Euler International Mathematical Institute

Topology, Geometry, and Dynamics: Rokhlin - 100

Conference dedicated to the 100th anniversary of Vladimir Abramovich Rokhlin

Archives of the Mathematisches Forschungsinstitut Oberwolfach

August 19 - 23, 2019
PDMI \& EIMI

The conference is supported by:

- Simons Foundation
- Chebyshev Lab.
- Modern Algebra and Applications Lab.
- Russian Foundation for Basic Research

Contents

ABSTRACTS 15
Semen Abramyan. Higher Whitehead products in moment-angle complexes and substitution of simplicial complexes 15
Andrei Alpeev. Decay of mutual information for unique Gibbs measures on trees 16
Mikhail Anikushin. Convergence and Strange Nonchaotic Attractors in Almost Periodic Systems 16
Anton Ayzenberg. Orbit spaces of equivariantly formal torus actions 17
Malkhaz Bakuradze. All extensions of C_{2} by $C_{2^{n}} \times C_{2^{n}}$ are good for the Morava K-theory 17
Polina Baron. The Measure of Maximal Entropy for Minimal Interval Exchange Transformations with Flips on 4 Intervals 18
Yury Belousov. A new algorithm of obtaining semimeander diagrams for knots 19
Mohan Bhupal. Open book decompositions of links of minimally elliptic singularities 21
Pavel Bibikov. Theory of differential invariants in algebraic classification problems 21
Michael Blank. Topological properties of measurable semigroup actions 22
Shimon Brooks. Quantum chaos and rotations of the sphere 23
Victor Buchstaber. Vladimir Abramovich Rokhlin and algebraic topology 23
Dmitri Burago. Examples of exponentially many collisions in a hard ball system 24
Sergey Burian. Dynamics of mechanisms near singular points 25
Rezki Chemlal. Measurable factors of one dimensional cellular automata 27
Vladimir Chernov. Causality and Legendrian linking in higher dimensional and causally simple spacetimes 29
Hichem Chtioui. Prescribing scalar curvatures on n-dimensional manifolds, $4 \leqslant n \leqslant 6$ 29
Florin Damian. On involutions without fixed points on the hyperbolic manifold 31
Alexander Degtyarev. Slopes of colored links 31
Ivan Dynnikov. A method to distinguishing Legendrian and transverse knots 32
Nikolai Erokhovets. Combinatorics and hyperbolic geometry of families of 3-dimensional polytopes: fullerenes and Pogorelov polytopes 32
Sergey Finashin. Chirality of real cubic fourfolds 35
David Gabai. The 4-dimensional light bulb theorem; extensions and applications 36
Alexander Gaifullin. Combinatorial computation of Pontryagin classes 36
Mukta Garg. Some stronger forms of transitivity in G-spaces 37
Ilya Gekhtman. Geometric and probabilistic boundaries of random walks, metrics on groups and measures on boundaries in negative curvature 37
Vladimir Golubyatnikov. Non-uniqueness of periodic trajectories in some piece-wise linear dynamical systems 37
Evgeny Gordon. On hyperfinite approximations of dynamical systems 40
Dmitry Gugnin. Branched coverings of manifolds and n-valued Lie groups 40
Boris Gurevich. On asymptotic behavior of equilibrium measures associated with finite sub-matrices of an infinite nonnegative matrix: new examples 42
Tatsuya Horiguchi. The topology of Hessenberg varieties 42
Ilia Itenberg. Finite real algebraic curves 42
Alexander Kachurovskii. Fejer sums and the von Neumann ergodic theorem 43
Vadim Kaimanovich. Free and totally non-free boundary actions 43
Naohiko Kasuya. Non-Kähler complex structures on \mathbb{R}^{4} 46
Viatcheslav Kharlamov. Real rational symplectic 4-manifolds 48
Cheikh Khoule. Convergence of contact structures into integrable hyperplanes fields 48
Yuri Kifer. Limit theorems for nonconventional polynomial arrays 48
Alexander Kolpakov. A hyperbolic counterpart to Rokhlin's cobordism theorem 48
Sergey Komech. Random averaging in ergodic theorem and boundary deformation rate in symbolic dynamics 50
Konstantinos Kourliouros. Local classification of symplectic structures with respect to a Lagrangian variety 51
Tatyana Kozlovskaya. Cyclically presented Sieradski groups and 3-manifolds 51
Roman Krutowski. Basic cohomology of moment-angle manifolds 52
Victor Krym. The Schouten curvature tensor for a nonholonomic distribution in sub-Riemannian geometry can be identical with the Riemannian curvature on a principal bundle 52
Sergey Kryzhevich. Invariant measures for interval translations and some other piecewise continuous maps 55
Shintarô Kuroki. Flag Bott manifolds of general Lie type and their equivariant cohomology rings 56
Vladimir Lebedev. Tame semicascades and cascades generated by affine self-mappings of the d-torus 57
