definition 2.33. (“External” definition of a base collection of EndA.) We say
that the subbase Be is a base collection of endomorphisms of A (or a base of EndA,
for short) if Z = {zi | zi ∈ A such that e′ii(A) ⊆ K[zi], i ∈ [1n]} is a base of A.

Now we show that there exists a subbase of EndA that is not its base.

Example 2.34. Let ϕij : K[x1, x2] → K[x1, x2], where i, j ∈ {1, 2}, be endomor-
phisms of the free associative-commutative algebra A = K[x1, x2] such that

(2.5)
ϕ11(x1) = x1 + x1x2, ϕ11(x2) = 0, ϕ22(x1) = 0, ϕ22(x2) = x2,
ϕ12(x1) = 0, ϕ12(x2) = x1 + x1x2, ϕ21(x1) = x1, ϕ21(x2) = 0.

It is easy to see that rk(ϕij) = 1 and ϕijϕkm = δjkϕim for any i, j, k,m ∈ {1, 2},
i.e., the set of endomorphisms Bϕ = {ϕij |ϕij ∈ EndA, i, j ∈ {1, 2}} is a subbase
of the semigroup EndA. We will prove that Bϕ is not its base. It is clear that
ϕ11(A) = K[u], where u = x1 +x1x2, and ϕ22(A) = K[x1]. We can take z1 = u and
z2 = x1. The elements z1 and z2 generate the algebra K[x1+x1x2, x1]. Let us show
that K[x1+x1x2, x2] 6= K[x1, x2]. If, on the contrary, K[x1+x1, x2, x2] = K[x1, x2]
then x1 = α(x1 + x1x2) + βx2 + P (u, x2), where degP (u, x2) ≥ 2 and α, β ∈ K.
Hence β = 0, α = 1 and P (u, x2) = 0. We come to a contradiction. Therefore, the
subbase Bϕ is not a base of EndA.

“Internal” definition of a base collection of EndA is a bit tricky (see [11, 9]). It
was inspired by G.Zhitomirski (see [22]).

Definition 2.35. (“Internal” definition of a base collection of EndA.) The subbase
of endomorphisms Be = {e′ij|e

′
ij ∈ EndA, i, j ∈ [1n]} of EndA is its base if for any

collection of endomorphisms αi : A → A, ∀i ∈ [1n], and any subbase Bf = {f ′
ij |

i, j ∈ [1n]} of EndA there exist endomorphisms ϕ, ψ ∈ EndA such that

(2.6) αi ◦ f
′
ii = ψ ◦ e′ii ◦ ϕ, for all i ∈ [1n].

Our aim is to prove statement similar to the proposition 2.27 in [5].

Proposition 2.36. Internal and external definitions of a base collection of EndA
are equivalent.

Proof. Let a subbase of endomorphisms Be be a base according Definition 2.33.
Since rk (f ′

ij) = 1, ∀i, j ∈ [1n], there exist elements yij ∈ A, i, j ∈ [1n], such that

K ⊂ f ′
ij(A(X)) ⊆ K[yij ] for all i, j ∈ [1n]. Define endomorphisms ψ and ϕ of A as

follows:

ϕ(xi) = zi and ψ(zi) = αi(yi), for all i ∈ [1n],

where e′ii(A) ⊆ K[zi], zi ∈ A, and yi = yii, ∀i ∈ [1n]. Since Z = 〈zi | zi ∈ A, i ∈
[1n]〉 is a base of A, the endomorphism ψ is well-defined. Now it is easy to check
that the condition (2.6) with the given ϕ and ψ is fulfilled.
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Conversely, assume that the condition (2.6) is fulfilled for the subbase Be. Let
us prove that Z = 〈zi | zi ∈ A, i ∈ [1n]〉 is a base of A. Choosing αi = eii and
f ′
ij = eij , i, j ∈ [1n], in (2.6), we obtain

eii = ψ ◦ e′ii ◦ ϕ,

i.e., ψ(e′iiϕ(xi)) = xi for any i ∈ [1n]. Denote by ti = e′iiϕ(xi). We have ψ(ti) = xi.
Since A is Hopfian, i.e., any surjective endomorphism of A into itself is isomorphism,
the elements ti, i ∈ [1n], form the base of A. By Corollary and Remark 2.22 2.32,
K ⊂ e′ii(A) ⊆ K[zi]. Therefore, there exists a non-scalar polynomial χi(zi) ∈ K[zi]
such that ti = χi(zi). Since ti = χi(zi), i = 1, . . . , n, forms the base of A, the
elements zi, i = 1, . . . , n, forms a base of A as claimed. �

