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A quantitative theory of the Josephson effect in SFIFS junctions (S denotes bulk superconductor, F is metallic
ferromagnet, and I is insulating barrier) is presented in the dirty limit. A fully self-consistent numerical proce-
dure is employed to solve the Usadel equations for arbitrary values of the F-layer thicknesses, magnetizations,
and interface parameters. In the case of antiparallel ferromagnet magnetizations, the effect of critical current Ic
enhancement by the exchange energy H is observed, while in the case of parallel magnetizations the junction
exhibits a transition to the π state. In the limit of thin F layers, we study these peculiarities of the critical current
analytically and explain them qualitatively; the scenario of the 0–π transition in our case differs from those stud-
ied before. The effect of switching between 0 and π states by changing the mutual orientation of F layers is
demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
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1 Josephson structures involving ferromagnets as
weak link material are presently a subject of intensive
study. The possibility of the so-called “π state” (charac-
terized by the negative sign of the critical current Ic) in
SFS Josephson junctions was predicted theoretically
[1–8]. The first experimental observation of the cross-
over from the 0 to the Ic state was reported by Ryazanov
et al. [9] and explained in terms of temperature depen-
dent spatial oscillations of induced superconducting
ordering in the diffusive F layer.

More recently, a number of new phenomena were
predicted in junctions with more than one magnetically
ordered layer. First, the possibility of critical current
enhancement by the exchange field in SFIFS Josephson
junctions with thin F layers and antiparallel magnetiza-
tion directions was discussed in the regimes of small
S-layer thicknesses [10] and bulk S electrodes [11, 12].
Second, the crossover to the π state was predicted in
[11] for the parallel case even in the absence of the
order parameter oscillations in thin F layers. Still, the
physical explanation of these effects and accurate cal-
culation of their magnitude have not been given so far.
To make such estimates in the model with thin S elec-
trodes, one must consider KO-1 type solutions [13] and
take into account spatial variation of the superconduct-
ing state in the SF bilayers; at the same time, in the bulk
S case an approximate method was used in [11] beyond
its applicability range [12]. This problem is of a rather
general nature, since one may expect from previous

1 This article was submitted by the authors in English.
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knowledge (see, e.g., review [14]) that the supercurrent
in a short weak link is H independent.

The above intriguing scenario motivated us to attack
the problem of the Josephson effect in SFIFS junctions
by self-consistent solution of the Usadel equations for
arbitrary thicknesses of the F layers, barrier transparen-
cies, and exchange field orientations. Below, we show
that the 0–π transition in the case of parallel H orienta-
tion or enhancement of Ic by H in the antiparallel case
with thin F layers occurs when the effective energy shift
in the ferromagnets (due to the exchange field)
becomes equal to a local value of the effective energy
gap induced into an F layer. Under this condition, a
peak in the local density of states (DoS) near the SF
interfaces is shifted to zero energy. In the models with
DoS of the BCS type, this leads to logarithmic diver-
gence of Ic in the antiparallel case at zero temperature,
similarly to the well-known Riedel singularity of ac
supercurrent in SIS tunnel junctions at voltage eV = 2∆.
We also describe the general numerical method to solve
the problem self-consistently and apply it for quantita-
tive description of the 0–π transition and Ic enhance-
ment in SFIFS junctions.

The model. We consider the structure of the SFIFS
type, where I is an insulating barrier of arbitrary
strength. We assume that the S layers are bulk and that
the dirty limit conditions are fulfilled in the S and F
metals. Although our method is applicable in the gen-
eral situation of different ferromagnets and supercon-
ductors, for simplicity, below we illustrate our results in
002 MAIK “Nauka/Interperiodica”
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the case where equivalent S and F materials are used on
both sides of the structure (although the directions of
the exchange field in the two F layers may be different),
both F layers have the thickness dF, and the two SF
interfaces have the same transparency. At the same
time, we do not put any limitations on dF and the trans-
parency.

