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Abstract—The SS-HORSE method is applied to describe the scattering of nucleons by light nuclei based on
calculations within the No-Core Shell Model with JISP16 and Daejeon16 NN interactions. The resonant
states in 5He, 5Li, and 7He nuclei have been investigated. The SS-HORSE method generalized to the case of
the democratic decay is also applied to study a four-neutron system (tetraneutron). The calculations with
JISP16 and Daejeon16 and with chiral NN interactions indicate the existence of a rather narrow low-energy
tetraneutron resonance.
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INTRODUCTION

The description of resonant states of nuclear sys-
tems including those beyond the nuclear stability line
is a topical problem of nuclear physics. The investiga-
tion of such states may shed light on the nature of the
internuclear forces. The so-called ab initio approaches
that do not use model approximations and the entry
information for which there is only the nucleon–
nucleon interaction are evidently of special interest.

Currently, there are various reliable methods for
the ab initio description of bound nuclear states [1],
among which one can note the No-Core Shell Model
(NCSM) [2]. This approach represents an advanced
version of the nuclear shell model in which all nucle-
ons are spectroscopically active and which does not
contain the notion of the inert core. The nuclear wave
function is expanded in a series of many-particle oscil-
lator basis functions with the expansion including all
states with the number of the oscillator excitation
quanta up to a definite preset number. With the
increasing number of nucleons, the basis size increases
drastically and the calculation’s accuracy is restricted
by the computational capacities of the world’s most
efficient supercomputers. To date, the NCSM has
been successfully applied to the description of nuclei
with the number of nucleons A up to about 20.

The NCSM cannot be applied to the description of
the resonant states of nuclei directly. The resonant state
energies are positive relative to some decay threshold;
therefore, one has to consider the possibility of the
nuclear decay via different channels. To describe the

resonances, special methods are required that consider
the specifics of the continuum spectrum states.

Currently, reliable ab initio methods for describing
the continuum spectrum states based on the Faddeev
and Faddeev–Yakubovsky equations are successfully
applied in nuclear physics to systems with A ≤ 5 (see,
e.g., [1, 3]). There are NCSM generalizations that use
the resonating-group method [4], which were used for
calculating individual nuclear systems that contained
up to 11 nucleons [5]. These methods are, however,
rather complicated from the point of view of the
numerical implementation and require considerable
additional computational resources.

Recently, the authors have proposed the Single-
State Harmonic Oscillator Representation of Scatter-
ing Equations (SS-HORSE) method [6–10], a gener-
alization of the NCSM based on the harmonic oscilla-
tor representation of scattering equations (HORSE)
[11] for continuum spectrum states. The SS-HORSE
method allows calculating the S-matrix and resonant
parameters of the single-channel scattering based on
the NCSM eigenenergies above the breakup threshold.

This article provides a brief review of the
SS-HORSE method (Section 1) and results for
the single-channel nα scattering and resonances in the
5He nucleus (Section 2) and for the pα scattering and
resonances in the 5Li nucleus (Section 3). Then, new
results of analysis of the neutron scattering by the 6He
nucleus and resonances in the 7He nucleus are pre-
sented (Section 4). In conclusion, results of a search
for the resonance in a four-neutron system (Section 5)
obtained in the NCSM with different NN forces are
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collated with calculated results with the JISP16 inter-
action published earlier [12] and experimental results
currently available [13] are presented.

1. THE SS-HORSE METHOD
Let us briefly consider the SS-HORSE method

exemplified by the problem of the scattering of a
nucleon by a nucleus with mass number A.

Let us denote by  the energy of a
definite state ν of the continuum spectrum of a system
with A + 1 nucleons calculated in the NCSM model
space that considers all many-particle states with the
total number of the oscillator excitation quanta up to
Nmax and with parameter of the NCSM oscillator basis

 and by , the energy of the ground

state of target A obtained in the NCSM with the same
value of parameter  and the total number of the
oscillator excitation quanta  = Nmax or Nmax – 1
depending on the parity of state ν.

The phase shifts in the SS-HORSE in the absence
of the Coulomb interaction are calculated by the for-
mula [6, 7, 10]

(1)

Here, Sn, ,(E) and Cn,,(E) are regular and irregular
oscillator solutions for a free Hamiltonian with the
solutions known in explicit forms [11], where , is the
orbital moment of the relative motion, and N is
the total number of the oscillator quanta of a system of
A + 1 particles, which is convenient to represent in the
form of the sum of oscillator excitation quanta Nmax
that sets the sizes of the model space, and the mini-
mum possible number of the oscillator quanta of the
system Nmin: N = Nmax + Nmin. The target is assumed
to be in the ground state, i.e., all excitation quanta fall
in the energy of the relative motion as

(2)
counted from the reaction threshold.