Keonhee Lee. Spectral decomposition and Ω-stability of flows with expansive measures 57
Arkady Leiderman. The separable quotient problem for topological groups 57
Vladimir Leksin. Serre duality of homotopy and homology properties of CW complexes 58
Ivan Limonchenko. On families of polytopes and Massey products in toric topology 59
Khudoyor Mamayusupov. A parameter plane of cubic Newton maps with a parabolic fixed point at infinity 59
Ciprian Manolescu. Homology cobordism and triangulations 61
Elena Martín-Peinador. Locally quasi-convex groups and the Mackey-Arens Theorem 61
Mikiya Masuda. Torus orbit closures in the flag varieties 62
Michael Megrelishvili. Group actions on treelike compact spaces 62
Sergey Melikhov. Brunnian link maps in the 4-sphere 64
Grigory Mikhalkin. Real algebraic curves in the plane and in the 3-space: indices and their extremal properties 64
Andrey Mikhovich. On p-adic variation of Segal theorem 65
Dmitry Millionshchikov. Massey products and representation theory 66
Aleksandr Mishchenko. Geometric description of the Hochschild cohomology of Group Algebras 66
Nikolai Mnev. On local combinatorial formulas for Euler class of triangulated spherical fiber bundle 66
Egor Morozov. Surfaces containing two parabolas through each point 67
Michele Mulazzani. The complexity of orientable graph manifolds 67
Oleg Musin. Borsuk-Ulam type theorems for f-neighbors 68
Abdigappar Narmanov. On the group of diffeomorphisms of foliated manifolds 69
Amos Nevo. The Shannon-McMillan-Breiman theorem for Rokhlin entropy in actions of general groups 70
Vladimir Nezhinskii. Rational graphs 70
Mikhail Ovchinnikov. On classification of nonorientable 3-manifolds of small complexity 71
Makoto Ozawa. Multibranched surfaces in 3-manifolds 71
Burak Özbağci. Genus one Lefschetz fibrations on disk cotangent bundles of surfaces 74
Taras Panov. A geometric view on SU-bordism 74
Seonjeong Park. Torus orbit closures in Richardson varieties 74
Garik Petrosyan. On the boundary value periodic problem for a semilinear differential inclusion of fractional order with delay 75
Sergei Pilyugin. Approximate and exact dynamics in group actions 76
Grigory Polotovskiy. V. A. Rokhlin and D. A. Gudkov against the background of the 16th Hilbert problem (on the Rokhlin-Gudkov's correspondence in 1971-1982) 76
Theodore Popelensky. On certain new results on the Steenrod algebra $\bmod p$ 77
Clement Radu Popescu. Resonance varieties. Definition and results 77
Nigel Ray. Partially ordered sets in algebraic topology 78
Daniil Rudenko. Non-Euclidean tetrahedra and rational elliptic surfaces 79
Valery Ryzhikov. Multiple mixing, and weakly homoclinic groups of measure-preserving actions 79
Takashi Sato. GKM-theoretical description of the double coinvariant rings of pseudo-reflection groups 80
Khurshid Sharipov. Second-order differential invariants of submersions 80
Evgeny Shchepin. Leibniz differential and Non-standard Calculus 82
Eugenii Shustin. Around Rokhlin's question 82
Arkadiy Skopenkov. Analogue of Whitney trick for eliminating multiple intersections 83
Mikhail Skopenkov. Surfaces containing two circles through each point 84
Gregory Soifer. Discreteness of deformations of co-compact discrete subgroups 84
Grigory Solomadin. Monodromy in weight graphs and its applications to torus actions 85
Vladimir Subbotin. Some classes of polyhedra with rhombic and deltoidal vertices 86
Dennis Sullivan. Revelation and Mystery 86
András Szűcs. Geometry versus algebra in homology theory and cobordism theory of singular maps 87
Sergey Tikhonov. Group actions: mixing, spectra, generic properties 87
Maria Trnkova. Spun triangulations of closed hyperbolic 3-manifolds 87
Alexey Tuzhilin. Gromov-Hausdorff distances to simplexes and some applications 88
Victor Vassiliev. On the homology of spaces of equivariant maps 90
Anatoly Vershik. V. A. Rokhlin - an outstanding mathematician and a person of extraordinary fate 90
Vladimir Vershinin. Surfaces, braids, homotopy groups of spheres and Lie algebras 90
Yakov Veryovkin. Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups 90
Oleg Viro. Vladimir Abramovich Rokhlin and the topology of real algebraic varieties 91
Barak Weiss. Horocycle flow on the moduli space of translation surfaces 91
Benjamin Weiss. Recent results on the Rokhlin Lemma 91
Oyku Yurttas. Geometric intersection of curves on non-orientable surfaces 91
Daniele Zuddas. Branched coverings of CP^{2} and other basic 4-manifolds 91
Victor Zvonilov. Maximally inflected real trigonal curves 94