The Usadel functions G, F obey the normalization

condition  + Fω  = 1, which allows the following
parameterization in terms of the new function Φ:

(1)

The quantity  = ω + iH corresponds to the general
case where the exchange energy H is present. However,
in the S layers, H = 0 and we have simply  = ω.

We choose the x axis perpendicular to the plane of
the interfaces with the origin at the barrier I. The Usadel
equations [15] in the S and F layers have the form

(2)

(3)

where Tc is the critical temperature of the superconduc-
tors, ∆ is the pair potential (which is nonzero only in the
S layers), ω is the Matsubara frequency, and the coher-
ence lengths ξ are related to the diffusion constants D

as ξS(F) = . The pair potential satisfies the
self-consistency equations

(4)

In this paper, we restrict ourselves to the cases of paral-
lel and antiparallel orientations of the exchange fields H
in the ferromagnets.

The boundary conditions at the SF interfaces (x =
) have the form [16] (see [17] for detail)

(5)

(6)

with

where RB and ! are the resistance and the area of the
SF interfaces, respectively; and ρS(F) is the resistivity of
the S (F) layer. At the I interface (x = 0), the boundary
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conditions read

(7)

(8)

with

where the indices 1, 2 refer to the left and right side of
the I interface, respectively.

In the bulk of the S electrodes, we assume a uniform
current-carrying superconducting state

(9)

where m is the electron mass, v s is the superfluid veloc-
ity, and ϕ is the phase difference across the junction.

The supercurrent density is constant across the sys-
tem. In the F part, it is given by the expression

(10)

while an analogous formula for the S part is obtained if
we substitute   ω. This expression, together with
the boundary condition (8) and the symmetry relation
F(–ω, H) = F(ω, –H), yields the formula for the super-
current across the I interface:

(11)

(the functions F are related to Φ via Eq. (1)).
The limit of small F-layer thickness: dF ! min(ξF,

). Under the condition γB/γ @ 1, we can
neglect the suppression of superconductivity in the
superconductors. We further assume that the transpar-
ency of the I barrier is small, γB, I @ max(1, γB), and the
SF bilayers are decoupled (the exact criterion will be
given below). In this case, we can set v s = 0 and expand
the solution of Eq. (3) in the F layers up to the second
order in small spatial gradients. Applying the boundary
condition (6), we obtain the solution in a form similar
to that in the SN bilayer [18, 17]:

(12)

with

Substituting Eq. (12) into the expression for the super-
current (11), we obtain I(ϕ) = Icsinϕ.
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For the parallel orientation of the exchange fields,
H1 = H2 = H, the critical current is

(13)

where Ω = ω/πTc, δ = ∆0/πTc, α = (hγBM)2, h = H/πTc,
g1 = 2GS + γBMΩ , and g2 = (GS + γBMΩ)2.

For the antiparallel orientation, H1 = –H2 = H, the
critical current is given by

(14)

At h = 1/γBM and small Ω , the expression in the sum in
Eq. (14) behaves as 1/Ω; thus, at low T, the critical cur-

rent diverges logarithmically:  ∝  ln(Tc/T). This
effect was pointed out earlier in [10, 11].

The above results become physically transparent in
the real energy ε representation. Making an analytical
continuation in Eqs. (1) and (12) by the replacement
ω  −iε, we obtain the expression for the DoS per
one spin projection (spin “up”) NF(ε) = ReGF(ε) in the
F layers

(15)

which demonstrates the energy renormalization due to
the exchange field. Equation (15) yields NF(0) =

Re(γBMh/ ), which shows that at h = 1/γBM

the singularity in the DoS is shifted to the Fermi level.