In the case of scattering of charged particles, the
phase shifts based on the NCSM eigenenergies can be
calculated by the formula [9–11]

(3)

Here, jl ≡ jl(kr) and nl ≡ nl(kr) are the spherical Bessel
and Neumann functions, respectively, [14]; Fl ≡ Fl(η,
kr) and Gl ≡ Gl(η, kr) are the regular and irregular
Coulomb functions, respectively, [14]; η =
Z1Z2e2μ/  is the Sommerfeld parameter, Z1e and
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Z2e are the charges of the scattering particles, μ is the
reduced mass of the latter, and k is the momentum of
the relative motion. The quasi-Wronskian Wb(φ, χ) is
defined as

(4)

As shown in [9], the optimal value of parameter b for cal-
culation of the quasi-Wronskian Wb(φ, χ) is the so-called
[11] natural channel radius b = .

Consequently, in the SS-HORSE method, the
phase shift at the eigenenergy of the Hamiltonian Eν is
determined only by the parameters of the NCSM
oscillator basis Nmax and , which are contained in
the definitions of functions Sn,,(E) and Cn,,(E) in
Eq. (1) and by varying these parameters one can cal-
culate phase shifts δ,(Eν) in a definite energy range.
Then, using an appropriate parameterization, one can
obtain smooth dependence of δ,(Eν) in the energy
interval of interest and calculate the energies and
widths of the resonances. An important requirement
on the parameterization is ensuring the low-energy
behavior of the phase shifts correct from the point of
view of the quantum theory of scattering.

We considered different options for the parameter-
ization of the phase shifts. The parameterization based
on the symmetry properties of the S-matrix [6] is illus-
trative; in this case, the adjustable parameters include
the energy and width of the resonance under study.
The merit of the other variant based on analytic prop-
erties of the effective radius function [10] is the possi-
bility of investigating the scattering of neutral and
charged particles from a common standpoint. The
number of the adjustable parameters is in this case
smaller; however, the characteristics of the resonance
are should be found in an additional calculation based
on the parameterization performed.

2. THE nα SCATTERING 
AND THE RESONANCES 

IN THE 5He NUCLEUS
To describe the nα scattering, in the NCSM the

energies of the lowest states of the 5He nucleus with

Jπ = , and the ground state of the 4He nucleus

in the bases with Nmax ≤ 18 and the values of  from
the interval 10 ≤  ≤ 40 MeV were calculated. We
used the JISP16 [15] and Daejeon16 interactions [16]
as nucleon–nucleon forces.

Let us illustrate how the method works by the

example of the nα scattering in the  state. In the left

panel of Fig. 1, the symbols show the energies of the
relative motion of nα calculated according to Eq. (2)
based on the results of the NCSM with the JISP16
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DESCRIPTION OF CONTINUUM SPECTRUM STATES OF LIGHT NUCLEI 539

Fig. 1. Left panel: the symbols denote the eigenenergies of the relative motion of nα obtained in the NCSM with the JISP16

NN interaction for the  state; in the shaded region, the values selected for the parameterization of the phase shifts in the

SS-HORSE method are shown; the solid curves were constructed based on the above parameterization. Right panel: the symbols
denote the phase shifts calculated by Eq. (1); the asterisks denote the experimental data of [17].

100

5

10 4
6
8

10
12
14
16
18

20 30 40

E
, 

M
eV

hΩ, MeV

Nmax = 2 nα, 3/2–

5 10 150

30

60

90

120

Experiment

4
6
8

10
12
14
16
18

E, MeV

Nmax = 2nα, 3/2–

δ,
 d

e
g
re

e
s

3
2

−

Fig. 2. The phase shifts for different nα scattering states obtained in the SS-HORSE method based on the NCSM calculations
with the JISP16 (left panel) and Daejeon16 (right panel) NN interactions. The crosses denote the results obtained by using Eq. (1)
with the selected data, and the asterisks denote the experimental scattering phase shifts of [17]. The solid curves represent the

parameterization results. The experimental data and the theoretical results for the nonresonant  scattering are shifted upwards

by 20°. The dashed curves are provided in the right panel for comparison of the phase parameterization obtained with the JISP16
interaction.
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interaction for the 5He and 4He nuclei. In the right
panel of Fig. 1, the corresponding symbols show the
phase shifts obtained according to Eq. (1). With the
increasing value of Nmax, increasingly more points fall
on one smooth curve. The results obtained with the
Daejeon16 interaction behave in the same way. To
parameterize the scattering phase shifts, only the
results were used that form this smooth dependence.
The details of the selection of the data and execution
of the parameterization itself are thoroughly consid-
ered in [6, 10]. Here, we provide the final results: the
selected energies are located in the shaded region in
PHYSICS OF PARTICLES AND NUCLEI  Vol. 50  No. 
the left panel of Fig. 1 and the respective phase shifts
that form the smooth curve are shown by crosses in
Fig. 2.

