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Abstract—This paper investigates an inverse non-stationary problem of the restoration of the
spatial law of a homogeneous isotropic Timoshenko beam of finite length. Hinge support conditions
are used as boundary conditions. Initial conditions are assumed to be zero. It is assumed that of
the beam’s ends is fitted with sensors which in the course of corresponding experiment register the
amount of deflection of the beam at the sensor points. The method of the solution of a direct problem
is based on the principle of superposition where the deflection of the beam is associated with the
space load the beam is exposed to, by means of an integral operator by the spatial coordinate and
time. The kernel of such operator is so called influence function. This function is a fundamental
solution of a system of differential equations of motion of the study beam. The construction of
such solution represents a separate problem. The influence function is found by means of Laplace
time transformation and expansion into Fourier series in a system of the problem’s eigenfunctions.
The solution of the inverse problem at the first stage reduces to a system of algebraic equations for
vector operator whose components are time convolutions of the coefficients of expansion series for
an influence function with the desired coefficients of expansion of the load in a Fourier series. At the
same time, the components of the vector of the rights parts are time dependencies registered by the
sensors. The resulting system is ill-conditioned [1]. The second stage serves to resolve independent
Volterra integral equations of the first kind for the desired coefficients of Fourier serials for the load.
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1. INTRODUCTION

In recent times non-stationary inverse problems of mechanics of deformable solids have increasingly
become important in both theoretical and applying dimensions. Problems of this class are categorized
as ill-conditioned because small a large disturbance of the solution may in principal correspond to a
disturbance of initial data. Notably, the initial data for problems of such kind, as a rule, are corrupted
as they are found experimentally. This necessitates making use of special solution methods which will
have acceptable precision also for noised initial data expressed in their corruption due to random error
in measuring and computational transformations. It should be noted that problems of such type are
critically important for aviation and airspace industries because the significant part of any airframe is
usually made of beam elements exposed to non-stationary loads. Those include the modes of taking
off and landing, various maneuvers, as well as various contingencies. The basics of resolving non-
stationary inverse problems were described in the fundamental works of Hadamard [1], Markov [2],
Tikhonov [3, 4], Vatulyan [5], et al. Various issues of solutions of non-stationary problems for bodies and
structures (mathematical modeling of non-stationary interaction, theoretical and numerical techniques
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Fig. 1. Timoshenko beam subject to load.

of studying non-stationary problems, dynamics) were given in the works by Gorshkov, Tarlakovsky,
et al. [6], Poruchikov [7], Rabotnov [8], Israilov [9], Gelfand, Shilov [10], Dech [11], Babakov [12], Slep-
nyan, Yakovlev [13], Badriev, Makarov, Paymushin [14–16], Vakhterova, Serpicheva, Fedotenkov [17].
Today non-stationary inverse problems are still poorly known, mainly because of increased dimension
of non-stationary problems per unit as compared with stationary and static problems. Moreover, as
in other inverse problems, here emerges a problem associated with incorrectness of mathematical
statement which are resolved by means of Tikhonov regularization method with the minimization of
the corresponding functional in its essence.

2. STATEMENT OF PROBLEM
Let us consider non-stationary transverse oscillations of a homogeneous Timoshenko beam of finite

length l in Oxy plane of Oxyz rectangular Cartesian coordinate system.
The beam’s motion is described with the equations [1]:

∂2 w

∂t2
= κ2c22

∂

∂x

(
∂w

∂x
− χ

)
+

p

ρF
,

∂2χ

∂t2
= c2p

∂2χ

∂x2
− c22Fκ2

Iz

(
χ− ∂w

∂x

)
, (1)

where w(x, t)is deflection of the beam inOxy plane, F is area of cross section, ρ is density of the material,
c2 is velocity of shear waves, cp is velocity of bending waves, κ =

√
5/6 is coefficient of shear, χ is angle

of rotation of the cross section due to shear deformation, Iz is inertia of the cross section with respect to
Oz axis, t is time, p(x, t) is transverse loading, bn locations of sensors registering deflection of the beam
in those points.

Let us introduce a system of non-dimensional values (dimensional parameters are primed, τ denotes
non-dimensional time)
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l
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.

