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Hilbert series of PI relatively free G-graded algebras are
rational functions
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Abstract

Given a finite group G and a field F of characteristic zero, we let F 〈x1,g1 , . . . , xr,gr 〉 be the free
G-graded F -algebra generated by homogeneous variables {xi,gi}gi∈G. Let I be a G-graded T -
ideal of F 〈x1,g1 , . . . , xr,gr 〉 which is PI (that is, the algebra F 〈x1,g1 , . . . , xr,gr 〉/I is PI). We prove
that the Hilbert series of F 〈x1,g1 , . . . , xr,gr 〉/I is a rational function. More generally, we show that
the Hilbert series which corresponds to any g-homogeneous component of F 〈x1,g1 , . . . , xr,gr 〉/I
is a rational function.

1. Introduction

The Hilbert series of an affine (that is, finitely generated) algebra and its computation is a topic
which attracted a lot of attention in the last century, classically in commutative algebra (see,
for example, [29, 30]), but also (and in fact more importantly for the purpose of this paper)
in non-commutative algebra (see, for example, [5]). In particular the question of whether or
not the Hilbert series HW of and algebra W is the Taylor expansion of a rational function is
fundamental in the theory and has important applications to other growth invariants of W
(see [7], [13–15], [25], [26], [28]).

In case the algebra W is a relatively free algebra, that is, isomorphic to the quotient of an
affine free algebra F 〈x1, . . . , xn〉 by a T -ideal I it is known that HF 〈x1,...,xn〉/I is a rational
function (see [8, 20]) and this fact has been successfully used in the estimation of the asymptotic
behaviour of the co-character sequence of a PI algebra.

Specifically in [11] (based on explicit formulas for the co-character sequences which appear
in [10]) the authors show that if A is a PI-algebra with 1 which satisfies a Capelli identity,
then the asymptotic behaviour of the codimension sequence is of the form

cn(A) = angln,

where a is a scalar, 2g is an integer and l is a non-negative integer (we refer the reader to
[17–19] for a comprehensive account on the codimension sequence of a PI algebra).

The rationality of the Hilbert series of an affine relatively free algebra has been established
also in case W is a super algebra (that is, Z2-graded) and our goal in this paper is to extend
these results to G-graded relatively free affine PI algebras where G is an arbitrary finite group.

Let G = (g1, . . . , gr) be an unordered r-tuple of elements of G (in particular we allow
repetitions). Let XG = {x(1,g1), . . . , x(r,gr)} be a set of variables that correspond to the elements
of G and let F 〈XG〉 be the free algebra generated by XG over F , where F is a field of
characteristic zero. In order to keep the notation as light as possible we may omit one index and
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write XG = {xg1 , . . . , xgr
} with the convention that the variables xgi

and xgj
are different even

if gi = gj in G. We equip F 〈XG〉 with a (natural) G-grading by setting the homogeneous degree
of a monomial xgs1

xgs2
. . . xgsm

to be gs1 gs2 . . . gsm
∈ G. We also consider its homogeneous

degree m ∈ N, namely the number of variables in the monomial. Let I be a G-graded T -ideal,
that is, I is closed under G-graded endomorphisms of F 〈XG〉.

Remark 1.1. (1) It is convenient to view the ideal I as the evaluation on F 〈XG〉 of a T -ideal
I of the G-graded free algebra F 〈XG〉, where XG consists of countably many homogeneous
variables of each degree g ∈ G. In fact I is nothing but the T -ideal of G-graded identities of
F 〈XG〉/I.

(2) It is well known (since F is a field of zero characteristic) that I is generated by
multilinear polynomials. Furthermore, by the G-grading on the algebra F 〈XG〉, we have that I
is generated as a G-graded T -ideal by multilinear strongly homogeneous polynomials, that is,
polynomials whose monomials have all the same homogeneous degree g ∈ G (see [3, paragraph
preceding Theorem 1.1]).

(3) It follows that the ideal I of F 〈XG〉 is generated by polynomials which are strongly
homogeneous in the variables of XG . This fact will play an important role in the sequel. Note
that, in general, when passing from I to I (by evaluation) we lose the multilinearity condition.

We will assume in addition that the T -ideal I ‘is PI’. By this we mean that the
G-graded, relatively free algebra F 〈XG〉/I is PI. Equivalently, the ideal I contains all G-graded
polynomials obtained by assigning all possible degrees in G to the variables xi of an ordinary
non-zero polynomial p(x1, . . . , xn).

Remark 1.2. Note, for instance, that the T -ideal of G-graded identities of any finite
dimensional G-graded algebra is PI. On the other hand, if G �= {e}, then the G-graded algebra
W (and hence its T -ideal of G-graded identities) where We is a free non-commutative algebra
and Wg = 0 for g �= e is G-graded PI but of course not PI.