PARTICIPANTS

Abramyan, Semyon
Higher School of Economics, Moscow, Russia
Email: semyon.abramyan@gmail.com

Ahn, Jiweon
Chungnam National University, South Korea
Email: jwahn@cnu.ac.kr

Akhmetyev, Petr

IZMIRAN, Russia
Email: pmakhmet@mail.ru

Akhtiamov, Danil

Modern Algebra and Applications Lab., St. Petersburg State University, St. Petersburg, Russia Email: akhtyamoff1997@gmail.com

Alpeev, Andrei

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia
Email: alpeevandrey@gmail.com

Amrani, Ilias

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia
Email: ilias.amranifedotov@gmail.com

Anikushin, Mikhail

St. Petersburg State University, St. Petersburg, Russia
Email: demolishka@gmail.com

Antipova, Liubov

Herzen State Pedagogical University, St. Petersburg, Russia
Email: pridoroga31@ya.ru

Antonik, Alexey

St. Petersburg State University, St. Petersburg, Russia
Email: alexey.antonik@gmail.com

Ayzenberg, Anton

Higher School of Economics, Moscow, Russia
Email: ayzenberga@gmail.com

Bakuradze, Malkhaz

Tbilisi State University, Tbilisi, Georgia
Email: malkhaz.bakuradze@tsu.ge

Baron, Polina

Higher School of Economics, Moscow, Russia
Email: baron.polina@gmail.com
Belousov, Yury
Higher School of Economics, Moscow, Russia
Email: bus99@yandex.ru

Bhupal, Mohan
Middle East Technical University, Ankara, Turkey
Email: bhupal@metu.edu.tr
Bibikov, Pavel
Institute of Control Sciences, Moscow, Russia
Email: tsdtp4u@proc.ru
Biebler, Sébastien
University Paris-Est, Paris, France
Email: sebastien.biebler@u-pem.fr

Blank, Mikhail

Institute for Information Transmission Problems RAS and Higher School of Economics, Moscow, Russia Email: blank@iitp.ru

Brooks, Simon
Avraham Bar Ilan University, Ramat Gan, Israel
Email: brookss@math.biu.ac.il
Buchstaber, Victor
Steklov Mathematical Institute, Moscow, Russia
Email: buchstab@mi-ras.ru
Bulgakova, Tatiana
Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
Email: dejteriy@gmail.com
Burago, Dmitri
PSU, USA
Email: burago@math.psu.edu
Burian, Sergey
St. Petersburg State University, St. Petersburg, Russia
Email: burianserg@yandex.ru
Chasco, Maria Jesus
Universidad de Navarra, Pamplona, Spain
Email: mjchasco@unav.es
Chemlal, Rezki
Bejaia University, Bejaia, Algeria
Email: rchemlal@gmail.com
Chernov, Vladimir
Dartmouth College, Hanover, USA
Email: vladimir.chernov@dartmouth.edu

Chtioui, Hichem

University of Sfax, Sfax, Tunisia
Email: Hichem.Chtioui@fss.rnu.tn
Damian, Florin
Moldova State University and Inst. of Math. and Comp. Sci., Chisina̋u, Moldova
Email: fl_damian@yahoo.com
Deev, Rodion
Courant Institute, New York, USA
Email: rodion@cims.nyu.edu
Degtyarev, Alexander
Bilkent University, Ankara, Turkey
Email: degt@fen.bilkent.edu.tr

Dubashinskiy, Mikhail

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia Email: mikhail.dubashinskiy@gmail.com

Dynnikov, Ivan

Steklov Mathematical Institute RAS, Moscow, Russia
Email: dynnikov@mech.math.msu.su

Erokhovets, Nikolai

Moscow State University, Moscow, Russia
Email: erochovetsn@hotmail.com
Finashin, Sergey
Middle East Technical University, Ankara, Turkey
Email: serge@metu.edu.tr
Gabai, David
Princeton University, USA
Email: gabai@math.princeton.edu
Garg, Mukta
Bharati Vidyapeeth College of Engineering, Delhi, India
Email: mukta.garg2003@gmail.com
Gaifullin, Alexander
Steklov Mathematical Institute of RAS, Moscow, Russia
Email: agaif@mi-ras.ru
Gekhtman, Ilya
University of Toronto, Toronto, Canada
Email: ilyagekh@gmail.com
Golubyatnikov, Vladimir
Sobolev Institute of Mathematics, Novosibirsk, Russia
Email: vladimir.golubyatnikov1@fulbrightmail.org

Gordon, Evgeny

Email: gordonevgeny@gmail.com

Gorodkov, Denis

Steklov Mathematical Institute of RAS, Moscow, Russia
Email: denis.gorod@gmail.com

Gugnin, Dmitry

Moscow State University, Moscow, Russia
Email: dmitry-gugnin@yandex.ru

Gurevich, Boris

Moscow State University, Moscow, Russia
Email: bmgbmg2@gmail.com
Gusev, Nikolay
Moscow Institute of Physics and Technology, Moscow, Russia
Email: n.a.gusev@gmail.com

Han, Hyelim

Yonsei University, Seoul, Korea
Email: hlhan@yonsei.ac.kr, cugir@hanmail.net
Hayat, Claude
Institut de Mathmatiques de Toulouse, Toulouse, France
Email: Claude.hayat@math.univ-toulouse.fr
Horiguchi, Tatsuya
Osaka University, Osaka, Japan
Email: tatsuya.horiguchi0103@gmail.com

Itenberg, Ilia

Institut de Mathématiques de Jussieu - Paris Rive Gauche, Paris, France
Email: ilia.itenberg@imj-prg.fr
Jumi, Oh
Sungkyunkwan University, Suwon, Korea
Email: ohjumi@skku.edu
Kachurovskii, Alexander
Sobolev Institute of Mathematics, Novosibirsk, Russia
Email: agk@math.nsc.ru
Kaimanovich, Vadim
University of Ottawa, Ottawa, Canada
Email: vadim.kaimanovich@gmail.com

Kalinin, Nikita

Higher School of Economics, St. Petersburg, Russia
Email: nikaanspb@gmail.com

Kang, Bowon

Chungnam National University, Daejeon, Korea
Email: wldusbb@daum.net

Karev, Maksim

St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia Email: max.karev@gmail.com

