
404

ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2019, Vol. 58, No. 3, pp. 404–414. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2019, No. 3, pp. 77–86.

Flow Algorithms for Scheduling Computations
in Integrated Modular Avionics

V. A. Kostenkoa,* and A. S. Smirnova

a Moscow State University, Moscow, Russia
*e-mail: kost@cs.msu.su

Received December 26, 2018; revised January 25, 2019; accepted January 28, 2019

Abstract—Algorithms for scheduling tasks in real-time systems with integrated modular architecture
that are based on finding the maximum flow in a transportation network are proposed. Results of the
experimental evaluation of these algorithms for a single processor and multiprocessor version of the
computation scheduling problem are discussed.

DOI: 10.1134/S1064230719030110

INTRODUCTION
To satisfy the requirements of isolation and real time operation of subsystems of real-time information

and control systems (RICSs) with integrated modular architecture [1], the standard ARINC 653 [2] was
developed. The most widely used approach to designing RICS with integrated modular architecture is
known as integrated modular avionics (IMA). The Russian-made real-time operating system (RTOS)
meeting the ARINC 653 standard is the RTOS Baget 3.0 [3, 4]. In Baget 3.0, ARINC 653 is used as the
basic standard. All mandatory functions of ARINC 653 are implemented. The standard POSIX is used to
the extent in which it does not contradict ARINC 653.

The isolation of programs of different subsystems is ensured by introducing partitions and windows.
For programs of each subsystem, a partition and the set of time windows (nonoverlapping time intervals)
are allocated. Programs assigned to a partition may be executed only within the allocated time windows;
each partition is assigned a chunk of memory that cannot be accessed by programs from other partitions.
Programs assigned to a partition are started within time windows dynamically, e.g., when the data is ready
and according to priority. A program may be interrupted and then resumed in the same window or in a
later window of the same partition. Programs assigned to different partitions can interact only by passing
messages; i.e., application programs are executed according to a static–dynamic schedule. The static–
dynamic schedule is ready if partitions are assigned to processors of the computer system, a set of windows
for each partition is defined, and the beginning and end of each time window is determined.

Various versions of the problem of constructing static–dynamic schedules are defined by dynamic task
schedulers in partitions, by the way of specifying input data, and by a set of technological constraints.
Examples of technological constraints are the maximally acceptable window size and the minimally
acceptable gap between windows in different partitions for context switching. The concepts of partition
and window are common for all operating systems meeting the standard ARINC 653.

In this paper, we propose to construct static–dynamic schedules using algorithms based on finding the
maximum flow in a transportation network.

1. SIMILAR PROBLEMS AND KNOWN ALGORITHMS
In [5, 6] ant colony algorithms for constructing static–dynamic schedules were proposed. These algo-

rithms are applicable when programs cannot be interrupted. This implies that a program can run only in
one window of its partition, which significantly narrows the scope of the practical application of these
algorithms.

In [7, 8], algorithms based on the decomposition of the problem into two subproblems—assigning par-
titions to processors and constructing the set of windows for each processor were considered. A drawback
of these algorithms is that they should take into account the validity constraints of static–dynamic sched-

SYSTEMS ANALYSIS
AND OPERATIONS RESEARCH

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

FLOW ALGORITHMS FOR SCHEDULING COMPUTATIONS 405

ules that are specific for a specific RICS and that their accuracy depends on the class of the input data
(more precisely, on the time complexity of the tasks to be executed).

The closest problems to the ones studied in the current paper for which algorithms based on finding
the maximum flow in a network are known are the problems constructing preemptive schedules. A pro-
cedure for using algorithms for finding the maximum flow in a network for constructing preemptive
schedules was proposed in [9, 10].

In [11], an algorithm for constructing schedules for a heterogeneous multiprocessor system (in which
the performance of processors is different) was considered. It was assumed that preemption and switching
between tasks do not take additional time. In [12], an algorithm in which the limited cash memory of pro-
cessors is taken into account was described. An algorithm for the case when the task execution times lin-
early depend on the amount of the allocated resource was proposed in [13].

The main difficulties preventing the direct use of the known algorithms based on finding the maximum
flow in a transportation network for designing static–dynamic schedules are the fact that the membership
of tasks in partitions must be taken into account and the set of windows must be constructed.