Exactly at this value of h the maximum of  is
achieved due to overlap at two ε–1/2 singularities. This
leads to logarithmic divergency of the critical current
(14) in the limit T  0, similarly to the well-known
Riedel singularity of a nonstationary supercurrent in
SIS tunnel junctions at voltage eV = 2∆0, where the
energy shift is due to the electric potential. At the same
value of the exchange field h = 1/γBM, the critical current
changes its sign (i.e., the crossover from the 0 to the π
contact occurs) for parallel magnetizations in the F lay-
ers [see Eq. (13)]. We emphasize that the scenario of the
0–π transition in our case differs from those studied
before, where the π shift of the phase was either due to
spatial oscillations of the order parameter in F layers or
due to the proximity-induced phase rotation in S layers.
In our case, the phase does not change in either layer;
instead, it jumps at the SF interfaces. This scenario is
most clearly illustrated in the limit of large H where
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Eqs. (1) and (12) yield FF ∝  –i∆ , whereas FS ∝
∆; thus the phase jumps by π/2 at each of the SF inter-
faces, providing the total π shift between FF1(–H) and
FF2(H) [it is the phase difference between these two
functions that determines the supercurrent according to
Eq. (11)].

The considered effects take place only for suffi-
ciently low I-barrier transparency. Indeed, it follows

from Eq. (12) that GF(Ω) ∝  1/  for small Ω under
the condition h = 1/γBM. As a result, the boundary con-
dition (8) results in that, at

, (16)

the solutions (12) are not valid, since in this frequency
range the effective transparency of the I interface (the
parameter GF1GF2/γB, I [19]) increases and the spatial
gradients in the F layers become large (the limit of large
gradients is called “the KO-1 case” [13, 14]). In this
case, the nongradient term in Eq. (3) can be neglected
and the general solution of the Usadel equation in the F
layers has the KO-1 form [13]:

(17)

where M = , while C, B, Q, and η are
integration constants. From Eqs. (1) and (17), it follows
that the Green’s functions G, F and hence the contribu-
tion to the critical current from these frequencies are H
independent. As a result, the barrier transparency
parameter γB, I provides the cutoff of the low-tempera-

ture logarithmic singularity of  at h = 1/γBM [see
Eq. (14)]. According to Eq. (16), the critical current sat-
urates at low temperature T* = Tcmin(ξF/dFγB, I, γB/γB, I).
We note that any asymmetry in the SFIFS junction will

also lead to the cutoff of  divergency [19]. The
above estimates are made for the case of low barrier
transparency, ξF/dFγB, I ! 1 and γB/γB, I ! 1. The oppo-
site regime of high transparency deserves separate
study.

The general case. For arbitrary F-layer thicknesses
and interface parameters, the boundary problem (1)–(9)
was solved numerically using the iterative procedure.
Starting from trial values of the complex pair potentials
∆ and the Green’s functions GS, F, we solve the resulting
linear equations and boundary conditions for functions
ΦS, F. After this, we recalculate GS, F and ∆. Then, we
repeat the iterations until convergency is reached. The
self-consistency of calculations is checked by the con-
dition of conservation of the supercurrent (10) across
the junction. We emphasize that our method is fully
self-consistent; in particular, it includes the self-consis-
tency over the superfluid velocity v s, which is essential
(contrary to the constriction case) in the quasi-one-
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dimensional geometry. The details of our numerical
method will be presented elsewhere [19].

Figure 1 shows Ic(H) dependences calculated at T =
0.05Tc from the numerical solution of the boundary
problem (1)–(9) for the fixed value of γBM = 1 and a set
of different F-layer thicknesses and SF interface param-
eters γ. The normal junction resistance is RN = RB, I +
2RB + 2ρFdF/!. The curves dF/ξF = 0 are the limits of
the vanishing dF/ξF ratio at fixed γBM and are calculated
from Eqs. (13) and (14). For thin F layers, the results
depend only on the combination γM = γdF /ξF. The
enhancement of Ic and the crossover to the π state are
clearly seen for the antiparallel and parallel orienta-
tions, respectively. In accordance with the estimates
given above, these effects take place for the values of
the exchange field H close to πTc. The enhancement dis-
appears with increasing gradients in the F layers, since
the solution to Eq. (12) loses its validity. This is illus-
trated in Fig. 1 by increasing the thickness dF or γM. In
particular, in the case of large γM the enhancement is
absent, in contrast to the statement in [11] (see [12]).

