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In a ferromagnet (F) being in contact with a superconductor (S) an unconventional finite-momentum pairing
of electrons forming Cooper pairs occurs. As a consequence, interference effects of the pairing wave function,
leading to an oscillation of the critical temperature for increasing F-layer thickness in S/F bilayers, including
extinction and recovery of the superconducting state, were predicted by theory. We observed experimentally
all types of this behavior, calculated theoretically, in Nb/Cu;_.Ni, bilayers (z = 0.59) of nanometer film
thickness, prepared by magnetron sputtering (utilizing a moving magnetron deposition technique to provide
a superb homogeneity of the ultrathin Nb layers), including a double extinction of superconductivity, giving

evidence for a multiple reentrant state.

PACS: 74.45.4-c, 74.62.—c, 74.78.Na

1. Introduction. Singlet superconductivity and fer-
romagnetism usually not co-exist in a homogeneous ma-
terial. The reason is that the superconducting state is
established by Cooper pairs which are pairs of electrons
with opposite momenta and antiparallel spins. Con-
trary, the ferromagnetic state is built up by electrons
with parallel aligned spins. Thus, singlet superconduc-
tivity and ferromagnetism are long-range orders which
are expected to exclude each other.

Nevertheless,  Fulde-Ferrell [1] and Larkin-
Ovchinnikov [2] (FFLO) predicted superconducting
pairing to occur in the presence of an exchange field,
i.e. on a ferromagnetic background, but with a non-
vanishing momentum of the pair and in an extremely
narrow range of parameters [3]. For superconduc-
tor/ferromagnet (S/F) layers, Buzdin and Kupriyanov
[4] predicted an FFLO-like state, as the consequence of
a S/F proximity effect, i.e. a pair amplitude establishing
in the F-material by a penetration of electron pairs
through the S/F interface. Due to the non-vanishing
pairing momentum, the Cooper-pair wave function
oscillates in the ferromagnetic layer. Interference
effects between the part of the incoming pair amplitude
reflected at the S/F boundary and the pair amplitude
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reflected at the outer surface of the ferromagnetic
layer, lead to an oscillating behavior of the critical
temperature 7, of the layered system as a function of
increasing F-layer thickness dF.

The phenomenon was studied experimentally for
different S/F layered systems [5—-10]. It turns out
that samples made by magnetron sputtering due to
their high quality surface and boundary properties are
most suitable to study this type of S/F proximity-effect
physics [11].

Moreover, an extremely accurate method to measure
the thickness of the layers, especially of the very thin
F layer has to be applied. Rutherford backscattering
spectrometry (RBS) is such a method. For the first
time it was applied in proximity effect investigations in
Ref. [11].

Not only magnetic elements, but also ferromagnetic
alloys were used as F-layer material [12—-15]. In this
case, the exchange energy of the material can be ad-
justed by the alloy composition. For a diluted magnetic
alloy, thicker F layers can be used, which are much easier
to handle. Now, RBS is applied to measure the compo-
sition of the deposited alloy layer and its thickness [15].

Concerning the theory, Radovic et al. [16, 17] gave a
first description. Advanced calculations by Aarts et al.
[18], Tagirov [19] and Fominov et al. [20] consider the
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finite transparency of the S/F interface. Single-mode
[18, 19] and also multimode [20] solutions for the pair
amplitude in S/F layers were studied. Not only T, oscil-
lations were predicted by these theories. Most spectac-
ular is the result that superconductivity may vanish in a
certain range of the F-layer thicknesses, and re-appear
for a further increase of the thickness of the F-layer.
This is a reentrant behavior of superconductivity.

Recently, aside the most pronounced 7T, oscillations
ever measured in S/F proximity effect systems to date,
such reentrant behavior could be observed by us for
Nb/Cuy41Nisg bilayers [15]. These experiments provided
the first convincing evidence of a reentrant behavior of
the superconducting state in S/F layers. By detailed
studies we were able to realize experimentally all types
of non-monotonic and reentrant behavior of supercon-
ductivity predicted by the theory: from very moderate
suppression with a shallow minimum in the T,.(dr) de-
pendence, over expressed critical temperature oscilla-
tions, till reentrant behavior. Even an indication of a
multiple reentrance was found [15, 21, 22]. For a brief
review of our work, containing an introduction into the
basic physical mechanisms of the quasi-one-dimensional
FFLO-like state in S/F bilayers see Ref. [23].

2. Experimentals. Figure 1 shows our wedge tech-
nique [11] to fabricate S/F bilayers of different thickness
in the same run, yielding the same surface and bound-
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buffer layers
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Fig.1. Sketch of a Nb/CuNi-wedge sample with Nb layer of
constant thickness, covered by a CuNi wedge. The sample
is cut into stripes along dotted lines to produce a series of
up to 40 specimens with variable ferromagnetic CuNi-alloy
layer thickness

ary properties. First, a superconducting layer of con-
stant thickness (here Nb), then a film of steadily in-
creasing thickness (the wedge) of the F material (here
Cu41Nisg alloy), are deposited. Cutting into stripes
across the thickness gradient yields a series of up to
about 40 samples with constant S but different F-layer
thickness. These are separately measured to determine
their critical temperature.