Let F 〈xg1 , . . . , xgr
〉 be the free G-graded algebra generated by homogeneous variables

{xgi
}r

i=1. As above, we let I be a G-graded T -ideal which is PI and let F 〈xg1 , . . . , xgr
〉/I

be the corresponding relatively free G-graded algebra. Let Ωn be the (finite) set of monomials
of degree n on {xgi

}r
i=1 and let cn be the dimension of the F -subspace of F 〈xg1 , . . . , xgr

〉/I
spanned by the monomials of Ωn. We denote by

HF 〈xg1 ,...,xgr 〉/I(t) =
∑

n

cntn

the Hilbert series of F 〈xg1 , . . . , xgr
〉/I with respect to the generators represented by {xgi

}r
i=1.

Theorem 1.3. The series HF 〈xg1 ,...,xgr 〉/I(t) is the Taylor series of a rational function.

In our proof, we strongly use key ingredients that appear in the proof of representability
of the G-graded relatively free algebras (see [3]). These ingredients include the existence of
certain polynomials, called Kemer polynomials, which are ‘extremal non-identities’ (see [3])
and their existence relies on the fundamental fact that the Jacobson radical of an affine PI
algebra is nilpotent (see [4, 12, 22, 27]) (this parallels the Hilbert’s Nullstellensatz in the
commutative theory), and the solution of the Specht problem (see [3, 23, 24, 31]) (which
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parallels the Hilbert basis theorem in the commutative theory). We emphasize however that
the rationality of the Hilbert series is not a corollary of representability since there are examples
of representable algebras which have a transcendental Hilbert series. Indeed, recall from [20]
that the monomial algebra supported by monomials of the form h = x1x

m
2 x3x

n
4x5 with the

extra relation that h = 0 if m2 − 2n2 = 1 is representable but has a transcendental Hilbert
series. For more on this we refer the reader to [9, 21].

In Theorems 1.5 and 1.8 we present different generalizations of Theorem 1.3. Then, in
Theorem 1.9, these are combined into one general statement. We start with multivariate Hilbert
series.

Let F 〈xg1 , . . . , xgr
〉 be the free G-graded algebra generated by homogeneous variables

{xgi
}r

i=1. As above, we let I be a G-graded T -ideal which is PI and let F 〈xg1 , . . . , xgr
〉/I

be the corresponding relatively free G-graded algebra. For any r-tuple of non-negative integers
(d1, . . . , dr), we consider the (finite) set of monomials Ω(d1,...,dr) on {xgi

}r
i=1 where the variable

xgi
appears exactly di times, i = 1, . . . , r. We denote by c(d1,...,dr) the dimension of the

F -subspace of F 〈xg1 , . . . , xgr
〉/I spanned by the monomials in Ω(d1,...,dr).

Definition 1.4. Notation as above. The multivariate Hilbert series of F 〈xg1 , . . . , xgr
〉/I

is given by

HF 〈xg1 ,...,xgr 〉/I(t1, . . . , tr) =
∑

(d1,...,dr)

c(d1,...,dr)t
d1
1 . . . tdr

r .

The following result generalizes Theorem 1.3.

Theorem 1.5. Notation as above. The Hilbert series HF 〈xg1 ,...,xgr 〉/I(t1, . . . , tr) is a
rational function.

Remark 1.6. Clearly, Theorem 1.3 follows from Theorem 1.5 simply by replacing all
variables ti by a single variable t.

The next generalization of Theorem 1.3 is in a different direction. We consider the Hilbert
series (in one variable t) of a unique homogeneous component. More precisely, we fix g ∈ G
and we consider the set of monomials Ωg,n of degree n whose homogeneous degree is g. We let
cg,n be the dimension of the subspace in F 〈xg1 , . . . , xgr

〉/I spanned by the monomials in Ωg,n

(or rather, by the elements in F 〈xg1 , . . . , xgr
〉/I they represent).

Definition 1.7. With the above notation, the Hilbert series of the g-component of
F 〈xg1 , . . . , xgr

〉/I is given by

Hg,F 〈xg1 ,...,xgr 〉/I(t) =
∑

cg,ntn.

Theorem 1.8. With the above notation, the Hilbert series Hg,F 〈xg1 ,...,xgr 〉/I(t) is a rational
function.

The case where g = e is of particular interest. Moreover, we could consider the Hilbert series
of any collection of g-homogeneous components and in particular the Hilbert series which
corresponds to a subgroup H of G.
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Finally, we combine the generalizations that appeared in Theorems 1.5 and 1.8. Fix an
element g ∈ G. For any r-tuple (d1, . . . , dr) of non-negative integers we consider the monomials
with xg1 appearing d1 times, xg2 appearing d2 times, . . . , whose homogeneous degree is g ∈ G.
We denote this set of monomials by Ωg,(d1,...,dr) and we let cg,(d1,...,dr) be the dimension of the
space in F 〈xg1 , . . . , xgr

〉/I spanned by elements whose representatives are the monomials in
Ωg,(d1,...,dr).