The parameterization results are represented by the
curves of the phase shifts in Fig. 2. The curves of
dependences E0( ) in different model spaces in the
left panel of Fig. 1 correspond to the parameterized
phase for the JISP16 NN interactions. It can be seen
that these curves reproduce well the energies from the
shaded region obtained in the NCSM and selected for
the parameterization of the phase shifts.

Ω�
5  2019



540 MAZUR et al.

Table 1. Resonance parameters obtained in the SS-
HORSE method for the 5He, 5Li, and 7He nuclei with the
Daejeon16 and JISP16 NN-interactions. For comparison,
experimental results for 5He and 5Li from [18] and 7He from
[19] are provided

Nucleus State Daejeon16 JISP16 Experiment

5He Er 0.68 0.89 0.80

Γ 0.52 0.99 0.65

Er 2.45 1.86 2.07

Γ 5.07 5.46 5.57

5Li Er 1.52 1.84 1.69

Γ 1.05 1.80 1.23

Er 3.21 3.54 3.18

Γ 5.63 6.04 6.60

7He Er 0.27 0.71 0.44

Γ 0.12 0.61 0.15

Er 2.7 2.8 1.2

Γ 4.2 5.01 1.0

Er 3.65 4.37 3.36

Γ 1.37 1.55 1.99
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The scattering phase shifts in other states were
obtained in a similar way. The results of analysis of the

nα scattering phase shifts in the  states

according to the selected data that form the smooth
dependence of a corresponding phase shift on the
energy are indicated in Fig. 2 by crosses. The curves
constructed according to the parameterization results
are in reasonable agreement with the phase shift anal-
ysis of the experimental data of [17]. We should note

that in the resonant state , the phase shifts obtained

with Daejeon16 are noticeably closer to the experi-
ment than the phase shifts obtained with JISP16,

although in the resonant state  and in the nonreso-

nant scattering , the phase shifts obtained with these

interactions are close to each other. We should stress
that the SS-HORSE method allows a good description
of not only the resonant but also nonresonant nα scat-

tering in the  state, although the low-lying contin-

uum spectrum states obtained in the nuclear shell
model are traditionally associated only with the reso-
nant states.

The energies and widths of the  and  resonant

states of the 5He nucleus found in the SS-HORSE
method based on the NCSM calculations (see Table 1)
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are also in good agreement with experimental data [18]

with the parameters of the  resonance being

described by the Daejeon16 interaction somewhat bet-

ter while those of the  resonance being described

better by the JISP16 interaction.

3. THE pα SCATTERING 
AND THE RESONANCES 

IN THE 5Li NUCLEUS

To describe the phase shifts of the pα scattering and

the resonances of the 5Li nucleus by the SS-HORSE
method, in the NCSM the energies of the lowest states

with Jπ = , , and  of the 5Li nucleus were calcu-

lated. Like the case of the nα scattering, the calcula-
tions were performed in the NCSM with two NN
interaction variants, namely, JISP16 and Daejeon16.

In Fig. 3, the crosses correspond to the calculations
of the phase shifts by Eq. (3) for the selected energy
values of the states listed above. The curves in the
graphs represent the results of the phase shift parame-
terization based on a modified effective radius func-
tion [10]. Using this parameterization, the S-matrix
was calculated and the positions of its poles were
found numerically, which allowed the determination

of the energies and widths of the  and  resonances

of the 5Li nucleus presented in Table 1. The Daejeon16
interaction describes on the whole both the phase
shifts and resonances somewhat more accurately than
the JISP16 interaction.

4. THE n–6He SCATTERING 
AND THE RESONANCES 

IN THE 7He NUCLEUS

To describe the n–6He scattering and the reso-

nances in the 7He, in the NCSM the energies of the

lowest states with Jπ = , , , and  of the 7He

nucleus and the ground state of the 6He nucleus were
calculated. The calculations were conducted in the
NCSM with the JISP16 and Daejeon16 NN interac-

tions in the bases with Nmax ≤ 17 and the values of 

from the interval 10 ≤  ≤ 50 MeV. For the , , and

 resonant states and the nonresonant  scattering of

the neutron by the 6He nucleus, the convergence of
the SS-HORSE results for the scattering phase shifts
was achieved in total with the convergence of the
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Fig. 3. The phase shifts for different pα scattering states obtained in the SS-HORSE method based on the NCSM calculations

with the JISP16 (left panel) and Daejeon16 (right panel) NN interactions. The crosses denote the results calculated by Eq. (3)
with the selected data and the asterisks denote the experimental scattering phase shifts of [20]. The experimental data and the the-

oretical results for the nonresonant  scattering are shifted upwards by 20°. For the rest of the notation, refer to Fig. 2.