In [14], an algorithm for the single processor version of designing a static–dynamic schedule based on
finding the maximum flow in a transportation network was described. However, this algorithm can be
used for the multiprocessor version of the problem only in combination with an algorithm that assigns par-
titions to processors. To achieve a level of high accuracy, such a combination of algorithms requires sig-
nificant modification of the criteria for assigning a partition to a processor used in the algorithm for
assigning partitions to processors in such a way that each processor is assigned a set of partitions (the class
of input data) for which the f low algorithm gives highly accurate results.

2. THE PROBLEM OF CONSTRUCTING A STATIC–DYNAMIC SCHEDULE

For constructing static–dynamic schedules for real time systems with the integrated modular avionics
architecture, the following input data are specified: n is the number of the task, p is the number of proces-
sors, q is the number of partitions, c is the window switching time, and is the set of tasks.

The requirements for the execution of tasks can be specified in two ways.

Method 1: , where is the due time at which task k can start executing (the task
execution cannot begin earlier than at the due time), is the release time of task (the task execution
must be completed before this time), is the time needed to execute the task, and is the partition to
which the task is assigned.

Method 2: , where is the frequency (is the period) of the task execution, is
the time needed to execute the task, and is the partition to which the task is assigned.

The second method of specifying the requirements for executing tasks in real time can be reduced to
the first method. The large cycle is computed as the least common multiple of the task execution periods.
The number of running the task in the large cycle is the number of its periods in the large cycle. The due
times of each task execution are determined by the beginning and end of the corresponding period.

It is required to construct a static–dynamic schedule containing the maximum number of tasks from
the given set of tasks. The schedule is ready if the set of windows for each processor is defined:

, where is the number of windows, is the window’s opening
time, is the window’s closing time, is the index of partition that includes this window, and

 is the set of tasks executed within the window (with the indication
of the time allocated for the task execution in this window).

The schedule must satisfy the following correctness conditions for each set of windows .

1. The windows do not overlap, and the minimum switching time is taken into account:

(2.1)

 1, } { kaA nk

 , , ,A A A A
k k k k ka s f t d A

ks
A

kf k
A
kt

A
kd

 , ,A A A
k k k ka F t d A

kF 1/ A
kF A

kt
A
kd

l
 , , , 1, { }l l l lW W W W

l i i i i i lW w s f d A i m lm lW
is

lW
if lW

id
 {(,)| , 1, , }lW A

i j j j j jA a t a A j n t t

lW

 1 .1 , 1l lW W
i i lс s f i m

406

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

KOSTENKO, SMIRNOV

2. The sum of the durations of the tasks executed within each window does not exceed the window’s
duration:

(2.2)

3. Only parts of the tasks or entire tasks that belong to the partition to which the window is assigned can
be executed within this window:

(2.3)
4. The task is allocated if it is completely executed:

(2.4)

5. All tasks of each partition are executed on the same processor.

3. THE ALGORITHM FOR CONSTRUCTING A STATIC–DYNAMIC SCHEDULE
BASED ON FINDING THE MAXIMUM FLOW IN A NETWORK

The algorithm consists of three main stages:
(1) Constructing a transportation network (directed graph);
(2) Finding the maximum flow in this network;
(3) Recovering the schedule from the f low.
According to the due and release times (execution intervals) of the tasks, an ordered set of nonoverlap-

ping time intervals is constructed. Every task may be executed only in the intervals intersecting with its due
interval. The transportation network is constructed by defining the task vertices, the vertices correspond-
ing to processor intervals related to the processor index (they are called interval vertices), and adding a
source and sink vertices. The source vertex is connected to the task vertices by edges with the capacities
equal to the task execution duration. The task vertices are connected to the vertices corresponding to pro-
cessor intervals within which the task may be executed; the capacities of these edges are equal to the dura-
tion of this interval. Each interval vertex is connected to the sink vertex by an edge with the capacity equal
to the interval duration.