Theorem 1.9. The Hilbert series

Hg,F 〈xg1 ,...,xgr 〉/I(t1, . . . , tr) =
∑

cg,(d1,...,dr)t
d1
1 . . . tdr

r

which corresponds to the g-component of the G-graded algebra F 〈xg1 , . . . , xgr
〉/I is a rational

function.

Remark 1.10. Clearly, Theorems 1.3, 1.5 and 1.8 are direct corollaries of Theorem 1.9.

Theorem 1.9 is proved in Section 2. As mentioned above the proof uses ingredients from the
proof of the representability of relatively free affine G-graded PI algebras. For the convenience
of the reader, we recall in the first part of the section the required results from [3] that are
used in the proof.

In Section 3, we consider the T -ideal of G-graded identities I of the group algebra FG and
show, in a rather direct way, the rationality of the Hilbert series of the corresponding relatively
free algebra F 〈xg1 , . . . , xgr

〉/I, where I (as above) is the evaluation of I on F 〈xg1 , . . . , xgr
〉.

We also give in this case (see Corollary 3.4) the asymptotic behaviour of the corresponding
codimension sequence. Furthermore, these results can be easily extended to twisted group
algebras FαG, where α ∈ Z2(G,F ∗) (see Remark 3.5). The G-grading determined by twisted
group algebras is called ‘fine’ and it plays an important role in the classification of G-graded
simple algebras (see [6]).

We close the introduction by mentioning that one may consider the Hilbert series of an
affine G-graded free algebra. It is easy to see that the corresponding Hilbert series is a rational
function. Of course one may ask whether the different generalizations (Theorems 1.5 and 1.8)
apply also in this case (that is, when I = 0). It is easy to see that this is indeed the case when
extending to multivariate series. As for the second generalization, we refer the reader to [16].
The authors prove the rationality of the Hilbert series which corresponds to the subalgebra of
coinvariant elements, that is, in case g = e.

2. Preliminaries and proofs

We start this section by recalling some facts on G-graded algebras W over a field of
characteristic zero F and their corresponding G-graded identities. We refer the reader to [3]
for a detailed account on this topic.

Let W be an affine G-graded PI algebra over F . We denote by I = idG(W ) the ideal of
G-graded identities of W . These are polynomials in the free G-graded algebra over F that are
generated by XG and that vanish upon any admissible evaluation on W . Here, XG =

⋃
Xg and

Xg is a set of countably many variables of degree g. An evaluation is admissible if the variables
from Xg are replaced only by elements of Wg. It is known that I is a G-graded T -ideal, that
is, closed under G-graded endomorphisms of F 〈XG〉.

We recall from [3] that the T -ideal I = idG(W ) is generated by multilinear polynomials and
so it does not change when passing to F̄ , the algebraic closure of F , in the sense that the ideal
of identities of WF̄ over F̄ is the span (over F̄ ) of the T -ideal of identities of W over F . It is
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easily checked that the Hilbert series remains the same when passing to the algebraic closure
of F . Thus, from now on we assume F = F̄ .

Next, we recall some terminology and some facts from Kemer theory extended to the context
of G-graded algebras as they appear in [3]. We start with the concept of alternating polynomial
on a set of variables.

Let f(x1,g, . . . , xr,g; y1, . . . , yn) be a multilinear polynomial with variables x1,g, . . . , xr,g,
homogeneous of degree g, and some other homogeneous variables y1, . . . , yn of unspecified
degrees. We say that f is alternating on the set x1,g, . . . , xr,g if there is a multilinear polynomial
h(x1,g, . . . , xr,g; y1, . . . , yn) such that

f(x1,g, . . . , xr,g; y1, . . . , yn) =
∑

σ∈Sym(r)

(−1)σh(xσ(1),g, . . . , xσ(r),g; y1, . . . , yn).

We say that a polynomial f alternates on a collection of disjoint sets of homogeneous variables
(each set constituting of variables of the same degree), if it is alternating on each set.

In what follows, we will need to consider multilinear polynomials f that alternate on d
disjoint sets of g-elements, each of cardinality r. More generally, we will consider multilinear
polynomials such that for any g ∈ G, f contains ng disjoint sets of variables of homogeneous
degree g and each set of cardinality dg.

We recall from [3] that a G-graded polynomial with an alternating set of g-homogeneous
variables that is ‘large enough’ is necessarily an identity. More precisely, for any affine
G-graded PI algebra W and for any g ∈ G there exists an integer dg such that any G-graded
polynomial which has an alternating set of g variables of cardinality exceeding dg is necessarily
a G-graded identity of W .