Then, equations (1) in a non-dimensional notation will take on the form

∂2w

∂τ2
= κ2

(
∂2w

∂x2
− ∂χ

∂x

)
+ p,

∂2χ

∂τ2
= η2

∂2χ

∂x2
− κ2γ2

(
χ− ∂w

∂x

)
. (2)

We suppose that the ends of the beams are hinge-supported. Then, the following boundary conditions
are true [6]:

∂χ

∂x

∣∣∣∣
x=0,1

= 0, w|x=0,1 = 0. (3)

The initial conditions are assumed to be zero:

w|τ=0 =
∂w

∂τ

∣∣∣∣
τ=0

= χ|τ=0 =
∂χ

∂τ

∣∣∣∣
τ=0

= 0. (4)
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Fig. 2. Beam subjected to sudden concentrated load.

3. INFLUENCE FUNCTIONS FOR TIMOSHENKO BEAM
For the solution of direct and inverse problems it is necessary to construct influence functions

Gw (x, ξ, τ) and Gχ (x, ξ, τ).
They are the solutions of the problem (2)–(4) with replacement of the load p (x, τ) with a single

sudden concentrated load δ (x− ξ) δ (τ) (Fig. 2), where δ (x) is the Dirac delta function:

∂2Gw

∂τ2
= κ2

∂

∂x

(
∂Gw
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−Gχ

)
+ δ (x− ξ) δ (τ) ,
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τ=0
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∂τ
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With a knowledge of the influence functions Gw (x, ξ, τ), Gχ (x, ξ, τ) and basing on the superposition
principle [6], the solution of the problem (2)–(4) can be presented in the form

w =

l∫
0

dξ

τ∫
0

Gw (x, ξ, τ − t) p (ξ, t) dt =

l∫
0

Gw ∗ pdξ,

χ =

l∫
0

dξ

τ∫
0

Gχ (x, ξ, τ − t) p (ξ, t) dt =

l∫
0

Gχ ∗ pdξ. (6)

Hereinafter asterisk "*" denotes time convolution.
For construction of influence functions we will apply a Laplace time transformation to the task (5)

(index L will denote Laplace transform, s is a parameter of Laplace transformation GL
w = GL

w (x, ξ, s),
GL

χ = GL
χ (x, ξ, s)):

s2GL
w = κ2

∂

∂x

(
∂GL

w

∂x
−GL

χ

)
+ δ (x− ξ) ,

s2GL
χ = η2

∂2GL
χ

∂x2
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(
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χ − ∂GL
w

∂x

)
,

∂GL
χ

∂x

∣∣∣∣∣
x=0,1

= 0, GL
w

∣∣
x=0,1

= 0. (7)

Taking the boundary conditions (3) into consideration, we look for the solution of this problem in the
form of trigonometric Fourier series:

GL
w =

∞∑
n=1

GL
wn (ξ, τ) sinλnx,
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GL
χ =

GL
χ0

2
+

∞∑
n=1

GL
χn (ξ, τ) cos λnx, λn = πn. (8)

Also we present the function δ (x− ξ) in form of a series:

δ (x− ξ) =
∞∑
n=1

δn (ξ) sinλnx,

δn (ξ) =
2

l

l∫
0

δ (x− ξ) sinλnxdx =
2

l
sinλnξ. (9)

By substituting, we come to equations in coefficients of series (8). With n = 0, we obtain(
s2 + κ2γ2

)
GL

χ0 = 0, ⇒ GL
χ0 = 0, Gχ0 (τ) = 0,

If n > 0: (
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n

)
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GL
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The solution takes the form

GL
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Δn
δn (ξ) , GL
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where
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)
,

Δ2n (s) = κ2γ2λn.

Originals GL
wn and GL

χn are obtained by mean of the second expansion theorem for Laplace transfor-
mation:
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4∑
l=1

res
s=snl

[
Δ1n (s)

Δn (s)

]
esτ , Gχn = δn (ξ)
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Δ2n (s)

Δn (s)

]
esτ ,

were snl zero of polynomial Δn, res
s=snl

f (s) is residue of function f (s) in point snl [12]. Root of equation

Δn takes the form

snl = ±

√
−κ2λ2
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√
Dn

2
,
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κ2λ2
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n
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The form of originals will depend on the character of zero of polynomial Δn. From (11) it follows that
all roots are simple and partially imaginary because√

Dn < κ2λ2
n + η2λ2

n + κ2γ2.