The maximum flow is sought using the lift-to-front algorithm because it has the lowest complexity and
is simple from the viewpoint of verifying the schedule correctness. This algorithm involves three basic
operations:

(1) Lifting a vertex;
(2) Pushing the f low from vertex-to-vertex;
(3) Discharging the vertex.
The lift-to-front algorithm is significantly modified since the capacities of edges in the network can

change because we must take into account the time of switching between windows. The push operation
takes into account the partition from which the f low was directed to the interval vertex or was removed
from it and the f low value. Based on these data, it is determined whether the time for switching between
windows in this vertex must be allocated; if this is the case, then the capacity of the edge connecting the
interval vertex with the sink is modified. The lift operation finds the vertex of the minimum height such
that there exists a preflow into this vertex with a value lower than the capacity of this edge, and it increases
the height of the initial vertex by one. The vertex height determines the order of applying the push opera-
tion. To obtain a correct static–dynamic schedule, the vertex discharge operations are ordered; they have
two modes of operation. The first mode can check if the resulting f low can be pushed, and the second
mode cannot perform such a check. The first push from the task vertex to the interval vertex corresponds
to assigning a partition to this processor, and the capacities of all edges leading to other processors become
equal to zero. If a task of the partition cannot be allocated, then the f low from all tasks of this partition
must be reversed, and the capacities of all edges leading from these task vertices to the interval vertices of
this processor must be made equal to zero.

All vertices are divided into groups—task vertices of each partition and interval vertices—and there are
q + 1 groups in total. While there are overwhelmed vertices, the algorithm performs the vertex discharge
operation. The order of discharging is as follows: the first partition is selected, and all its vertices are dis-
charged while checking the possibility of pushing the f low into the sink; next the interval vertices are dis-

 1 , .l l

Wl
j i

W W
ji i i l

a A

t f s i m

 , 1, . l l lW W W
j k i j k la a A d d i m

1

 .
l

l

Wl
k j

m
A W

kj k k i
ia A

t t a A

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

FLOW ALGORITHMS FOR SCHEDULING COMPUTATIONS 407

charged. The discharge operation continues until there are no overwhelmed vertices of the group of this
partition and overwhelmed interval vertices. This operation is performed as follows: a task vertex is dis-
charged; if overwhelmed interval vertices emerged as a result of this operation, then they are discharged,
and then task vertices of the partition are discharged again.

The schedule recovery is to consider the interval vertices in their natural time order and to analyze the
incoming f lows from tasks of different partitions and the number of window switchings in the interval ver-
tices.

Let us consider each stage of the algorithm in more detail.

3.1. Construction of the Transportation Network

Let be all different values and () and . Task k may

be executed at the time if .
The network is a bipartite graph with two additional vertices—the source and the sink (see Fig. 1).

The left part of this graph consists of vertices that are in one-to-one correspondence with the tasks (task
vertices). The right part of this graph consists of vertices corresponding to the interval-processor pairs
(interval vertices) (a one-to-one correspondence). The source is connected with all task vertices and the
capacity of the edge leading to the kth task vertex is (). Each task vertex is connected with all
interval vertices on which this task may be executed. The capacities of these edges are tA. All interval ver-
tices are connected with the sink by the edges with the capacities equal to the interval width.

3.2. Finding the Maximum Flow in the Network

The following data are required to construct a static–dynamic schedule: dist is the sink vertex, s is the
source vertex, are the capacities of the edges, and is the preflow function for network edges
at a step of the algorithm. Each vertex has integer parameters: excess f low , height , and the list of task
vertices arranged by partitions; the task vertices also have the partition index to which the task is
assigned. The interval vertices know the preceding and succeeding intervals and ; they also have the
integer parameter indicating the number of switchings within the interval, and the parameters and

 show if there is a window switching at the right and left endpoints of the interval, respectively. The inter-
val vertices include a structure for storing the incoming f lows arranged by partitions , where
(i.e., we are able to find out how much time is allocated to this partition in the interval), the set of parti-

 0τ τ s A
ks A

kf 1 , . . . , k n 1 ; ,i i iI 1 ,i s

0t 0 A A
k ks t f

O 'O

A
kt 1,k n

'O

 v, c u v, f u
ue uh

upt
uni upi

ucw uir
uil

i
uPT 1,i q

Fig. 1. Transportation network.