In particular, this holds for a finite-dimensional G-graded algebra A. Note that in this case,
if a polynomial f has an alternating set of g-homogeneous elements whose cardinality exceeds
the dimension of Ag, it is clearly an identity of A.

Next we recall that by the Wedderburn–Malcev decomposition theorem, a G-graded finite-
dimensional algebra A over F , may be decomposed into the direct sum of Ā ⊕ J (decomposition
as vector spaces) where J is the Jacobson radical (G-graded) and Ā is a (semisimple) subalgebra
of A isomorphic to A/J as G-graded algebras. As a consequence, we have decompositions of Ā
and J to the corresponding g-homogeneous components.

Now, we know that in order to test whether a multilinear polynomial is an identity of
an algebra, it is sufficient to evaluate its variables on a base and hence, applying the above
decomposition, we may consider semisimple and radical G-graded evaluations. From these
considerations we conclude that if a polynomial has sufficiently many alternating sets of
g-homogeneous elements of cardinality that exceeds the dimension of the g-homogeneous
component of Ā, the polynomial is necessarily an identity of A. Indeed, in any evaluation,
we either have a semisimple basis element that appears twice or at least one of the evaluations
is radical. In the first case, we get zero as a result of the alternation of two elements that are
equal, while in the second, we get zero if the number of alternating sets is at least the nilpotency
index of J . We therefore see that if a G-graded polynomial f has a number of alternating sets
(same cardinality) of g-variables that is at least the nilpotency index of J (and in particular if
it has ‘sufficiently many’) then the cardinality of the sets must be bounded by the dimension of
Āg if we know that f is a non (G-graded)-identity of A. Thus, if f is a non (G-graded)-identity
of A with αg disjoint alternating sets of g-homogeneous elements of cardinality dg + 1, where
g ∈ G and dg = dim(Āg), then

∑
g αg � n − 1, where n is the nilpotency index of J .

In [3], the notion of a finite-dimensional G-graded basic algebra was introduced. For our
exposition here, it is not necessary to recall its precise definition but only say (as a result of
Kemer’s Lemmas 1 and 2 for G-graded algebras (see Sections 5 and 6 in [3])) that any basic
algebra A admits non-identities G-graded polynomials that have ‘arbitrarily many’ (say at least
n, the nilpotency index of J) alternating sets of g-homogeneous variables of cardinality dg and
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precisely (a total of) n − 1 alternating sets of g-homogeneous variables of cardinality dg + 1
for some g ∈ G. These extremal non-identities are the so-called ‘G-graded Kemer polynomials’
of the basic algebra A.

Thus to each basic algebra A corresponds an r + 1-tuple of non-negative integers
(dg1 , . . . , dgr

;n − 1) where dg is the dimension of the g-component of the semisimple part
of A and n is the nilpotency index of J , the radical of A. We refer to such a tuple as the Kemer
point of the basic algebra A.

The representability theorem for affine G-graded PI algebras can be stated as follows.
Given an affine G-graded PI algebra W over F , where F is a field of zero characteristic,

there exists a finite number of G-graded basic algebras A1, . . . , Am over a field extension K
of F such that W satisfies the same G-graded identities as A1 ⊕ . . . ⊕ Am. Note that since
idG(A1 ⊕ . . . ⊕ An) =

⋂
idG(Ai), we may assume id(Ai) � id(Aj) for every 1 � i, j � m with

i �= j.

Remark 2.1. In fact, by passing to the algebraic closure of K, we may assume that the
algebras Ai above are finite dimensional over the same field F .

Definition 2.2. With the above notation, we say that a finite-dimensional G-graded
algebra A is subdirectly irreducible if it has no non-trivial, two-sided G-graded ideals a and b
such that a ∩ b = (0).

Remark 2.3. Note that if the algebra A1 ⊕ . . . ⊕ Am is subdirectly irreducible, then m = 1.

A key ingredient in the proof of Theorem 1.9 is the existence of an essential Shirshov base
for the relatively free algebra F 〈xg1 , . . . , xgr

〉/I.
For the convenience of the reader, we recall the necessary definitions and statements from [3],

starting from the ordinary case (that is, ungraded).

Definition 2.4. Let W be an affine PI-algebra over F . Let {a1, . . . , as} be a set of
generators of W . Let m be a positive integer and let Y be the (finite!) set of all words in
{a1, . . . , as} of length no greater than m. We say that W has a Shirshov base of length m and
of height h if elements of the form yk1

i1
. . . ykl

il
where yii

∈ Y and l � h, span W as a vector
space over F .

Theorem 2.5. If W is an affine PI-algebra, then it has a Shirshov base for some m and
h. More precisely, suppose W is generated by a set of elements of cardinality s and suppose it
has PI-degree m (that is, there exists an identity of degree m and m is minimal), then W has
a Shirshov base of length m and of height h where h = h(m, s).