Now we deduce

Corollary 2.37. Let Φ ∈ AutEndA and E be the subsemigroup of End A gener-
ated by the Kronecker endomorphisms eij , i, j ∈ [1n] (see Definition 2.23). Then
C = {Φ(eij) | i, j ∈ [1n]} is a base of EndA.

Proof. Assume that rk(Φ(eij)) = 0 for some i, j ∈ [1n]. By Corollary 2.21, we
obtain rk(eij) = 0. We arrived at a contradiction. Thus, rk(Φ(eij)) 6= 0. Since
Φ(eij)Φ(ekm) = δjkΦ(eim), the set C is a subbase of EndA. It is easy to check that
the condition (2.6) is fulfilled for the subbase C. Thus, C is a base of EndA. �

Lemma 2.38. Let Be = {e′ij | e′ij ∈ EndA, i, j ∈ [1n]} be a base collection of

endomorphisms of EndA. Then there exists a base Z ′ = {z′k | z
′
k ∈ A, k ∈ [1n]} of

A such that the endomorphisms e′ij from Be are Kronecker ones of A in Z ′.

Proof. With the preceding notation from Definition 2.33 we have that the equal-
ity (e′ii)

2 = e′ii implies e′ii(zi) = zi, i ∈ [1n]. Since e′iie
′
ij(zj) = e′ij(zj) and

K ⊂ e′ii(A) ⊆ K[zi], there exists a non-scalar polynomial fj(zi) ∈ K[zi] such
that e′ij(zj) = fj(zi). Similarly, there exists a non-scalar polynomial gi(zj) ∈ K[zj]
such that e′ji(zi) = gi(zj). We have

zj = e′jj(zj) = e′jie
′

ij(zj) = e′ji(fj(zi)) = fj(gi(zj)) for all i, j ∈ [1n]

and, in a similar way, zi = gi(fj(zi)) for all i, j ∈ [1n]. Thus fj and gi are linear
polynomials over K in variables zi and zj, respectively. Therefore,

(2.7) e′ij(zj) = aizi + bi, ai, bi ∈ K and ai 6= 0.

Note that e′ij(zk) = e′ij(e
′
kk(zk) = 0 if k 6= j. Now we have for i 6= j

0 = e′ij
2
(zj) = e′ij(aizi + bi) = e′ij(bi) = bi,

i.e., e′ij(zj) = aizi, ai 6= 0. Let z′i = a−1
i zi. We obtain a base Z = {z′k | z

′
k ∈

A, k ∈ [1n]} of A such that e′ij(z
′
k) = δjkz

′
k, i, j, k ∈ [1n], i.e., e′ij are Kronecker

endomorphisms of A in the base Z ′. The proof is completed. �

3. Automorphisms of the semigroup End A

3.1. On the group Aut EndA. We need the following notion.
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Definition 3.1. ([7]) Let A1 and A2 be algebras over K from a variety A, δ be an
automorphism of K and ϕ : A1 → A2 be a ring homomorphism of these algebras.
A pair (δ, ϕ) is called a semi-linear homomorphism from A1 to A2 if

ϕ(α · u) = δ(α) · ϕ (u), ∀α ∈ K, ∀u ∈ A1.