2

5
O O'

(0,2] P0

(2,5] P0

(2,5] P1

(0,2] P1

a2

a1

a3

2

3

3

3

3

2

2

2

2

2

3

3

2

408

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

KOSTENKO, SMIRNOV

tions the f lows from which enter this vertex, the first and the last partitions associated with the
window, and the interval duration . All interval vertices are also assigned the index of the processor

 associated with this interval and the maximum number of attempts to redistribute the processors K.
The assignment of each partition to a processor is denoted by .

Consider the algorithms designed for the execution of the basic operations involved in finding the max-
imum flow in the network.

Network Initialization

1. Initially, the preflow equals the capacity of all edges outgoing the source, and it is opposite for the
reversed pairs of vertices:

2. For the other pairs of vertices, the preflow is zero.
3. The initial height of the source is 10, the initial height of the task vertices is 1, and the height of the

interval vertices and sink is 0.

Lifting Vertex ()

From the set of accessible vertices u (the vertices such that there exists an edge with
), vertex (where is distinct from dist) with the minimal height is selected, and the

height of u is set to + 1.

Adding a Window Switching to

In this operation, is an interval vertex.
1. The capacity is decreased by c.

2. The number of window switchings is increased by 1.
3. If , then the excess f low is modified.

4. The overwhelmed flow changes by the formula and the f low
becomes equal to .

5. If , then vertex is added to the list of overwhelmed vertices.

Removing a Window Switching from .

In this operation, is an interval vertex.
1. The capacity is increased by c.

2. If , then

3. If , then remove the vertex from the list of overwhelmed vertices.
4. The number of window switchings is decreased by 1.

uPS ufp ulp
udur v

v
proc

partPR

 (,) , ,f s u c s u

 , , ,f u s c s u

 , .ue f s u

u

 v, u
 v v, , f u c u v v

v
 h

v()
v

 v, c dist

v
cw

 v v, , f dist c dist

v v

v v, ,e e f dist c dist v, f dist
 v, c dist

v

0e v

v()
v

 v, c dist

v

e c

 v v, , ,f dist f dist c

 v v, , ,f dist f dist

vv

– ,e e c

 .dist diste e c

v

0e

v
cw

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

FLOW ALGORITHMS FOR SCHEDULING COMPUTATIONS 409

Taking into Account the Partition When Adding the Flow of Size Value of the Partition Part Emerging
from the Interval Vertex

1. The f low is added to the structure of incoming f lows of the vertex:

2. If the f low of this partition enters the interval vertex for the first time, then it is added to the set .
2.1. If this is the first partition, then set and .
2.2. If this is the second partition, then it is compared to the first partition of the next interval:

2.2.1. If this is the same partition, then set ;
2.2.2. If this is a different partition, then set .

2.3. If this is the third or greater partition, then it is compared to the first partition of the next interval:
2.3.1. If this is the same partition, then set ;
2.3.2. Otherwise, it is compared to the first partition of the next interval and if they are equal,

then set = part.

Taking into Account the Partition When Removing the Flow of Size Value
of the Partition Part from the Interval Vertex

1. The f low is removed from the structure of incoming f lows of the vertex:

2. If the f low of this partition is zero (or, equivalently, if this partition is no longer in this interval), then
it is removed from the set .

3. If there are no more partitions, then set and .
4. If only one partition pt remains, then set and .
5. If more than one partition remains, then the following holds:

5.1. If the removed partition coincides with the last partition in the interval (is the partition dif-
ferent from the first partition in the interval), then set ;

5.2. If the removed partition coincides with the first partition in the interval (is the partition
different from the last partition in the interval), then .

Modifying Windows in the Interval Vertex

1. Modify the internal switchings. The number of internal switchings is calculated.
The operations of switching removal in (in) or switching addition in (in) are performed the required num-
ber of times to make the number of switchings taken into account equal to .

2. Modify the right switching.
2.1. If there is a nonempty interval vertex ni on the right, then the following holds:

2.1.1. If and there are no switchings on the right in () and there are no
switchings on the left in (), then the following holds:

2.1.1.1. If (there is a place for switching in the next interval) and
 (there is no place for switching in the current interval), then a window

switching is added in (ni), and is set;
2.1.1.2. Otherwise, a window switching is added in (), and is set.