In fact, we will need a weaker condition.

Definition 2.6 [3, Definition 7.8]. Let W be an affine PI-algebra. We say that a (finite)
set Y as above is an essential Shirshov base of W (of length m and of height h) if there exists a
finite set D(W ) such that the elements of the form di1y

k1
i1

di2 . . . dil
ykl

il
dil+1 where dij

∈ D(W ),
yij

∈ Y and l � h span W .

An essential Shirshov’s base gives the following.
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Theorem 2.7 [3, Theorem 7.9]. Let C be a commutative ring and let W = C〈{a1, . . . , as}〉
be an affine algebra over C. If W has an essential Shirshov base (in particular, if W has a
Shirshov base) whose elements are integral over C, then it is a finite module over C.

Returning to G graded algebras we have the following.

Proposition 2.8 [3, Theorem 7.10]. Let W be an affine G-graded PI algebra. Then it has
an essential G-graded Shirshov base of elements of We.

For the proof of Theorem 1.9, we will assume below that there exists a G-graded T -ideal
I which is non-rational (that is, the Hilbert series of F 〈xg1 , . . . , xgr

〉/I is non-rational) and
obtain a contradiction. The next two lemmas will be used to reduce the problem to the case
where I is maximal with respect to being non-rational and also that the relatively free algebra
F 〈xg1 , . . . , xgr

〉/I is G-graded PI equivalent to one basic algebra (rather than to a direct sum
of them).

Before stating the lemmas we simplify the terminology as follows.

Remark 2.9. If V is a subspace of an algebra U = F 〈xg1 , . . . , xgr
〉/I spanned by strongly

homogeneous polynomials, then we may consider naturally its corresponding multivariate
Hilbert series. Then when we say ‘Hilbert series of V ’ we mean ‘multivariate G-graded Hilbert
series which corresponds to the g-component of V ’ for any given g ∈ G.

Lemma 2.10. Let J be a G-graded T -ideal containing I. Let HU , HU/J and HJ /I be the
Hilbert series of U , U/J and J /I, respectively. Then

HF 〈xg1 ,...,xgr 〉/I = HF 〈xg1 ,...,xgr 〉/J + HJ /I .

Proof. This is clear since J is spanned by strongly homogeneous polynomials.

Lemma 2.11. Let I ′ and I ′′ be two G-graded T -ideals that contain I. Then the following
holds:

HF 〈xg1 ,...,xgr 〉/(I′∩I′′) = HF 〈xg1 ,...,xgr 〉/I′ + HF 〈xg1 ,...,xgr 〉/I′′ − HF 〈xg1 ,...,xgr 〉/(I′+I′′).

Proof. The proof is similar to the proof of Lemma 9.40 in [20] and hence is omitted.

Let us assume now that there exists a G-graded T -ideal K of F 〈xg1 , . . . , xgr
〉 that is PI and

such that the Hilbert series of F 〈xg1 , . . . , xgr
〉/K is non-rational.

Proposition 2.12. Under the above assumption there exists a G-graded T -ideal I of
F 〈xg1 , . . . , xgr

〉 that is PI and

(1) is maximal among T -ideals K that are PI and the Hilbert series of F 〈xg1 , . . . , xgr
〉/K is

non-rational;
(2) the relatively free algebra F 〈xg1 , . . . , xgr

〉/I is G-graded PI equivalent to a G-graded
basic algebra A.
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Proof. The first assertion follows from the G-graded Specht property (see [3, Section 12]).
Indeed, if there is no such an ideal, then we get an infinite ascending sequence of ideals that does
not stabilize and this contradicts the fact that the union of the T -ideals is finitely generated.
We, thus, may assume that the Hilbert series of F 〈xg1 , . . . , xgr

〉/I is non-rational and the
Hilbert series of F 〈xg1 , . . . , xgr

〉/J for any G-graded T -ideal J that properly contains I is a
rational function.

For the proof of the second assertion, let us show that the maximality of I already implies
that F 〈xg1 , . . . , xgr

〉/I is PI equivalent to a G-graded basic algebra. Assuming the converse,
we have that F 〈xg1 , . . . , xgr

〉/I is G-graded PI equivalent to a direct sum of basic algebras
A1 ⊕ A2 ⊕ . . . ⊕ Am where m � 2 and idG(Ai) � idG(Aj) for any 1 � i, j � m with i �= j.
It follows that the ideal idG(F 〈xg1 , . . . , xgr

〉/I) = idG(A1 ⊕ A2 ⊕ . . . ⊕ Am) =
⋂

idG(Ai) and
idG(F 〈xg1 , . . . , xgr

〉/I) � idG(Ai) for any i. Now, consider the evaluations Ii of the T -ideals
idG(Ai) on F 〈xg1 , . . . , xgr

〉. Clearly, Ii properly contains I and their intersection is I. By
Lemma 2.11, we conclude that the Hilbert series of F 〈xg1 , . . . , xgr

〉/I is rational. Contradiction.