Let us denote
sn1,n2 = ±iαn, sn3,n4 = ±iβn,

αn =

√
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n + κ2γ2 −

√
Dn

2
,
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√
κ2λ2
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√
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2
.
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With all above notations and formula for residue of a function in a prime field, [18] will take the form [17]:

Gw (x, ξ, τ) =
∞∑
n=1

Gwn (ξ, τ) sinλnx,

Gwn (ξ, τ) = δn (ξ) G̃wn (τ) , G̃wn (τ) = (Ajn sinαnτ +Bjn sinβnτ) ,

Ajn =
Δjn (iαn)

αn (α2
n − β2

n)
, Bjn =

Δjn (iβn)

βn (α2
n − β2

n)
. (12)

4. SOLUTION OF A DIRECT NON-STATIONARY PROBLEM
FOR TIMOSHENKO BEAM

We assume that a beam is subjected to a random distributed non-stationary load p (x, τ). By making
use of the influence function (12) the deflection of the beam will be obtained by the first expression in the
formula (6).

Let us present the function p (x, τ) in form of trigonometric Fourier series:

p (x, τ) =
∞∑
n=1

pn (τ) sinλnx. (13)

Substituting (12) and (13) into (6), we obtain

w (x, τ) =

τ∫
0

l∫
0

[
2

l

∞∑
n=1

sin (λnξ) G̃wn (τ − t) sin (λnx)

][ ∞∑
m=1

pm (t) sin (λmξ)

]
dξdt. (14)

Then, considering the orthogonality of the trigonometrical functions, the formula (14) will take the form

w (x, τ) =

∞∑
n=1

wn (τ) sinλnx, wn (τ) =

τ∫
0

G̃wn (τ − t) pn (t) dt. (15)

5. NUMERICAL IMPLEMENTATION OF SOLUTION OF DIRECT NON-STATIONARY
PROBLEM FOR TIMOSHENKO BEAM

For approximated definition of deflection of beam w (x, τ) we use the formula of mean triangles.
We break down the interval of integration [0, τ ] by M parts with even spacing h = τ

M . In representa-
tion (15) we limit ourselves with fist N terms of series. Intervals in (15) are replaced with approximated
quadrature formulas of mean rectangles formulas, then

wh (x, τ) ≈ h
N∑

n=1

sinλnx
M∑

m=1

G̃wn (x, τ − tm) pn (tm), tm = h
2m− 1

2
. (16)

Examples of the solution of a direct problem with convergence estimate of formula (16) are given in [17].

6. SOLUTION OF INVERSE PROBLEM

The inverse problem is to find coefficients pn (τ) of series (13).
We assume that at some interval of the beam there are N sensors which measure deflections of

the beam W1 (τ) = w (b1, τ), W2 (τ) = w (b2, τ), ..., WN (τ) = w (bN , τ) depending on time τ (Fig. 1),
where bn = b1−bN

2 + b1−bN
2 cos

(
2n−1
2N π

)
is a Chebyshev polynomial [19], b1 is the coordinate of the first

sensor on the beam, bN is the coordinate of the last sensor.
Limiting ourselves with the fist members, from (15) we receive integral representations

Wk (τ) =

N∑
n=1

wn (τ) akn, akn = sin bkλn, k = 1, .., N, (17)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 4 2019



444 FEDOTENKOV et al.

which taking expressions for wn (τ) into consideration, comprise a system of integral equations with
respect to required coefficients pn (τ).

We write the system (17) in a vector-matrix form:

W = AI, A = (akn)N×N , W = [Wk (τ)]N×1, I = [wn (τ)]N×1. (18)

By resolving this system we obtain the vector I

I = W∗, (19)

where W∗ = A−1W = [w∗
n (τ)]N×1.

Chebyshev polynomial is used for portioning neighborhood of sensors locations to make sure that
the solution of the system of linear algebraic equations (19) is correct. The vector-matrix equation (19)
is equivalent to N independent Volterra integral equations of the first kind with respect to the required
coefficients of serials (13):

I = W∗. (20)

As is well known [2], if G̃ (0) = 0, the equations (20) are incorrect according to J. Hadamard [1].
Therefore, for the solution of the problem (20) it is necessary to apply the method of Tikhonov
regularization [3, 4].