Kasuya, Naohiko

Kyoto Sangyo University, Kyoto, Japan
Email: nkasuya@cc.kyoto-su.ac.jp
Kharlamov, Viatcheslav
Universite de Strasbourg, Strasbourg, France
Email: kharlam@math.unistra.fr
Khoule, Cheikh
Université Cheikh Anta Diop de Dakar, Dakar-Fann, Senegal
Email: cheikh1.khoule@ucad.edu.sn
Kifer, Yuri
Hebrew University of Jerusalem, Jerusalem, Israel
Email: kifer@math.huji.ac.il
Kolpakov, Aleksandr
Université de Neuchâtel, Neuchtel, Switzerland
Email: kolpakov.alexander@gmail.com
Komech, Sergey
Institute for Information Transmission Problems RAS, Moscow, Russia
Email: komech@mail.ru

Kourliouros, Konstantinos

University of Sao Paulo, Sao Paulo, Brazil
Email: k.kourliouros@gmail.com
Kozlovskaya, Tatyana
Tomsk State University, Tomsk, Russia
Email: konus_magadan@mail.ru

Krutowski, Roman

Higher School of Economics, Moscow, Russia
Email: roman.krutovskiy@protonmail.com

Krym, Victor

College of Transport Technologies, St. Petersburg, Russia
Email: vkrym12@yandex.ru
Kryzhevich, Sergey
St. Petersburg State University, St. Petersburg, Russia
Email: kryzhevicz@gmail.com

Kumar, Rakesh

Indian Institute of Technology (Banaras Hindu University), Varanasi, India Email: rakeshk.rs.mat16@iitbhu.ac.in

Kuroki, Shintaro

Okayama University of Science, Okayama, Japan
Email: kuroki@xmath.ous.ac.jp

Lebedev, Vladimir

National Research University Higher School of Economics, Moscow, Russia
Email: lebedevhome@gmail.com

Lee, Keonhee

Chungnam National University, Daejeon, Korea
Email: khlee@cnu.ac.kr
Lee, Hyunhee
Chungnam National University, Daejeon, Korea
Email: avechee@cnu.ac.kr
Leiderman, Arkady
Ben Gurion University of the Negev, Beer Sheva, Israel
Email: arkady@math.bgu.ac.il

Leksin, Vladimir

State Social and Humanitarian University, Kolomna, Russia
Email: lexin_vp@mail.ru

Li, Zelong

Moscow State University, Moscow, Russia
Email: zelongli0329@gmail.com
Limonchenko, Ivan
Higher School of Economics, Moscow, Russia
Email: ilimonchenko@yandex.ru

Maliutin, Andrei

St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia Email: andreymalyutin@gmail.com

Mamaev, Daniil

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia
Email: dan.mamaev@gmail.com
Mamayusupov, Khudoyor
Higher School of Economics, Moscow, Russia
Email: kmamayusupov@hse.ru

Manolescu, Ciprian

Stanford University, Stanford, USA
Email: cm@math.ucla.edu
Martín Peinador, Elena
Complutense University of Madrid, Madrid, Spain
Email: peinador@ucm.es

Masuda, Mikiya
Osaka City University, Osaka, Japan
Email: masuda@sci.osaka-cu.ac.jp

Megrelishvili, Michael

Bar-Ilan University, Ramat Gan, Israel
Email: megereli@math.biu.ac.il
Melikhov, Sergey
Steklov Math Institute, Moscow, Russia
Email: smelikhov@gmail.com
Mikhalkin, Grigory
Geneva University, Geneva, Switzerland
Email: grigory.mikhalkin@unige.ch
Mikhovich, Andrey
Moscow State University, Moscow, Russia
Email: mikhandr@mail.ru

Millionshchikov, Dmitry

Moscow State University, Moscow, Russia
Email: mitia_m@hotmail.com
Mishchenko, Aleksandr
Moscow State University, Moscow, Russia
Email: asmish-prof@yandex.ru

Mnev, Nikolai

St. Petersburg Department of Steklov Mathematical Institute RAS and St. Petersburg State University, St. Petersburg, Russia
Email: mnev@pdmi.ras.ru

Morozov, Egor

National Research University Higher School of Economics, Moscow, Russia
Email: gorg.morozov@gmail.com

Mulazzani, Michele

University of Bologna, Bologna, Italy
Email: michele.mulazzani@unibo.it

Munteanu, Cristian Mihai

Humboldt-Universitt zu Berlin, Berlin, Germany
Email: mihaim92@gmail.com

Musin, Oleg

University of Texas Rio Grande Valley, Brownsville, USA
Email: oleg.musin@utrgv.edu

Nagnibeda, Tatiana

Geneva University, Geneva, Switzerland and St. Petersburg State University, St. Petersburg, Russia
Email: tatiana.smirnova-nagnibeda@unige.ch

Narmanov, Abdigappar

National university of Uzbekistan, Tashkent, Uzbekistan
Email: narmanov@yandex.ru

Nevo, Amos

Israel Institute of Technology Technion, Haifa, Israel
Email: anevo@tx.technion.ac.il

Nezhinskii, Vladimir

St. Petersburg State University and Herzen State Pedagogical University, St. Petersburg, Russia
Email: nezhin@pdmi.ras.ru

Nikolayev, Dmitry

St. Petersburg State University, St. Petersburg, Russia
Email: NikolayevDmitry@yandex.ru