It is convenient to view the relatively free algebra F 〈xg1 , . . . , xgr
〉/I as an algebra of generic

elements, G-graded embedded in a matrix algebra over a suitable rational function field over
F . Indeed, by part (2) of Proposition 2.12 we have that F 〈xg1 , . . . , xgr

〉/I is G-graded PI
equivalent to a G-graded basic algebra which we denote by A and which from now on will be
viewed as a G-graded subalgebra of the n × n matrices over F (see [3]). If {vg,1, . . . , vg,sg

} is
an F -basis of Ag, the g-homogeneous component of A, then we consider different sets of central
indeterminates {tg,1, . . . , tg,sg

}, g ∈ G (one set for each generator xg of the free algebra).
Let K = F 〈{tg,i}〉 be the field of rational functions on the t’s and AK be the algebra over

K obtained from A by extending scalars from F to K. The algebra of generic elements will be
an F -subalgebra of AK . For each variable xg = xgj

in the generating set of F 〈xg1 , . . . , xgr
〉, we

form an element zg =
∑

i tg,ivg,i in AK . Following the embedding of A in Mn(F ) we view any
generator zg as an n × n-matrix over the field K. Observe that these generating elements are
matrices whose entries are homogeneous polynomials (on the t’s) of degree one.

Proposition 2.13. (see [3, Lemma 7.4]) There is an F -isomorphism of G-graded algebras
of F 〈xg1 , . . . , xgr

〉/I with A, the F -subalgebra of AK generated by the elements {zg1 , . . . , zgr
}.

Remark 2.14. In the rest of the proof, we use without further notice the identification of
the relatively free algebra with the algebra of generic elements A embedded in Mn(K).

Now we recall from Proposition 2.8 that the relatively free algebra F 〈xg1 , . . . , xgr
〉/I has

an essential Shirshov base Θ that is contained in the e-component. Picking the natural set of
generators of F 〈xg1 , . . . , xgr

〉/I we note that Θ consists of elements represented by monomials
on xg1 , . . . , xgr

and hence, viewed in A, they consist of matrices over K whose entries are
homogeneous polynomial in the ti’s. It then follows that the characteristic values of the elements
in Θ (that is, the coefficients of the characteristic polynomials) are homogeneous polynomials
on the ti’s.

Denote by C the algebra over F generated by these homogeneous polynomials. Note that C
is an affine commutative algebra (the essential Shirshov base is finite). Moreover, if we extend
the algebra of generic elements A to C we have (by Theorem 2.7) that AC is a finite module
over C.

For AC , we know the following result.
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Lemma 2.15. The Hilbert series of AC is rational. More generally, the rationality of the
Hilbert series is independent of the integer degree given to the generators.

Proof. Indeed, the algebra is a finitely generated module over an affine domain and hence
its Hilbert series is rational (see [20, Proposition 9.33]).

More generally, we may consider C-submodules M of AC that are generated by elements
that are represented by strongly homogeneous polynomials on xg1 , . . . , xgr

.

Lemma 2.16. The Hilbert series of M is rational.

Proof. Since AC is a finite module over a Noetherian domain, the module M is finitely
generated as well. The result now follows from the second part of Lemma 2.15.

We can now complete the proof of Theorem 1.9. Let f be a G-graded Kemer polynomial of the
basic algebra A and let J be the G-graded T -ideal it generates (evaluating on F 〈xg1 , . . . , xgr

〉)
together with I. Note that since f is a non-identity of A (and hence a non-identity of
F 〈xg1 , . . . , xgr

〉/I) the T -ideal J strictly contains I, and hence, by the maximality of I,
we have that the Hilbert series of F 〈xg1 , . . . , xgr

〉/J is rational. The key property that we
need here is that the ideal J /I is closed under the multiplication of the coefficients of the
characteristic polynomials of the elements in Θ (see [3, Proposition 8.2]). Hence, the ideal J /I
of the relatively free algebra is in fact a C-submodule of AC . Hence, its Hilbert series is rational.
Applying Lemma 2.10 the result follows. This completes the proof of Theorem 1.9.

3. A special case

In this section, we show by direct computations the rationality of the Hilbert series of the
affine relative free G-graded algebra in case I is the T -ideal of G-graded identities of the group
algebra FG. In addition, we obtain a precise estimation of the asymptotic behaviour of the
G-graded codimension sequence for that case.

Let ᾱ = (g1, g2, . . . , gr) be an r-tuple in G(r). As in previous sections, we consider the free
G-graded algebra F 〈x1,g1 , . . . , xr,gr

〉, where the xi,gi
are non-commuting variables which are in

one-to-one correspondence with the entries of ᾱ. As above, we may abuse notation by deleting
the index i and simply write xgi

.
Next, we consider the T -ideal of G-graded identities idG(FG) of the group algebra FG.