The thickness of the layers and their alloy compo-
sition were determined from RBS investigations (see
Ref. [15] for details), demonstrating constant S and
steadily increasing F-layer thickness dp for the series
of specimens investigated.

In more detail: The S and F films were prepared by
magnetron sputtering on commercial (111) silicon sub-
strates at room temperature. Pure argon was used as
sputter gas. Three targets, Si, Nb and CuyoNigg, were
pre-sputtered for 10-15 minutes to remove contamina-
tions. Moreover, Nb acts as a getter material, reducing
the residual gas pressure in the chamber. Next, a silicon
buffer layer was deposited by using a RF magnetron.
This generates a clean interface for the Nb layer de-
posited subsequently. To get flat high-quality Nb layers
(thickness 5-15nm) by DC magnetron sputtering, we
rotated the target around the symmetry axis of the vac-
uum chamber during deposition [15]. A dc-motor setup
moved the full-power operating magnetron along the Si
substrate of 80 x 7 mm size so that the surface was homo-
geneously sprayed with Nb. The average growth rate of
the Nb film was about 1.3nm/sec, whereas the deposi-
tion rate for a fixed, non-moving target would be about
4-5nm/sec.

The wedge-shaped ferromagnetic layer was then de-
posited, utilizing the intrinsic spatial gradient of the de-
position rate [11, 15]. The Cu4oNigo target was RF
sputtered with a rate of 3-4nm/sec. Practically the
same composition of the alloy was found in the film.
A degradation of the resulting Nb/Cuy4;Nisg bilayers at
atmospheric conditions was prevented by a silicon cap
of about 5-10nm thickness.

Then samples of equal width (about 2.5mm) were
cut to obtain a batch of S/F-bilayer strips for T.(dr)
determination by four-probe resistance measurements.
The critical temperature was determined from the mid-
points of the resistive transitions.

The measurements were performed using conven-
tional “He and ®He cryostats as well as a 3He/*He dilu-
tion refrigerator down to 40 mK.

3. Results and Discussion. The superconducting
T.(dcuni) measurements are shown in Fig.2. A clear
non-monotonic behavior is observed when varying the
ferromagnetic layer thickness. For fixed thickness of the
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Fig.2. Dependence of the superconducting transition tem-
perature T, on the ferromagnetic layer thickness for sample
series with different fixed thickness of the superconducting
Nb layer: 1 — dnp ~ 14.1nm (S23), 2 — dyy ~ 7.8nm
(S22), 3 — dyp ~ 7.3nm (S15), 4 — dyp ~ 6.2nm (S21).
The solid lines are calculated within the theory [11, 19]
(see values of parameters in the text)

Nb layer of dnyy, = 14.1nm (sample series S23) the T,
oscillation is flat with a shallow minimum. Reducing
dnb, the transition temperature drops more sharply for
increasing dcoyni and the minimum becomes more ex-
pressed, as shown e.g. for series S22 with dxp, = 7.8 nm.
Then, only a very small further reduction of dyp to
7.3nm is enough to show the result of reentrant super-
conductivity in S/F bilayers mentioned above (first pub-
lished by us in Ref. [15]). By reducing dny to 6.2nm,
a double suppression of superconductivity is obtained,
giving evidence for the multiple reentrant behavior pre-
dicted by the theory.

The theoretical curves were fitted following the strat-
egy described in Refs. [11, 15, 22]. Throughout, the
range for the superconducting coherence length &g be-
tween 6.2nm and 6.7 nm was applied (see the discussion
in Ref. [22]) instead of {s ~ 10 nm, as used in our previ-
ous publications on Nb/Cuy; Nisg bilayers. In detail, the
fitting parameters are as follows for curves S15, S21, S22,
and S23, with TcO,Nb(dCuNi = Onm) = 6.67, 6.2, 6.85,
and 8.0K, respectively (taken from [22]): {5 = 6.3, 6.1,
6.5, and 6.6 nm; Npvp/Ngvs = 0.22 for all; Tr = 0.67,
0.65, 0.61, and 0.44; lp/&ro = 1.3, 1.1, 1.1, and 1.1;
Ero = 9.5, 11.2, 10.7, and 10.8 nm. Here, &g, is the su-
perconducting coherence length, Npvp /Ngvg is the ratio
of the Sharvin conductances at the S/F interface, Tr is
the interface transparency parameter, [, is the electron
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mean free path of conduction electrons in the ferromag-
net, and €po is the magnetic coherence length [11].

The calculated curve for sample series S21 with a
double extinction of superconductivity does not yield a
further reentrance of superconductivity for higher values
of doyni- A slightly thicker Nb layer (dnp =~ 6.3nm),
however, gives a prediction of a further island of super-
conductivity above doyni &~ 51 nm.

4. Conclusion. Our investigations clearly show the
existence of a quasi-one-dimensional FFLO-like state in
Nb/Cu4;Nisg bilayers. The non-monotonic behavior of
the critical temperature predicted by theory, including
the phenomenon of reentrant superconductivity with ev-
idence for a multiple reentrant state, could be demon-
strated experimentally.
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