Nordskova, Anna

Chebyshev Lab., St. Petersburg State University, St. Petersburg, Russia
Email: anya.nordskova@gmail.com
Oseledets, Valery
Semenov Institute of Chemical Physics and Moscow State University, Moscow, Russia Email: oseled@gmail.com

Ovchinnikov, Mikhail
Chelyabinsk State University, Chelyabinsk, Russia
Email: ovch_csu_ru@mail.ru

Ozawa, Makoto

Komazawa University, Tokyo, Japan
Email: w3c@komazawa-u.ac.jp

Özbağci, Burak

Koc University, Istanbul, Turkey
Email: bozbagci@ku.edu.tr
Panov, Taras
Moscow State University, Moscow, Russia
Email: tpanov@mech.math.msu.su

Parhomenko, Lydia

St. Petersburg State University, St. Petersburg, Russia
Email: lydia-parhomenko1993@yandex.ru
Park, Seonjeong
Ajou University, Suwon, South Korea
Email: seonjeong1124@gmail.com

Park, Junmi

Chungnam National University, Daejeon, Korea
Email: pjmds@cnu.ac.kr
Petrosyan, Garik
Voronezh State Pedagogical University, Voronezh, Russia
Email: garikpetrosyan@yandex.ru
Petrov, Maxim
St. Petersburg State University and Herzen State Pedagogical University, St. Petersburg, Russia Email: tkuik@mail.ru

Piergallini, Riccardo
Università di Camerino, Camerino, Italy
Email: riccardo.piergallini@unicam.it
Pilyugin, Sergei
St. Petersburg State University, St. Petersburg, Russia
Email: sergeipil47@mail.ru
Polotovskiy, Grigory
Lobachevsky State University of Nizhni Nivgorod and Higher School of Economics, Nizhni Novgorod, Russia Email: polotovsky@gmail.com

Popelensky, Theodore

Moscow State University, Moscow, Russia
Email: popelens@mail.ru

Popescu, Clement Radu

"Simion Stoilow" Institute of Mathematics of the Romanian Academy, Bucharest, Romania Email: radu.popescu@imar.ro

Ray, Nigel

University of Manchester, Manchester, UK
Email: nigel.ray@manchester.ac.uk

Rudenko, Daniil

University of Chicago, Chicago, USA
Email: rudenkodaniil@gmail.com
Ryzhikov, Valery
Moscow State Univerity, Moscow, Russia
Email: vryzh@mail.ru
Sato, Takashi
Osaka City University Advanced Mathematical Institute, Osaka, Japan
Email: 00tkshst00@gmail.com
Sharipov, Khurshid
National University of Uzbekistan, Tashkent, Uzbekistan
Email: sh_xurshid@yahoo.com
Shchepin, Evgeny
Steklov Mathematical Institute, Moscow, Russia
Email: scepin@mi-ras.ru

Shumakovitch, Alexander

The George Washington University, Washington, USA
Email: Shurik@gwu.edu
Shustin, Eugenii
Tel Aviv University, Tel Aviv, Israel
Email: shustin@tauex.tau.ac.il
Skopenkov, Arkadiy
Moscow Institute of Physics and Technology and Independent University of Moscow, Moscow, Russia Email: askopenkov@gmail.com

Skopenkov, Mikhail
Higher School of Economics and Institute for Information Transmission Problems RAS, Moscow, Russia Email: skopenkov@rambler.ru

Soifer, Gregory

Bar Ilan University, Ramat Gan, Israel
Email: soifer@math.biu.ac.il

Solomadin, Grigory

Nikol'skii Mathematical Institute RUDN, Moscow, Russia
Email: grigory.solomadin@gmail.com

Subbotin, Vladimir

South Russian State Technical University (Novocherkassk Polytechnic Institute), Novocherkassk, Russia Email: geometry@mail.ru

Sullivan, Dennis

City University of NY, New York, USA
Email: sullivan0212@gmail.com

Sunkula, Mahesh

University of Oklahoma, Norman, USA
Email: msunkula@ou.edu

Szücs, András

Eötvös Lóránd University, Budapest, Hungary
Email: andras314@gmail.com

Taroyan, Gregory

Moscow State University, Moscow, Russia
Email: tgv628@yahoo.com
Temkin, Mikhail
Higher School of Economics, Moscow, Russia
Email: mikhail.tyomkin@gmail.com
Teymuri Garakani, Mahdi
Institute for Research in Fundamental Sciences, Tehran, Iran
Email: teymuri@ihes.fr
Tikhonov, Sergey
Plekhanov Russian University of Economics, Moscow, Russia
Email: tikhonovc@mail.ru

Trnkova, Maria

University of California, Davis, USA
Email: mtrnkova@math.ucdavis.edu

Tuzhilin, Alexey

Moscow State University, Moscow, Russia
Email: tuz@mech.math.msu.su
Vasilyev, Ioann
St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia and University of Paris-Est Marne-la-Vallé, Paris, France
Email: milavas@mail.ru

Vassiliev, Victor

Steklov Mathematical Institute RAS and Higher School of Economics, Moscow, Russia
Email: vva@mi-ras.ru

Vassiliev, Nikolay

St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia
Email: vasiliev@pdmi.ras.ru

Veprev, Georgii

St. Petersburg State University, St. Petersburg, Russia
Email: egor.veprev@mail.ru