Recall from [2] that idG(FG) is generated as a T -ideal by binomial identities of the form
xgi1

xgi2
. . . xgin

− xgiσ(1)
xgiσ(2)

. . . xgiσ(n)
where σ is a permutation in Sn and the products

gi1gi2 . . . gin
and giσ(1)giσ(2) . . . giσ(n) coincide in G. That is, two monomials are equivalent if and

only if they have the same variables and they determine elements in the same g-homogeneous
component. In particular, if the group G is abelian, then two monomials are equivalent if and
only if they have the same variables.

Remark 3.1. Clearly, by passing to a subgroup of G if necessary, we may assume that the
elements of ᾱ = (g1, g2, . . . , gr) generate the group G.

Fix a natural number n and consider monomials of degree n with n1 variables xg1 , n2

variables xg2 , . . . , nr variables xgr
where n1 + n2 + . . . + nr = n. Now consider permutations
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of any monomial of that form. Clearly, any permutation determines the same element in the
abelianization of G. In other words, the elements of G determined by two monomials that have
the same variables lie in the same coset of the commutator G′. In the next lemma, we show
that if the monomial is ‘rich enough’ we may obtain all elements of a G′-coset. In order to state
the lemma we need the following notation.

We say that the word Σ = gi1gi2 . . . gin
is a presentation of g ∈ G (in terms of the entries

of ᾱ = (g1, g2, . . . , gr)) if g = gi1gi2 . . . gin
in G. For any word Σ, we may consider the

corresponding monomial (in the free algebra) XΣ = xgi1
xgi2

. . . xgin
. We say that the monomial

XΣ represents g in G.

Lemma 3.2. For every z ∈ G there exists an integer n and a word gi1gi2 . . . gin
in G such

that the set of words in

Ωgi1gi2 ...gin
= {gσ = giσ(1)giσ(2) . . . giσ(n) , σ ∈ Sym(n)}

represents all elements of the form zg where g ∈ G′ (that is, the full coset of G′ in G represented
by z).

Proof. Clearly, it is sufficient to find a word whose permutations yield all elements of
G′. It is well known that the commutator subgroup G′ of G is generated by commutators
[g, h] = ghg−1h−1 where g, h ∈ G. For any commutator [g, h], we write the elements g and h
as words in the entries of ᾱ and then we write g−1 and h−1 by inverting the corresponding
words. We denote by Σ[g,h] the corresponding word in the entries of ᾱ and their inverses (which
is equal to [g, h] in G). Clearly, the total degree (in Σ[g,h]) of each entry gi is zero and hence
permuting the elements of Σ[g,h] we obtain the identity element e. It follows easily that taking
products of such words we obtain a word Σ = Σz whose different permutations yield all of G′.
This would complete the proof of the lemma if we assume that whenever g is an entry in ᾱ,
then also g−1 is. But clearly, if this is not the case, we can replace g−1 by gord(g)−1 and the
result follows.

Consider the (r-dimensional) lattice Γr = (Z+)(r) of non-negative integer points, where r
is the cardinality of ᾱ. We refer to Γr as the r-dimensional non-negative Euclidean lattice.
Similarly, we will consider Γk, where k � r, the k-dimensional non-negative Euclidean lattices
and their translations, −→x + Γk where −→x ∈ (Z+)(k). We view the lattice Γr as a partial ordered
set, where A = (n1, . . . , nr) ≺ B = (m1, . . . ,mr), if and only if ni � mi for 1 � i � r. Clearly,
this partial order inherits a partial order on Γk, k � r, and their translations. To any point
A = (n1, . . . , nr), ni � 0 in Γr we attach all monomials XΣ with the number of variables as
prescribed by the point A, that is, the variable x1,g1 appears n1 times, x2,g2 appears n2 times
and so on. Clearly, any word Σ determines a unique lattice point A in which case we write
A = AΣ or Σ ∈ A. Clearly, the elements in G represented by all monomials that correspond to a
point A ∈ Γr lie in the same coset of G′ and hence denoting by NA = {g ∈ G : g is represented
by monomials in A}, we have that 1 � ord(NA) � ord(G′).

Lemma 3.3. The function ord(N(A)) : Γr → {1, . . . , ord(G′)} is monotonic (increasing)
with respect to partial ordering on Γr.

In particular if AΣ ∈ Γr, where Σ is a word in the entries of ᾱ whose different permutations
represent all elements of G′ (as constructed in Lemma 3.2)), then for any word Π such that
AΠ 
 AΣ we have ord(N(AΠ)) = ord(G′).