7. NUMERICAL IMPLEMENTATION OF SOLUTION OF VOLTERRA INTEGRAL
EQUATION OF THE FIRST KIND

For solution of equations (20) we will make use of the. formula of mean rectangles.

Let us fix some finite time point T . We break down the time interval of integration [0, T ] into M even
parts with even spacing h = T/M . For each moment of time τm = hm we substitute the equation (20)
with a numerical analogue with making use of the method of mean rectangles:

w∗
nm ≈ h

m∑
k=1

Gw,nmkpnk, m = 1, ...,M,

w∗
nm = w∗

nm (τm) , Gw,nmk = Gw,nmk (τm − tk) ,

pnk = pn (tk) , tk = h
2k − 1

2
. (21)

As a result, we come to a system of linear algebraic equations with respect to pnk which are the values
of the required coefficients pn (τ) at moments of time tk, k = 1, ...,M :

GnPn= W∗
n, (22)

where

Gn = (Gw,nmk)M×M =

⎛
⎜⎜⎜⎜⎜⎜⎝

Gw,n11 0 0 ... 0

Gw,n21 Gw,n22 0 ... 0

... ... ... ... ...

Gw,nM1 Gw,nM2 Gw,nM3 ... Gw,nMM

⎞
⎟⎟⎟⎟⎟⎟⎠

,

P = (pnk)M×1, W∗
n =

(
w∗
nm

h

)
M×1

.
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Fig. 3. p (x, τ ) = x(x− l)e−τ , N = 2, τ = 1.

8. REGULARIZATION OF INVERSE PROBLEM

Due to incorrectness of the problem (20), the matrix Gn is ill-conditioned, therefore we will resolve
the equation system (22) by making use of the Tikhonov regularization technique [3, 4]. Here, (22) is
substituted with an equivalent problem of finding of the minimum of the Tikhonov functional:

Ωα (τ) = |Gnτ −W∗
n|2 + α|τ |2.

It can be demonstrated [3] that the problem of minimization of the Tikhonov functionalΩα (τ) reduces
to the solution of an equivalent system of algebraic equations(

GT
nGn + αE

)
P̃n = GT

nW
∗
n, (23)

where is a small positive parameter of regularization which is selected by some optimal way [3], is vector
of quasi solution of the system of equations (22).

9. EXAMPLES OF SOLUTIONS OF INVERSE PROBLEM

Consider some examples of the solution of an inverse problem of identification of external non-
stationary load affecting a Timoshenko beam with the following non-dimensional parameters: η = 1.6,
l = 1, γ = 346.4, β = 0.2, ξ = 0.4, which correspond, for instance, to a Timoshenko beam made of steel,
with the following dimensional parameters:

ρ = 7850 kg/m3, E = 2× 1011 Pa, μ = 7.69× 1010 Pa, (24)

λ = 1.15 × 1011 Pa, ν = 0.3, β = 0.2l, ξ = 0.4l. (25)

The beam is 1 m long, with rectangular cross section of 10−2 × 10−2. Non-dimensional time of work
of sensor T = 5, number of time steps: M = 100, b1 = 0.4l, bN = 0.9l. Displacements Wn (τ) in the
sensor locations are found from the solution of a direct problem with a specified external load of p (x, τ).

We set a small parameter as α = 10−5. By resolving a system of linear algebraic equations (23) we
obtain coefficients of Fourier series which are quasi solution of the problem (22). Using the formula (13)
we obtain a reconstructed load (Figs. 3 and 4). Here the solid line denotes the load p (x, τ) set for the
solution of a direct problem by formula (15), dashed line denotes the load drawn from the solution of an
inverse problem (22), dash-and-dot line denotes the load drawn from the solution of an inverse problem
with insignificant noise.
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Fig. 4. p (x, τ ) = 10−4e−τ sin (5xπ)
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, N = 20, τ = 1.

10. CONCLUSION

This paper offers a technique and describes an algorithm to resolve an inverse non-stationary problem
for a Timoshenko beam for the purpose of identification of distributed non-stationary load. There are
some examples of calculations given both with noised sensor readings and without them.
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