Definition 3.2. [17] An automorphism Φ of the semigroup End A of endomor-
phisms of A is called quasi-inner if there exists an adjoined bijection s : A → A
such that Φ(ν) = sνs−1, for any ν ∈ End A

Definition 3.3. [17] A quasi-inner automorphism Φ of EndA is called semi-inner
if there exists a field automorphism δ : K → K such that (δ, s) is a semi-linear
automorphism of A , i.e., for any α ∈ K and a, b ∈ A the following conditions hold:

1. s(a+ b) = s(a) + s(b),
2. s(a · b) = s(a) · s(b),
3. s(αa) = δ(α)s(a).

We say that the pair (δ, s) defines the semi-inner automorphism Φ of A with the
adjoined ring automorphism s. If δ is the identity automorphism of K, we call the
automorphism Φ inner.

The description of quasi-inner automorphisms of EndA is as follows.

Proposition 3.4. [3, 9, 11] Let Φ ∈ Aut EndA be a quasi-inner automorphism of
EndA. Then Φ is of semi-inner automorphisms of EndA.

We will use the following fact:

Proposition 3.5. [9, 11] Let Φ ∈ AutEndA and E be the subsemigroup of End A
generated by eij , i, j ∈ [1n]. Elements of the semigroup Φ(E) are Kronecker
endomorphisms of A in some base U = {u1, . . . , un}, ui ∈ A, if and only if Φ is a
quasi-inner automorphism of End A.

Now we obtain one of the main result of the paper

Theorem 3.6. Every automorphism of the group AutEndA is semi-inner.

Proof. By Corollary 2.37, the set of endomorphisms C = {Φ(eij) | ∀i ∈ [1n]} is
a base collection of endomorphisms of A. By Lemma 2.38, there exists a base
S = 〈sk | sk ∈ A, k ∈ [1n]〉 such that the endomorphisms Φ(eij) are Kronecker
endomorphisms in S. According to Proposition 3.5, we obtain that Φ is quasi-
inner. By virtue of Proposition 3.4, every automorphism the group AutEndA is
semi-inner and as claimed. �

Remark 3.7. If CA is the category of commutative-associative algebras over a
field K, we take SCA to be the category with objects all associative algebras from
the category A, morphisms all pairs ψδ = (ψ, δ) : A→ B, A,B ∈ ObSA, such that
ψ : A → B are ring homomorphisms from A to B, δ : K → K are automorphisms
of the field K and ψδ(λa) = λδψ(a), a ∈ A. Morphisms ψδ of the category SA
are called semi-linear homomorphisms(or semihomomorphisms) from A to B (cf.
Definition 3.1). Denote by SEnd A the semigroup of semiendomorphisms of A with
the usual composition of maps in the category SCA.

Clearly, that the definitions of endomorphisms of rank one and zero can be
transfer to the category SCA. All results about bases and subbases from the sections
2.3 are also true. As a consequence, we obtain the following

Theorem 3.8. Every automorphism of the group Aut SEndA is semi-inner.
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4. Automorphisms of the category A◦

Recall the following notions of the category isomorphism and equivalence (cf.
[12]). An isomorphism ϕ : C → M of categories is a functor ϕ from C to M, which
is a bijection both on objects and morphisms. In other words, there exists a functor
ψ : M → C such that ψϕ = 1C and ϕψ = 1M.

Let ϕ1 and ϕ2 be two functors from C1 to C2. A functor isomorphism s : ϕ1 −→
ϕ2 is a collection of isomorphisms sD : ϕ1(D) −→ ϕ2(D) defined for all D ∈ Ob C1

such that for every ν : D −→ B, ν ∈ Mor C1, B ∈ Ob C1

sB · ϕ1(ν) = ϕ2(ν) · sD

holds, i.e., the following diagram

ϕ1(D) -
sD ϕ2(D)

?

ϕ1(ν)
?

ϕ2(ν)

ϕ1(B) -
sB ϕ2(B)

is commutative. An isomorphism of functors ϕ1 and ϕ2 is denoted by ϕ1
∼= ϕ2.

An equivalence of categories C and M is a pair of functors ϕ : C → M and
ψ : M → C such that ψϕ ∼= 1C and ϕψ ∼= 1M. If C = M, then we get the notions
of automorphism and autoequivalence of the category C.