Proof. This is clear.
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We can now complete the proof that the Hilbert series of the corresponding relatively free
algebra is rational.

Let A = (n1, . . . , nr) ∈ Γr, where n = n1 + . . . + nr, and PA be the space spanned by all
monomials XΠ where Π ∈ A. Since the T -ideal of identities is spanned by strongly homogeneous
polynomials we have that the subspace of the relatively free algebra spanned by monomials
of degree n is decomposed into the direct sum of spaces which are spanned by monomials in
lattice points A of degree n.

We claim that for any integer λ, 1 � λ � ord(G′), the set of points A ∈ Γr such that

dim(PA/PA ∩ (idG(FG))) = λ

is a finite union of disjoint sets which are translations of lattices Γk, 0 � k � r. We present
here a proof which was shown to us by Uri Bader. Consider the one point compactification
Ẑ+ of Z+. It is convenient to view the space Ẑ+ as homeomorphic to the set of points
IN = {1/n : n ∈ N} ∪ {0} with the induced topology of the Lesbegue measure on the interval
[0, 1]. The closed sets are either the finite sets or those that contain 0. Consequently, the sets
that are closed and open are either the finite sets without 0 or sets that contain a set of the
form {1/n : n � d} ∪ {0}. Consider the r-fold cartesian product

Ir
N

= IN × IN × . . . × IN.

Clearly, Ir
N

is compact. Furthermore, the function ord(N(A)) with values in the finite set
T = {1, . . . , ord(G′)} (viewed as a function on Ir

N
) is monotonic decreasing and hence continu-

ous. It follows that the inverse image of any point in T is an open and closed subset of Ir
N

and
the result now follows easily.

Returning to Γr = (Z+)(r), we see that the rationality of the series will follow if we know
the rationality of the Hilbert series which corresponds to the enumeration of lattice points of
degree n in Γk, k � r. Thus, we need to check the rationality of the following power series:∑

n

((n + k − 1)!/(n!)(k − 1)!)tn

and this is clear. This gives us a direct proof of Theorem 1.3 in case I = idG(FG).
We close the article with an estimate of the sequence of codimensions that corresponds

to the T -ideal I = idG(FG). For the calculation, we consider the F -space Pn spanned by
all G-graded multilinear monomials of degree n on the variables {xg,i}g∈G,i=1,...,n that are
permutations of monomials of the form x1,g1x2,g2 . . . xn,gn

, where (g1, . . . , gn) ∈ G(n). Clearly,
dim(Pn) = ord(G)n × n! . Let

cn
G(FG) = dimF (Pn/(Pn ∩ I)).

The integer cn
G(FG) is the n-codimension that corresponds to the G-graded T -ideal I.

Corollary 3.4. Let A = FG be the group algebra over a field F and let idG(FG) be the
G-graded T -ideal of identities. Let cn

G(FG) be the nth coefficient of the codimension sequence
of idG(FG). Then, for any integer n, we have

(1)

ord(G)n � cn
G(FG) � ord(G′) ord(G)n,

(2)

lim
n→∞(cn

G(FG)/ ord(G′) ord(G)n)) = 1.

In particular, expG(FG) = limn→∞ n
√

cn
G(FG) = ord(G) (see [1]).
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Proof. Let x = x1,g1x2,g2 . . . xn,gn
be a G-graded monomial in Pn. As noted above, the set of

all n! permutations of x decomposes into at most G′ equivalence classes where two monomials
are equivalent if and only if the difference is a binomial identity of FG. It then follows easily
that ord(G)n � cn

G(FG) � ord(G′) ord(G)n.
Next, recall from the second part of Lemma 3.3 that if a monomial contains G-graded

variables with degrees in G as in the word Σ (including multiplicities), then its permutations
yield precisely G′ non-equivalent classes. So the second part of the corollary will follow easily
if we show that

lim
n→∞

dn

ord(G)n × n!
= 0,

where dn denotes the number of monomials in Pn that do not contain the set of elements of Σ
(with repetitions). But this of course follows from an easy calculation which is omitted.

Remark 3.5. One may replace the group algebra FG above by any twisted group algebra
FαG, where α is a 2-cocycle of G with values in F ∗. As above, also here, two monomials are
equivalent if and only if they have the same variables and they determine elements in the same
g-homogeneous component. The only difference (comparing to the case where α ≡ 1) is that
here, for two such monomials, the polynomial identity they determine has the form

xgi1
xgi2

. . . xgin
− γxgiσ(1)

xgiσ(2)
. . . xgiσ(n)

,

where γ is a non-zero element of F which is determined by the 2-cocycle α and the words
gi1gi2 . . . gin

and giσ(1)giσ(1) . . . giσ(1) (see [2]). One easily sees that the twisting by the 2-cocycle
α has no effect neither on the Hilbert series nor on the sequence of codimensions. Details are
left to the reader.
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