
TEMPORAL FILTERING FOR DEPTH MAPS GENERATED BY KINECT DEPTH CAMERA

Sergey Matyunin, Dmitriy Vatolin, Yury Berdnikov

Moscow State University
Graphics & Media Lab

smatyunin@graphics.cs.msu.ru, dmitriy@graphics.cs.msu.ru
yberdnikov@graphics.cs.msu.ru

Maxim Smirnov

YUVsoft Corp.

ms@yuvsoft.com

ABSTRACT

We propose a method of filtering depth maps provided by
Kinect depth camera. Filter uses output of the conventional
Kinect camera along with the depth sensor to improve the
temporal stability of the depth map and fill occlusion areas.
To filter input depth map, the algorithm uses the information
about motion and color of objects from the video. The pro-
posed method can be applied as a preprocessing stage before
using Kinect output data.

Index Terms— Digital filters, Image processing, Image
enhancement

(a) (b)

Fig. 1. The data captured by Kinect. a) Frame from the con-
ventional camera. b) Frame from the depth sensor. Black
areas on the depth image are marked as occlusions by Kinect.

1. INTRODUCTION

A depth image-based rendering is a very widespread tech-
nique. Depth maps are often used for 3D image creation and
representation because of convenience for transmission and
virtual view synthesis. 3D video is already quite widespread
and requires depth maps creation for its production. Microsoft
Kinect is one of the devices that allows to capture the depth
map for video. Kinect is able to capture simultaneously a con-
ventional video and a depth image. Its depth sensor is based
on a projection of fixed pattern of infrared light [1]. An offset

978-1-61284-162-5/11/$26.00 c© 2011 IEEE

infrared camera receives the projected IR light and the built-in
controller estimates the depth using the distortion of the pat-
tern. The produced depth map can be used for 3D scene re-
construction, robotic vision and for interaction between user
and computer [2].

Nevertheless, using the depth images captured by the depth
sensors is often difficult owing to their inherent problems: op-
tical noise, lost depth information on the shiny surfaces and
occlusion areas, and flickering artifacts (See Fig. 1). Such
a depth map is inapplicable to 3D image creation because of
the temporal instability and errors. A specific preprocessing
is required to increase the temporal and spatial stability of the
results. This paper proposes such a method of the depth maps
processing. Color and motion information from the RGB
camera of the Kinect is used to increase the quality of the
depth map.

2. RELATED WORK

Depth map errors often leads to noticeable artifacts in 3D
video and significantly decrease the resultant quality. Errors
often occur in the occlusion areas. Several modifications of
Gaussian blur were developed for occlusion areas process-
ing. In [3], the authors proposed asymmetric filter, which
have larger length in the vertical than in the horizontal direc-
tion. They also propose changing the size of the symmetric
smoothing filter depending on the local values in the depth
maps.

Depth errors are often visible at the edges of the objects.
An adaptive method that responds to the object edges and its
directions was proposed in [4]. In [5], a method adaptive to
occlusions was proposed.

The above-listed methods only use a portion of the color
information from every frame of the source video (for exam-
ple, only information about object edges).

In [6], the authors proposed a method of minimizing depth
flickering for depth images captured by time-of-flight sensors.
This method improves depth map stability only for stationary
objects because it considers only the presence of the motion
rather than the length of the motion vectors.

Fig. 2. Segments of three consecutive frames for the test se-
quence. (a)-(c) Original sequence from the RGB camera. (d)-
(f) Original depth map from the depth camera. Black areas
are occlusion. (g)-(i) Processed depth map. Occlusions were
filled.

Fig. 3. Segments of three consecutive frames for the test se-
quence. (a)-(c) Original sequence from the RGB camera. (d)-
(f) Original depth map from the depth camera. Black areas are
occlusion. (g)-(i) Processed depth map. After filtering depth
map become more temporally stable.

Depth maps quality can be improved using stereo RGB
cameras instead of the single camera. A method of data fusion
from the depth and the stereo cameras was proposed in [7]. A
maximum a posterior Markov Random Fields approach was
used.

Approaches based on the energy minimization problem
and graph cut [8, 9] produce good results, but owing to com-
putational complexity, they require a long time to process the
entire video.

The proposed approach uses the information about motion
and color of the objects from several consecutive frames to re-
fine input depth map. The algorithm takes information about
object motion into account using motion compensation.

3. PROPOSED METHOD

The proposed algorithm uses frames of the conventional video
from the RGB camera and the corresponding depth maps pro-

vided by the depth sensor. We denote Ii(x, y) as the intensity
(or color) of pixel (x, y) in frame i. Ii(x, y) is either a three-
vector in case of a color image or a scalar for a grayscale.
n denotes the current frame number, and Di(x, y) represents
the depth for the ith frame in position (x, y). Bi(x, y) denotes
the map of occlusions for the ith frame:

Bi(x, y) =

{
1, if the pixel (x, y) ∈ occlusion area,
0, otherwise.