2.1.2. If and there is a switching in () on the right and , then remove the
window switching in and set ; if there are switchings in ni on the left (), then
remove the window switching in (ni) and set .

2.2. If all vertices on the right are empty and there is a switching on the right in , then remove the
window switching in () and set .

v

 .part partPT PT value

v
PS

v

 fp part
v

 lp part

v

lp part

v
fp part

v

lp part

v
fp

v

 .part partPT PT value

v
PS

v

0fp
v

0lp

v
fp pt

v
lp pt

nfpt
v nflp pt

nlpt

v nlfp pt

v()

v v vincw cw ir il

incw

vnifp lp v

v
ir false

ni niir false
 , , c ni dest f ni dest cw

v

v v, , e f dest c dest cw
niil true

v vir true

vnifp lp v
v

ir true
 v

v
ir false niil true

niil false
v

v
v

ir false

410

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

KOSTENKO, SMIRNOV

3. Modify the left switching (similarly to how it was done for the right switching).
3.1. If there is a nonempty interval vertex pi on the left, then the following holds:

3.1.1. If and there are no switchings on the left in () and there are no
switchings on the right in , then the following holds:

3.1.1.1. If (there is a place for switching in the preceding inter-
val) and (there is no place for switching in the current interval), then a
window switching is added in (pi) ;

3.1.1.2. Otherwise, a window switching is added in , and is set.

3.1.2. If and there is a switching on the left in (), then remove the window
switching in and set ; if there are switchings in on the right in pi (), then remove
the window switching in (pi) and set .

3.2. If all vertices on the right are empty and there is a switching on the right in , then remove the
window switching in and set .

Removing Task u from the Network

For all pairs task vertex–interval vertex (), where the task vertex u corresponds to a partially allo-
cated task, the following operations are performed.

1. The f low from the task vertex to the interval vertex is removed, and the same flow is subtracted from
the f low directed from the interval vertex to the sink. The f low from the source to the task vertex is
removed:

2. Perform the operation of taking into account the partition when the f low of size value of the partition
 is removed from the interval vertex .
3. Modify windows in .
4. The capacity of the edge leading from the source to the task vertex becomes zero: = 0.

Allocating the Partition Part to the Processor Proc

For all task vertices u such that and all edges (u,) such that , set the capacity
 and .

Removal of the Partition part from the Processor proc

For all task vertices u such that do the following:
1. For all edges (u,) such that , set .

2. For all edges (u,) such that , do the following:
2.1. Perform the operation of taking into account the partition when the f low of size of the

partition ptu is removed from the interval vertex ;
2.2. Modify the windows in ;
2.3. Set the capacity of the edge leading from the task vertex to the interval vertex to zero: .

vpilp fp v

v
il false

 pipi ir false

 , , c pi dest f pi dest cw

v
v v, , e f dest c dest cw

piir true

v()
v

il true

vpilp fp v

v
il true

v()
v

il false piir true
piir false

v

v()
v

 il false

v,u

 v, ,value f u

 v, ,dist diste e f u

 v v v, , , ,f dist f dist f u

 v v, , ,f dist f dist

 v v, 0, , 0, 0, 0, , 0 0.f u f u f u f u

upt v

v

 0, c u

upt part v
v

proc proc
v(,) 0c u

uptPR proc

upt part

v
v

proc proc
v

v, c u dur

v
v

proc proc
value

v

v

v(,) 0c u

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

FLOW ALGORITHMS FOR SCHEDULING COMPUTATIONS 411

Pushing (u,)

1. Increase the f low by .

2. Increase the excess f low by .

3. Decrease the reverse f low and the excess f low eu by .
4. If u is a task vertex, is an interval vertex, and the partition has not yet been allocated to a processor,

then allocate the partition ptu to the processor , perform the operation of taking into account the par-
tition when the f low of value of the partition ptu is added to the interval vertex , and modify the
windows in ().

5. If u is an interval vertex and is a task vertex, then perform the operation of taking into account the
partition when the f low of value of the partition entering the interval vertex is removed and
modify the windows in (u).