0 5 10 15 20

30

60

90

120

150

180
Experiment
NCSM
SS-HORSE

1/2+ + 20°

3/2–

1/2–

pα
JISP16

δ,
 d

e
g
re

e
s

E, MeV

Experiment

0

30

60

90

120

150

180 NCSM

Daejeon16

JISP16

Daejeon16

1/2+ + 20°

3/2–

1/2–

pα

δ,
 d

e
g
re

e
s

5 10 15 20

E, MeV

1

2

+

Fig. 4. The phase shifts for different n–6He scattering states obtained in the SS-HORSE method based on the NCSM calculations
with the JISP16 (left panel) and Daejeon16 (right panel) NN interactions. For the notation, refer to Fig. 2.
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results calculated with the Daejeon16 interaction
being better than that obtained with JISP16.

In Fig. 4, the phase shifts obtained in the SS-
HORSE method are shown. For comparison of the
results obtained with different interactions, both the
phase shifts resulting from the Daejeon16 and those
obtained using the JISP16 are shown in the right-hand
panel of Fig. 4.

The energies and widths of the resonances of the
7He nucleus presented in Table 1 were found by
numerically determining the positions of the S-matrix
poles using its parameterization that corresponds to
the parameterization of the scattering phase shifts.
The parameters of the resonances obtained in the
SS-HORSE method are close to the experimental
parameters of [19]. On the whole, the Daejeon16
PHYSICS OF PARTICLES AND NUCLEI  Vol. 50  No. 
yields resonances with a somewhat lower energy than
those yielded by the JISP16, and hence the Daejeon16
resonances are in better agreement with the experi-
ment.

5. THE RESONANCES 
IN A FOUR-NEUTRON SYSTEM

To search for the resonances in an exotic nucleon
system consisting of four neutrons (tetraneutron), the
SS-HORSE method was generalized [12] to the case
of true many-particle scattering [21, 22] using the for-
malism of [23]. In the simplest approximation, the
wave function of a tetraneutron is described by only
one hyperspherical harmonic with the lowest possible
value of the hypermoment K = 2. In such a single-
channel case, the S-matrix of a many-particle system
5  2019
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Fig. 5. Phase shift δ of the 4 → 4 scattering for a four-neu-
tron system obtained in the SS-HORSE method using var-
ious NN interactions.
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can be expressed by phase shift δ of the 4 → 4 scatter-
ing as

(5)

This phase shift can be calculated in the
SS-HORSE at eigenenergies Eν of the tetraneutron

Hamiltonian obtained in the NCSM as

(6)

Here, Sn,,(E) and Cn,,(E) are the functions introduced

in [23], which coincide in the case under consider-
ation with the functions used in Eq. (1); the minimum
number of the oscillator quanta in the four-neutron

system equals two, therefore, N = Nmax + 2; and the

effective angular momentum + = K + 3 = 5 given that

we use the only hyperspherical harmonic with the
hypermoment K = 2.

To search for the resonances, the ground-state
energies of the four-neutron system were calculated in
the NCSM in the bases with Nmax ≤ 20 and the values

of  from the interval 1 ≤  ≤ 50 MeV with different

NN forces, namely, JISP16, Daejeon16, and Idaho
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Table 2. Energies Er and widths Γ of the resonance of the
tetraneutron and energies Ef of the false pole of the S-matrix
obtained in the SS-HORSE method using different NN
interactions

JISP16 Daejeon16
Idaho N3LO, SRG

Λ = 1.5 fm–1 Λ = 2.0 fm–1

Er, MeV 0.844 0.997 0.783 0.846

Γ, MeV 1.38 1.60 1.15 1.29

Ef, keV –54.9 –63.4 –52.1 –54.5
N3LO potential [24] obtained in the chiral effective
field theory and “mitigated” by the SRG transforma-

tion [25, 26] with the parameters Λ = 1.5 and 2.0 fm–1.

The results of the parameterization of phase shifts
δ calculated by Eq. (6) are shown in Fig. 5—the
parameterization procedure is completely similar to
that considered in [12]. All NN-interaction models
considered yield similar dependences of phase shifts δ
on the energy, which suggests the presence of a rather
narrow resonance. Furthermore, the SS-HORSE
method indicates the presence of not only a resonant
but also a false pole of the S-matrix in the four-neu-
tron system, the parameters of which are presented in
Table 2. The positions of the poles do not change
greatly depending on the interaction and are in good
agreement with the results of a recent experiment [13]
that showed that the width of the tetraneutron’s reso-
nance did not exceed 2 MeV and the resonance energy
is Er = 0.83 ± 0.65 (stat.) ± 1.25 (syst.) MeV.
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