The proposed method consists of five steps:

1. Motion estimation between the current frame In and
neighboring frames In−m, . . . , In−1, In+1, . . . , In+m,
wherem > 0 is a parameter. The result of this stage is a
field of motion vectorsMVi(x, y) = (ui(x, y), vi(x, y)).
We define MVn(x, y) ≡ 0.

2. Computation of the confidence metric Ci(x, y) for the
resultant motion vectors MVi(x, y). Here, Ci(x, y) ∈

[0, 1]. Ci(x, y) quantifies the estimation quality for mo-
tion vector MVi(x, y). The metric is similar to that de-
scribed in [10].

3. Motion compensation for the depth map and source frames.
Here,DMC

i denotes the motion-compensated depth maps,
and IMC

i denotes the motion-compensated source frames.
Both the IMC

i and DMC
i images are computed using

motion vectorsMVi, which are estimated from the source
video sequence:

IMC
i (x, y) = Ii(x+ ui(x, y), y + vi(x, y)),

DMC
i (x, y) = Di(x+ ui(x, y), y + vi(x, y)).

4. Depth map filtering using the computed DMC
i , Ci and

IMC
i values.

5. Occlusion areas are filled using filtered neighbor pixels.

3.1. Depth Filtering

We use 2m+ 1 consecutive frames for filtering. To eliminate
sharp discontinuities in the time domain we apply temporal
median filtering at the first step of processing:

Dmed
n (x, y) = median

i=n−m,...,n+m;
Ci(x,y)>ThC ;

|IMC(x,y)−I(x,y)|<ThSAD;
Bi(x,y)=0

DMC
i (x, y).

The median is calculated over the pixels from the current
and neighboring depth maps which have sufficiently small in-
terframe difference |IMC(x, y)−I(x, y)|, well estimated mo-
tion vectors (confidence measure of vector is high), and do not
belong to occlusion areas. Thresholds ThC and ThSAD de-
pend on the noise level of the source video. The thresholds
have an influence on the resultant quality of processing and
must be selected carefully. In the current version of the filter
we use the same thresholds for all frame areas. We intend to
make it adaptive to the local contrast level in the source video
frame.

The next processing step is temporal smoothing.

Dsmooth
n (x, y) =

1

k(x, y)
·

·
n+m∑
t=n−m

∑
(x′,y′)∈σ(x,y)\Bn

ω(t, x, y, x′, y′)Dinput
t (x′, y′),

k(x, y) =

n+m∑
t=n−m

∑
(x′,y′)∈σ(x,y)\Bn

ω(t, x, y, x′, y′).

(1)

ω(t, x, y, x′, y′) is a weight function, and Dinput
t is the

input depth for this step.
We tested two configurations for Dinput

t :

1. Dinput
n = Dmed

n , Dinput
n±p = Dn±p,

2. Dinput
n = Dmed

n ,Dinput
n−p = Dsmooth

n−p ,Dinput
n+p = Dn+p,

where p ∈ [1,m]. The latter approach yields a smooth result-
ing depth map, but it is less accurate for small details. σ(x, y)
denotes spatial neighborhood of pixel (x, y). Size of σ(x, y)
must be chosen as a tradeoff between computation speed and
processing quality.

Weighting function ω is given by

ω(t, x, y, x′, y′) = f(t, x′, y′) ·Ct(x, y) ·g(|x−x′|, |y−y′|),

where function f(t, x′, y′) denotes the dependence on inter-
frame difference |IMC

t (x′, y′) − In(x
′, y′)|; Ct(x, y) is the

confidence of motion compensation of pixel (x, y) on frame t;
g denotes the dependence of the weight function on the spatial
distance between (x, y) and (x′, y′). In the simplest case g
is identically constant. To achieve better quality we tested
other types of dependencies between the spatial distance and
weight: linear, polynomial, exponential. Function f is given
by the formula

f(x) = max

(
0,min

(
1,

3∑
i=0

µi ·
(x
ν

)i))
,

where µi and ν are parameters of the algorithm.
Thus, the algorithm averages the depth in the neighbor-

hood of each pixel using the information about interframe dif-
ference for the source video, the confidence metric for motion
vectors, spatial proximity, and occlusion areas.

3.2. Occlusion areas filling

Kinect depth camera produces the depth map with large oc-
clusion areas. It is necessary to fill these areas to obtain a
depth map suitable for further using. We use depth values of
neighbor pixels with similar color to estimate depth of occlu-
sion pixel. Only pixels with frequent depth values in neigh-
borhood are taken into account. Let (xo, yo) be an occlusion
pixel (Bn(xo, yo) = 1). Then the resultant depth for occlu-
sion areas is filled in the following way:

Dresult
n (xo, yo) = median

(x,y)∈σo(xo,yo)

{
Dsmooth
n (x, y)|∑

(x′,y′)∈σo(xo,yo)

δ(Dsmooth
n (x, y), Dsmooth

n (x′, y′))) > Thoccl,

|In(xo, yo)− In(x, y))| < ThSAD,

Bn(x, y) = 0
}
,

where σ0(xo, yo) denotes the neighborhood of pixel (xo, yo),
the symbol δ is Kronecker’s delta. Threshold Thoccl and size
of σ0(xo, yo) must be determined adaptively to keep the num-
ber of relevant pixels (x,y) large enough for robust median
filtering results.