Veryovkin, Iakov

Moscow State University, Moscow, Russia
Email: verevkin_j.a@mail.ru

Vershik, Anatoly

St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia
Email: avershik@gmail.com

Vershinin, Vladimir

Université de Montpellier, Montpellier, France
Email: vladimir.verchinine@umontpellier.fr
Viro, Oleg
Stony Brook University, Stony Brook, USA
Email: oleg.viro@gmail.com
Vysotskiy, Vladislav
University of Sussex, Brighton, UK and St. Petersburg Department of Steklov Mathematical Institute RAS,
St. Petersburg, Russia
Email: vlad.vysotsky@gmail.com

Weiss, Barak

Tel Aviv University, Tel Aviv, Israel
Email: barakw@post.tau.ac.il
Weiss, Benjamin
Hebrew University of Jerusalem, Jerusalem, Israel
Email: weiss@math.huji.ac.il
Yurttas, Oyku
Dicle University, Diyarbakir, Turkey
Email: oykuyurttas@gmail.com
Zakharov, Sergey
St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia Email: serge.zakharov@mail.ru

Zuddas, Daniele
Universität Bayreuth, Bayreuth, Germany
Email: d.zuddas@gmail.com

Zvonilov, Victor

Lobachevsky State University of Nizhni Nivgorod, Nizhni Novgorod, Russia
Email: zvonilov@gmail.com
surfaces or, more generally, C-complexes), it can be computed by means of the Fox calculus. Combined with the Wirtinger presentation, this gives us a simple algorithm computing the slope in terms of the link diagram.

The original motivation for this work was our formula [1] for the multivariate signature (defined following the approach suggested by Rokhlin and Viro) of the splice $L^{\prime} \cup L^{\prime \prime}$ of two colored links $K^{\prime} \cup L^{\prime} \subset \mathbb{S}^{\prime}$ and $K^{\prime \prime} \cup L^{\prime \prime} \subset \mathbb{S}^{\prime \prime}$. The signature is almost additive:

$$
\sigma_{L}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\sigma_{K^{\prime} \cup L^{\prime}}\left(v^{\prime \prime}, \omega^{\prime}\right)+\sigma_{K^{\prime \prime} \cup L^{\prime \prime}}\left(v^{\prime}, \omega^{\prime \prime}\right)+\delta_{\lambda^{\prime}}\left(\omega^{\prime}\right) \delta_{\lambda^{\prime \prime}}\left(\omega^{\prime \prime}\right)
$$

where $v^{*}:=\omega^{*}\left[K^{*}\right]$ and the correction term $\delta_{\lambda^{\prime}}\left(\omega^{\prime}\right) \delta_{\lambda^{\prime \prime}}\left(\omega^{\prime \prime}\right)$ depends only on the combinatorial characteristics of the links (their linking vectors $\lambda^{\prime}, \lambda^{\prime \prime}$). This formula holds unless $v^{\prime}=v^{\prime \prime}=1$, i.e., unless both characters ω^{\prime}, $\omega^{\prime \prime}$ are admissible. In the exceptional case, which was left open in [1], the formula takes the form

$$
\sigma_{L}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\sigma_{L^{\prime}}\left(\omega^{\prime}\right)+\sigma_{L^{\prime \prime}}\left(\omega^{\prime \prime}\right)+\delta_{\lambda^{\prime}}\left(\omega^{\prime}\right) \delta_{\lambda^{\prime \prime}}\left(\omega^{\prime \prime}\right)+\Delta \sigma\left(\kappa^{\prime}, \kappa^{\prime \prime}\right)
$$

where the extra correction term

$$
\Delta \sigma\left(\kappa^{\prime}, \kappa^{\prime \prime}\right):=\operatorname{sg} \kappa^{\prime}-\operatorname{sg}\left(\frac{1}{\kappa^{\prime}}-\kappa^{\prime \prime}\right)
$$

depends on the slopes $\kappa^{*}:=\left(K^{*} / L^{*}\right)\left(\omega^{*}\right)$. (For the purpose of this statement, we disambiguate $\infty-\infty$ to 0 and let $\mathrm{sg} \infty=0$.) Note that this extra term is the only contribution of the knots $K^{\prime}, K^{\prime \prime}$ along which the links are spliced. Note also that both slopes are well defined and real as the characters involved are unitary.

Should time permit, I will also discuss further properties of the new invariant. For example, the slope is a concordance invariant away from the so-called concordance roots. The concept of slope extends to a special class of tangles; the corresponding signature formula generalizes and refines the skein relations for the signature.

The author was partially supported by the TÜBİTAK grant 118 F 413 .

References:

[1] A. Degtyarev, V. Florens, and A. G. Lecuona, The signature of a splice, Int. Math. Res. Not. IMRN (2017), no. 8, 2249-2283. MR 3658197

Ivan Dynnikov. A method to distinguishing Legendrian and transverse knots

(The talk is based on recent joint works with Maxim Prasolov and Vladimir Shastin)
A smooth knot (or link) K in the three-space \mathbb{R}^{3} is called Legendrian if the restriction of the 1 -form $\alpha=$ $x d y+d z$ on K vanishes, where x, y, z are the standard coordinates in \mathbb{R}^{3}. If $\left.\alpha\right|_{K}$ is everywhere non-vanishing on K, then K is called transverse.