6. If , then remove the vertex from the list of overwhelmed vertices of the corresponding parti-
tion.

7. If , then add the vertex to the list of overwhelmed vertices of the corresponding partition.

Pushing Into the Interval Vertex Taking into Account the Residual Flow ()
In this operation, is the interval vertex.
1. Increase the f low by

(3.1)

2. Increase the excess f low by Decrease the reverse f low and the excess f low eu by

3. If u is a task vertex, is an interval vertex, and the partition has not yet been allocated to a processor,
then allocate the partition ptu to the processor , perform the operation of taking into account the par-
tition when the f low of value of the partition ptu is added to the interval vertex , and modify the
windows in ().

4. If , then remove the vertex from the list of overwhelmed vertices of the corresponding parti-
tion.

5. If , then add the vertex to the list of overwhelmed vertices of the corresponding partition.

Discharging the Vertex u

While , do the following.
1. Consider all available vertices for u one-by-one.
2. For the first examination of the vertex:

2.1. If is an interval vertex, then cw is the number of window switchings that happen while the f low
is pushed in the interval vertex ;

2.2. The value of the flow being pushed is calculated under the condition by formula (3.1);
if this value is distinct from zero, then push (u,) into the interval vertex taking into account the residual
flow (.

3. For the next examinations of the same vertices:
3.1. If , is the source, and K > 0, then set K = K – 1 and remove the partition ptu from

the processor ; otherwise, push (u,).
4. Lift u.
5. Return to Step 1.
Possible discharge of vertex u.
In this operation, u is a task vertex.
For all edges (u,) do the following.

v

 v, f u v v v, min , , , uf u e c u f u

v
e v, f u

 v, f u v, f u
v

v
proc

 v, f u v

v

v

 v, f u
v

pt

v

0e

v

0e

v(,)u v,dist
v

 v, f u

v

v v v v v, max(0, min(, , , , , ,)). uf u e c u f u c dist f dist ccw e

v
e v(,).f u v(,)f u

 v(,).f u
v

v
proc

 v, f u v

v

v

0e

v

0e

 0ue

v

v

v

1uh h
v

v,)dist

v

1uh h v

uptPR v

v

412

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

KOSTENKO, SMIRNOV

1. If is the source, then if and K = 0, then set K = K – 1 and remove the partition ptu from
processor ; otherwise, push (u,).

2. If is an interval vertex, then if , calculate the value of the f low being pushed by for-
mula (3.1); if this value is distinct from zero, then push (u,) into the interval vertex taking into account
the residual f low ().

Recovering the Schedule
For all processors, the following operations are sequentially executed.
1. If there is a window switching on the left, then the current window is closed, the switching time is

taken into account, the window of the first partition in this interval is opened, and the number of window
switchings in this interval is decreased by one.

2. If there is a window switching in the middle, then (while there are switchings in the middle) the win-
dow is closed after the time equal to the f low of this partition into this vertex. The partitions are iterated
through beginning from the first one and to the last one (irrespective of the order in the center), the
switching time is taken into account, and the window of the next partition is opened.

3. If there is a window switching on the right, then the current window is closed, the switching time is
taken into account, and the window of the first partition in the next interval is opened.

To specify the tasks executed within a window and the execution duration allocated in each window, it
is sufficient to find the f low entering the corresponding window interval. The value of this f low is exactly
the execution duration of the task in this window. If there is no f low (its value is zero), then the task is not
executed in this window.

The Basic Scheme of the Algorithm
1. Initialize the network.
2. Construct the maximum flow.

2.1. Select a partition with a nonempty list of overwhelmed vertices (if there is no such partition,
then go to Step 3); for these overwhelmed vertices u, perform the operation of possible discharge of vertex u.

2.2. While the lists of overwhelmed vertices of the partition and of interval vertices are not empty,
do the following:

2.2.1. For all overwhelmed interval vertices , discharge vertex ;
2.2.2. For one overwhelmed task vertex u of the partition, discharge vertex u.

2.3. Go to Step 2.
3. If there are partially allocated tasks, then remove the first such task from the network and go to Step 2.
4. Recover the schedule.