4. RESULTS

The results were obtained using a block matching motion-
estimation algorithm based on the algorithm described in [11].
We used macroblocks of size 16 × 16, 8 × 8 and 4 × 4 with
adaptive partitioning criteria. Motion estimation is performed
with quarter-pixel precision. Both luminance and chroma planes
are considered.

The proposed algorithm was implemented in C as a con-
sole application. The source video and its depth map is the
input data for the algorithm and the filtered depth is output.
Our algorithm uses one-pass processing and it can be con-
veniently implemented in hardware. The algorithm’s perfor-
mance is 1.4 fps on 640 × 480 video resolution on PC with
Intel Celeron 1.8 GHz CPU.

Fig. 2 shows the results of the algorithm. To illustrate
temporal features of depth map we give RGB image, original
and processed depth map for three consecutive frames from
the test sequence. Original depth map (Fig. 2, (d)-(f)) is un-
stable in the temporal domain an has large occlusion areas
(black regions), especially near the objects borders. Proposed
method allows to make it more stable, fixes errors and makes
depth map smoother (See Fig. 2, (g)-(i)). Filtering results for
another test sequence are presented in Fig. 3.

5. FURTHER WORK

In the proposed approach we utilize the information about
occlusions areas produced by the Kinect depth camera. We
intend to use the detection and the processing of occlusions
caused by the motion of the objects. In occlusion areas, mo-
tion estimation algorithm produces incorrect motion vectors,
thus artifacts occurs. Confidence metric in these areas must
be reduced adaptively to improve processing quality. Fur-
ther improvement of motion estimation stage is critically im-
portant. Using a good optical flow algorithm instead of the
block-based motion estimation reduces blocking artifacts and
improves the resultant quality of the depth map.

6. CONCLUSIONS

We described a method of depth map filtering for Kinect.
The proposed algorithm improves the visual quality of the
depth maps and the rendered 3D images. Using the proposed
method can significantly extend the range of the applications
of the Kinect depth map in computer vision.

7. ACKNOWLEDGEMENTS

This research was partially supported by grant number 10-01-
00697-a from the Russian Foundation for Basic Research.

8. REFERENCES

[1] “The PrimeSensor Reference Design 1.08”, http://www.
primesense.com.

[2] Andrew Wilson, “Using a depth camera as a touch sensor”,
in Proc. of International Conference on Interactive Tabletops
and Surfaces, 2010.

[3] W. J. Tam and L. Zhang, “Non-uniform smoothing of depth
maps before image-based rendering”, in Proceedings of Three-
Dimensional TV, Video and Display III (ITCOM’04), vol.
5599, pp. 173–183, 2004

[4] Wan-Yu Chen, Yu-Lin Chang, Shyh-Feng Lin, Li-Fu Ding,
and Liang-Gee Chen, “Efficient depth image based rendering
with edge dependent depth filter and interpolation,” in Proc. of
IEEE International Conference on Multimedia and Expo, pp.
1314–1317, 2005.

[5] Sang-Beom Lee and Yo-Sung Ho, “Discontinuity-adaptive
depth map filtering for 3d view generation”, in Proc. of the
2nd International Conference on Immersive Telecommunica-
tions (IMMERSCOM), Brussels, Belgium, pp. 1–6, 2009

[6] Sung-Yeol Kim, Ji-Ho Cho, Andreas Koschan, and Mongi A.
Abidi, “Spatial and temporal enhancement of depth images
captured by a time-of-flight depth sensor”, in Proc. of the IEEE
International Conference on Pattern Recognition (ICPR), pp.
2358–2361, 2010

[7] Jiejie Zhu, Liang Wang, Ruigang Yang, and James. E. Davis,
“Fusion of time-of-flight depth and stereo for high accuracy
depth maps”, in Proc. of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR
2008), 2008

[8] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao,
“Consistent depth maps recovery from a video sequence”,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 6, pp. 974–988, 2009

[9] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao,
“Recovering consistent video depth maps via bundle optimiza-
tion”, in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, 2008

[10] K. Simonyan, S. Grishin, and D . Vatolin, “Confidence mea-
sure for block-based motion vector field”, in Proc. of Graph-
iCon, pp. 110–113, 2008

[11] Karen Simonyan, Sergey Grishin, Dmitriy Vatolin, and
Dmitriy Popov, “Fast video super-resolution via classifica-
tion”, in Proc. of International Conference on Image Process-
ing, pp. 349–352, 2008