For every small category C, denote the group of all its automorphisms by Aut C.
We distinguish the following classes of automorphisms of C.

Definition 4.1. [8, 15] An automorphism ϕ : C → C is equinumerous if ϕ(D) ∼= D
for any object D ∈ Ob C ; ϕ is stable if ϕ(D) = D for any object D ∈ ObC ; and ϕ
is inner if ϕ and 1C are naturally isomorphic, i.e., ϕ ∼= 1C .

In other words, an automorphism ϕ is inner if for all D ∈ Ob C there exists an
isomorphism sD : A→ ϕ(D) such that

ϕ(ν) = sBνs
−1
D : ϕ(D) → ϕ(B)

for any morphism ν ∈ MorC(A,B).

Denote by EqnAut C, StAut C, and Int C the collections of equinumerous, stable,
and inner automorphisms of the group Aut C, respectively.

Let Θ be a variety of linear algebras over K. Denote by Θ0 the full subcategory
of finitely generated free algebras F (X), |X | < ∞, of the variety Θ. Consider a
constant morphism ν0 : F (X) → F (X) such that ν0(x) = x0, x0 ∈ F (X), for every
x ∈ X .

Theorem 4.2. (Reduction Theorem [8, 13, 16, 22]) Let the free algebra F (X)
generate a variety Θ, and ϕ ∈ StAutΘ0. If ϕ acts trivially on the monoid
MorΘ0(F (X), F (X)) and ϕ(ν0) = ν0, then ϕ is inner, i.e., ϕ ∈ IntΘ0.

Define the notion of a semi-inner automorphism of the category Θ0 of free finitely
generated algebras in the category Θ.

Definition 4.3. [15] An automorphism ϕ ∈ Aut Θ0 is called semi-inner if there
exists a family of semi-isomorphisms {sF (X) = (δ, ϕ̃) : F (X) → ϕ̃(F (X)), F (X) ∈

Ob Θ0}, where δ ∈ AutK and ϕ̃ is a ring isomorphism from F (X) to ϕ̃(F (X))
such that for any homomorphism ν : F (X) −→ F (Y ) the following diagram



14 A. BELOV-KANEL1, R. LIPYANSKI2

F (X) -
sF (X

ϕ̃(F (X))

?

ν
?

ϕ(ν)

F (Y ) -
sF (Y )

ϕ̃(F (Y ))

is commutative.

Further, we will need the following

Proposition 4.4. [8, 15] For any equinumerous automorphism ϕ ∈ Aut C there
exist a stable automorphism ϕS and an inner automorphism ϕI of the category C
such that ϕ = ϕSϕI .

Now we give a description of the groups Aut CA◦ over any field. Note that a
description of this group over infinite fields was given in [2]

Theorem 4.5. All automorphisms of the group AutA◦ of automorphisms of the
category CA◦ are semi-inner automorphisms of the category CA◦.

Proof. Let ϕ ∈ AutA◦. It is clear that ϕ is an equinumerous automorphism. By
Proposition 4.4, ϕ can be represented as a composition of a stable automorphism
ϕS and an inner automorphism ϕI . Since stable automorphisms does not change
free algebras from A◦, we obtain that ϕS ∈ AutEndA. By Theorem 3.6, ϕS is
semi-inner ofEndA. Using this fact and Reduction Theorem 4.2, we obtain that all
automorphisms of the group Aut CA◦ are semi-inner automorphisms of the category
CA◦. This completes the proof. �

Problem 4.6. Describe the groups AutB◦ and Aut EndB, where B = B(x1, . . . , xn),
is a free algebra of a non-associative variety B of linear algebras finitely generated
by a set X = {x1, . . . , xn}.

Note that the above mentioned groups were described for some homogeneous
varieties of linear algebras in [5, 9, 11]. In particular, a description of these group
for the variety of all Lie algebras over any field was obtained there. A corresponding
description in the case of Lie algebras over any infinite field was obtained in [15, 22].
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