Classification of Legendrian and transverse knots up to respectively Legendrian and transverse isotopy is an important unsolved problem of contact topology. A number of useful invariants have been constructed in the literature, but there are still small complexity examples in which the existing methods do not suffice to decide whether or not the given Legendrain (or transverse) knots are equivalent.

We propose a totally new approach to solving the equivalence problem for Legendrian and transverse knots, which allows to practically distinguish between non-equivalent knots in small complexity cases, and gives rise to a complete algorithm in the general case.

Nikolai Erokhovets. Combinatorics and hyperbolic geometry of families of 3-dimensional polytopes: fullerenes and Pogorelov polytopes

By a polytope we mean a class of combinatorial equivalence of 3-dimensional convex polytopes. A k-belt is a cyclic sequence of k faces such that faces are adjacent if and only if they follow each other, and no three faces have a common vertex. A simple polytope different from the simplex Δ^{3} is cyclic edge k-connected (ckconnected), if it has no l-belts for $l<k$, and strongly ck-connected ($c^{*} k$-connected), if in addition any its k-belt surrounds a face. By definition Δ^{3} is $c^{*} 3$-connected but not $c 4$-connected. Any simple polytope (family \mathscr{P}_{s}) is $c 3$-connected and at most $c^{*} 5$-connected. We obtain a chain of nested families:

$$
\mathscr{P}_{s} \supset \mathscr{P}_{\text {aflag }} \supset \mathscr{P}_{\text {flag }} \supset \mathscr{P}_{a \text { Pog }} \supset \mathscr{P}_{\text {Pog }} \supset \mathscr{P}_{\text {Pog* }}
$$

The family of $c 4$-connected polytopes coincides with the family $\mathscr{P}_{\text {flag }}$ of flag polytopes defined by the property that any set of pairwise adjacent faces has a non-empty intersection. The family of $c^{*} 3$-connected polytopes we call almost flag polytopes and denote $\mathscr{P}_{\text {aflag }}$. Results by A.V. Pogorelov (1967) and E.M. Andreev (1970) imply that $c 5$-connected polytopes (family $\mathscr{P}_{\text {Pog }}$ of Pogorelov polytopes) are exactly polytopes realizable in the Lobachevsky space \mathbb{L}^{3} as bounded polytopes with right dihedral angles, and the realization is unique up to isometries. Andreev's result implies that flag polytopes are exactly polytopes realizable in \mathbb{L}^{3} as polytopes with equal non-obtuse dihedral angles. An example of Pogorelov polytopes is given by k-barrels $B_{k}, k \geqslant 5$, see Fig. 1a). Results by T. Dǒslić $(1998,2003)$ imply that the family $\mathscr{P}_{\text {Pog }}$ contains fullerenes, that is simple polytopes with only pentagonal and hexagonal faces.

The family $\mathscr{P}_{a \text { Pog }}$ of $c^{*} 4$-connected polytopes we call almost Pogorelov polytopes, and the family $\mathscr{P}_{\text {Pog* }}$ of $c^{*} 5$-connected polytopes - strongly Pogorelov. G. D. Birkhoff (1913) reduced the 4 -colour problem to the family $\mathscr{P}_{\text {Pog* }}$.

A simple polytope with all faces except for the n-gon being pentagons and hexagons is called an n-diskfullerene.
Proposition 1 ([1], [2]). Any 3-disk-fullerene belongs to $\mathscr{P}_{\text {aflag }}$, any 4-disk-fullerene - to $\mathscr{P}_{\text {apog }}$, and any 7-disk-fullerene - to $\mathscr{P}_{\text {Pog }}$. For each $n \geqslant 8$ there exist an n-disk-fullerene in $\mathscr{P}_{\text {Pog* }}$ and an n-disk fullerene not in $\mathscr{P}_{\text {aflag }}$.
T. E. Panov remarked that Andreev's results should imply that almost Pogorelov polytopes correspond to right-angled polytopes of finite volume in \mathbb{L}^{3}. Such polytopes may have 4-valent vertices on the absolute, while all proper vertices have valency 3.

Theorem 2 ([3]). Cutting of 4-valent vertices defines a bijection between classes of combinatorial equivalence of right-angled polytopes of finite volume in \mathbb{L}^{3} and almost Pogorelov polytopes different from the cube I^{3} and the pentagonal prism $M_{5} \times I$.

We develop a theory of combinatorial construction of families of polytopes. The main idea is to build a family by a given set of operations from a small set of initial polytopes. A classical result by V. Eberhard (1891) states that any simple polytope can be obtained from the simplex Δ^{3} by cuttings off vertices, edges and pairs of adjacent edges.
Proposition 3 ([3]). A simple polytope belongs to $\mathscr{P}_{\text {aflag }}$ if and only if it can be obtained from the simplex with at most two vertices cut by cuttings off vertices, edges and pairs of adjacent edges not equivalent to cutting off a vertex of a triangle, and if and only if it is obtained by simultaneous cutting off a set of vertices of Δ^{3} or a flag polytope.