4. PROPERTIES OF THE ALGORITHM OF CONSTRUCTING THE STATIC–DYNAMIC
SCHEDULE BASED ON FINDING THE MAXIMUM FLOW IN A NETWORK

The result produced by the algorithm satisfies the schedule validity conditions. The main operation of
the algorithm is the vertex discharge operation, which, in turn, consists of pushing operations from vertex-
to-vertex and vertex lift operations. The lift operation affects only the order of pushes and does not affect
the schedule’s validity.

The push operation is designed in such a way that the schedule’s validity conditions are satisfied if there
is no excess f low in the network.

The push operation related to an interval vertex performs windows correction operations; the windows
correction operation adds window switchings between partitions to the corresponding vertex—it reserves
the time for switching between partitions so that other tasks would not be able use it. The windows are
determined based on the durations of tasks consecutively following one another. The repeated search of
the not completely allocated tasks removes such tasks from the network.

Since the allocation is performed immediately after the first push of the task to an interval vertex of the
processor, the subsequent allocation of tasks of this partition is possible only on the same processor
(because the capacities of the edges leading to the other processors are zero) until the time the task wants
to push the f low into the sink, which implies that the entire partition cannot be allocated to this processor.

v
v

1uh h

uptPR v

v
v

1uh h
v

v, dist

v v

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

FLOW ALGORITHMS FOR SCHEDULING COMPUTATIONS 413

Then, the second operation is performed. The f low from all interval vertices connected with the task ver-
tices of this partition is withdrawn from (the schedule remains valid because all window switchings are
taken into account). The capacities of edges leading to other processors are restored. Therefore, the con-
dition that all tasks of one partition are executed on the same processor cannot be violated. The network
construction takes a time O(pn2). The schedule recovery takes O(pn).

For one processor, the following conditions are satisfied: if n is the number of tasks, then
and . The first step of the algorithm is to discharge all vertices of one partition, if possible; in
the worst case, this step requires 2n2 push operations. The next step is to discharge all interval vertices,
which requires push operations in the worst case. These steps are performed for each partition;
therefore, push operations are required. Let us prove that not more than ten push oper-
ations can be made for each pair task vertex–interval vertex. Consider the height function for task vertices;
it is always greater than zero. If it equals eleven, then the push is into the sink, and this f low never appears
in the network again. The sink height equal to ten gives five push attempts from one task vertex into an
interval vertex. Since the heights of interval vertices do not decrease (when the push operation returns the
flow into the interval vertex), the height becomes greater than the height of the task vertex from which the
push operation was made. Therefore, for all pairs of task vertices and interval vertices, not more than ten
push operations are possible. If a task is removed, the algorithm should be executed again; at maximum,
n tasks can be removed, which corresponds to n iterations of the algorithm; thus, the total computational
complexity of the algorithm is . Thus, the total complexity of the algorithm for
finding the maximum flow for one processor is O(n4) if some tasks should be removed and O(n3) if all tasks
can be scheduled. For the multiprocessor schedule, the complexity for all processors is O(pn3).

Since there are only K attempts of redistributing the partition, the complexity is in the case of
complete scheduling and if some tasks are removed.

Experiments were performed on a 2.39 GHz Intel Core i3-2370M computer with 8 Gb of memory in
Windows 7 64 bit.

For all generated input data, the algorithm of constructing the single processor static–dynamic sched-
ule allocated all tasks. It turned out that the time needed to obtain the solution only weakly depends on
the processor workload and does not exceed 1.2 s for 1000 tasks. The number of partitions barely affects
the accuracy and time of solution either.

For all the generated input data, the algorithm scheduled all tasks in the case of two processors with the
workload not exceeding 90%. The increase of the number of processors negatively affects the number of
scheduled tasks; e.g., for three processors all tasks can be scheduled if the processor workload does not
exceed 70%; if the workload is greater, 99% of all tasks can be scheduled. If the number of processors is
increased to eight, 99% of tasks can be scheduled if the workload does not exceed 70%, and 90% of tasks
can be scheduled if the workload does not exceed 90%. The time taken by the construction of a multipro-
cessor static–dynamic schedule grows with the increase of the processor workload (for eight processors).
This is due to the fact that the number of scheduled tasks is less than 100%, and additional time is needed
for removing unscheduled tasks. The time of constructing such a schedule can be as long as 20 min. For
2–4 processors, the time of constructing a static–dynamic schedule does not exceed 4 min and the accu-
racy is 99–100% for the processor workload up to 90%.