The influence of temperature and barrier transpar-
ency on the critical current anomaly is shown in Fig. 2.
One can see that, in accordance with the above esti-

mate, the cutoff of the  singularity is provided by
finite temperature or barrier transparency; i.e., with the
decrease of the barrier strength parameter γB, I, the peak
magnitude starts to drop when the ratio dFγB, I /ξF

becomes comparable to T/Tc. With a further decrease of
dFγB, I /ξF, the singularity disappears, while the transi-
tion to the π state shifts to large values of H.

Ic
a( )

Fig. 1. Enhancement of the critical current (antiparallel
magnetizations, solid lines) and the 0–π transition at which
Ic changes its sign (parallel magnetizations, dashed lines) in
the SFIFS junction at T/Tc = 0.05, γBM = 1, and γM = 0. Inset:
the same for large values of γM (when dF ! ξF, the results
depend only on this parameter).

γM = 5
JETP LETTERS      Vol. 75      No. 4      2002
Figure 3 demonstrates the DoS in the F layers for a
certain spin projection calculated numerically in the
limit of small I-barrier transparency. At H = 0, we
reproduce the well-known minigap existing in an SN
bilayer. At finite H, the gap shifts in energy (asymmet-
rically) and the peak in the DoS reaches zero energy at
h = 1/γBM. One can see that, even for a small value γM =
0.05, the peaks are rather broad; this is the reason why

the singularity in  is suppressed by γM very rapidly.

In the limit of finite F-layer thickness (see Fig. 4),
which is of practical interest, the numerical calculations
show monotonic suppression of Ic with an increase of

Ic
a( )

Fig. 2. Enhancement of the critical current (antiparallel
magnetizations, solid lines) and the 0–π transition at which
Ic changes its sign (parallel magnetizations, dashed lines) in
the SFIFS junction: influence of temperature and barrier
transparency. The dotted line corresponds to T/Tc = 0.01 and
ξF/dFγB, I = 0; the parameters for other curves are given in
the figure.

Fig. 3. Normalized density of states for spin “up” in the F
layer for various exchange fields.
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the exchange field H for antiparallel magnetizations of
the F layers and the 0–π crossover for the parallel case.
One can see from Fig. 4 that, for given temperature and
thickness of the F layers, it is possible to find the value
of the exchange field at which switching between par-
allel and antiparallel orientations will lead to switching
of Ic from near-zero to a finite value (or to switching
between 0 and π states). This effect may be used for
engineering cryoelectronic devices manipulating spin-
polarized electrons.

The case of parallel F-layer magnetizations in the
absence of the I barrier corresponds to the standard SFS
junction where the 0–π transition is possible due to spa-
tial oscillations of induced superconducting ordering in
the F layer. The thermally induced 0–π crossover in an
SFS junction was observed in [9], where a simple the-
ory based on the linearized Usadel equations was also
presented. Here, we show such a crossover (see the
inset in Fig. 4) from the fully self-consistent solution in
the range of the exchange fields corresponding to that
of [9]. Comparison with the experimental data and
more detailed results of our model will be given else-
where [19].

In conclusion, we have presented a general method
for solving Usadel equations in SFIFS junctions self-
consistently. Using our method, we have theoretically
investigated the Josephson current in SFIFS and SFS
junctions as a function of relative F-layer magnetiza-
tions, thicknesses, and parameters of the S/F and F/F
interfaces. We have identified the physical mechanisms
of the critical current enhancement and of the 0–π tran-
sition in these junctions.
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Fig. 4. Critical current in SF1F2S junction: switching effect.
T/Tc = 0.5, the solid and dashed lines correspond to the anti-
parallel and parallel orientations of magnetizations, respec-
tively. Inset: thermally induced 0–π crossover in the parallel
case. 
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