CONCLUSIONS
The problem of constructing static–dynamic schedules arises in designing real-time information and

control systems with the integrated modular avionics architecture.
In some cases of scheduling preemptive tasks, algorithms based on finding the maximum flow in a

transportation network proved to be efficient in terms of accuracy and computational complexity. The
main difficulties preventing the use of known algorithms based on finding the maximum flow in a trans-
portation network for constructing static–dynamic schedules are the need to take into account the mem-
bership of tasks in partitions and to construct the set of windows.

In the proposed algorithm, these difficulties are resolved due to a modification of the algorithm finding
the maximum flow in a network.

The experimental investigation of the algorithm illustrated its efficiency in terms of accuracy and com-
putational complexity on many classes of initial data.

 3 2V n
 23 2E n n

2 (1)n n
 2(2 2 (1))n n n n

 3 2(2 2 1 20)n n n n n

3()O Kpn
4()O Kpn

414

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 58 No. 3 2019

KOSTENKO, SMIRNOV

FUNDING
This work was supported by the Russian Foundation for Basic Research, project no. 17-07-01566.

REFERENCES
1. V. A. Kostenko, “Architecture of software and hardware complexes of on-board equipment,” Izv. Vyssh.

Uchebn. Zaved., Priborostr. 60, 229–233 (2017).
2. Arinc Specification 653. Airlines Electronic Engineering Committee. http://www.arinc.com.
3. A. N. Godunov, “Real-time operating systems baguette 3.0,” Program. Produkty Sist., No. 4, 15–19 (2010).
4. A. N. Godunov and V. A. Soldatov, “Operating systems of the baguette family (likeness, differences and per-

spectives),” Programmirovanie, No. 5, 69–76 (2014).
5. V. A. Balakhanov and V. A. Kostenko, “Ways of reducing the building task of a static-dynamic uniprocess sched-

ule for real-time systems to the problem of finding the route graph,” Program. Sist. Instrum., No. 8, 148–156
(2007).

6. V. A. Balakhanov, V. A. Kokarev, and V. A. Kostenko, “The possibility of using ant algorithms to solve the prob-
lem of constructing static-dynamic schedules,” in Proceedings of the 5th Moscow International Conference on
Operation Study ORM2007 (MAKS Press, Moscow, 2007), pp. 238–240.

7. V. V. Balashov, V. A. Balakhanov, and V. A. Kostenko, “Scheduling of computational tasks in switched network-
based IMA systems,” in Proceedings of the International Conference on Engineering and Applied Science s Optimi-
zation, Athens, Greece, 2014, pp. 1001–1014.

8. V. V. Balashov, “Family of design automation systems for real-time onboard computing systems,” Program.
Produkty, Sist. Algoritmy, No. 4, 1–19 (2017).

9. A. Federgruen and H. Groenevelt, “Preemptive scheduling of uniform machines by ordinary network f low tech-
nique,” Manage. Sci. 32 (3) (1986).

10. T. Gonzales and S. Sanhi, “Preemptive scheduling of uniform processor systems,” J. Assoc. Comput. Mach. 25
(1) (1978).

11. M. G. Furugyan, “Computation planning in multiprocessor real time automated control systems with an addi-
tional resource,” Autom. Remote Control 76, 487 (2015).

12. M. G. Furugyan, “Computation scheduling in multiprocessor systems with several types of additional resources
and arbitrary processors,” Mosc. Univ. Comput. Math. Cybern. 41, 145–151 (2017).

13. M. G. Furugyan, “Scheduling in multiprocessor systems with additional restrictions,” J. Comput. Syst. Sci. Int.
480, 222 (2018).

14. V. A. Kostenko and A. S. Smirnov, “Algorithm for static-dynamic sheduling of uniprocessor systems,” Vestn.
Mosk. Univ., Ser. Vychisl. Mat. Kibern., No. 1, 45–52 (2018).

Translated by A. Klimontovich

SPELL: OK

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /RUS ()
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