Results by A. Kotzig (1969) imply that a simple polytope is flag iff it can be obtained from I^{3} by cuttings off edges and pairs of adjacent edges of at least hexagonal faces. The family $\mathscr{P}_{a P o g}$ contains $I^{3}, M_{5} \times I$, and the 3-dimensional Stasheff polytope $A s^{3}$, which is the cube with three pairwise disjoint orthogonal edges cut. A result by D. Barnette (1974) implies that a simple polytope belongs to $\mathscr{P}_{a P o g} \backslash\left\{I^{3}, M_{5} \times I\right\}$ iff it can be obtained from $A s^{3}$ by cuttings off edges not lying in quadrangles and pairs of adjacent edges of at least hexagonal faces. Unlike the case of flag polytopes, not any quadrangle of a polytope in $\mathscr{P}_{a P o g}$ is obtained by cutting off an edge of a polytope of the same family. However, results by D. Barnette imply that if a polytope in $\mathscr{P}_{a \text { Pog }}$ has quadrangles, then at least one quadrangle can be obtained in this way. A matching of a polytope is a set of its pairwise disjoint edges. A matching is perfect, if it covers all the vertices. Let P_{8} be the cube with two disjoint orthogonal edges cut.
Theorem 4 ([3]). Any almost Pogorelov polytope $P \neq I^{3}, M_{5} \times I$ is obtained by cutting off a matching of a polytope in $\mathscr{P}_{a P o g} \sqcup\left\{P_{8}\right\}$ producing all the quadrangles.

A polytope in \mathbb{L}^{3} is ideal, if all its vertices lie on the absolute. It has a finite volume.
Corollary 5 ([3]). Any ideal right-angled polytope P is obtained from some polytope $Q \in \mathscr{P}_{a P o g} \sqcup\left\{P_{8}\right\}$ by the contraction of edges of some perfect matching not containing opposite edges of any quadrangle.

Figure 1. a) canonical perfect matching of the k-barrel; b) k-antiprism.
Example 6. The k-barrel has a canonical perfect matching drawn on Fig. 1a). The corresponding ideal polytope is called a k-antiprism, see Fig. 1b).

An operation of an edge-twist is drawn on Fig. 2. Two edges on the left lie in the same face and are disjoint. Let us call an edge-twist restricted, if both edges are adjacent to an edge of the same face. In the survey (2017) A. Yu. Vesnin combining results by I. Rivin (1996) on ideal polytopes and by G. Brinkmann, S. Greenberg, C. Greenhill, B.D. McKay, R. Thomas, P. Wollan (2005) on quadrangulations of a sphere stated that any ideal right-angled polytope can be obtained from a k-antiprism, $k \geqslant 3$, by edge-twists.

Figure 2. An edge-twist.
Theorem 7 ([3]). A polytope is realizable as an ideal right-angled polytope iff it either is a k-antiprism, $k \geqslant 3$, or can be obtained from the 4 -antiprism by restricted edge-twists.

Results by I. Rivin (1994) imply that a realization of a polytope as an ideal polytope in \mathbb{L}^{3} is unique up to isometrices.

Conjecture 8. An edge-twist increases the volume of a right-angled polytope in \mathbb{L}^{3}.
All k-barrels, $k \geqslant 5$, belong to $\mathscr{P}_{\text {Pog* }}$. Results by D. Barnette (1974,1977), J. W. Butler (1974) and results from [1] imply that a simple polytope different from these barrels belongs to $\mathscr{P}_{\text {Pog }}$ iff if it can be obtained from the 5 - or the 6 -barrel by cuttings off pairs of adjacent edges of at least hexagonal faces and connected sums with the 5 -barrel (Fig. 3), and to the family $\mathscr{P}_{\text {Pog* }}$ iff it can be obtained from the 6 -barrel by cuttings off pairs of adjacent edges of at least hexagonal faces. T. Inoue (2008) showed that both operations increase the hyperbolic volume and enumerated the first 825 bounded right-angled polytopes in the order of the increasing volume (2015).

Figure 3. A connected sum with the 5-barrel.
For fullerenes there is a stronger result than for Pogorelov polytopes. There is a 1-parametric series of fullerenes obtained from the 5 -barrel by connected sums with the 5 -barrel along pentagons surrounded by pentagons. It consists of the 5 -barrel and the so-called (5,0)-nanotubes. Results by F. Kardoš, R. Skrekovski (2008) and, independently, by K. Kutnar, D. Marušič (2008) imply that all the other fullerenes lie in $\mathscr{P}_{\text {Pog** }}$.

Theorem 9 ([1]). Any fullerene different from the 5 -barrel and the (5,0)-nanotubes can be obtained from the 6 -barrel by a sequence of cuttings off pairs of adjacent edges of at least hexagonal faces in such a way that intermediate polytopes are either fullerenes or 7 -disk-fullerenes with the heptagon adjacent to a pentagon.

The difficulty is that the construction of the family $\mathscr{P}_{\text {Pog* }}$ does not guarantee that intermediate polytopes are close to fullerenes.

ThEOREM 10 ([2]). A 7-disk-fullerene is not in $\mathscr{P}_{\text {Pog* }}$ iff it is obtained from a fullerene by a sequence of connected sums with the 5-barrel. Any 7-disk-fullerene from $\mathscr{P}_{\text {Pog* }}$ can be obtained from the 6 -barrel by a sequence of cuttings off pairs of adjacent edges of at least hexagonal faces in such a way that intermediate polytopes have pentagonal, hexagonal and at most two heptagonal faces.

The research is partially supported by the RFBR grants 17-01-00671 and 18-51-50005.

References:

[1] V. M. Buchstaber, N. Yu. Erokhovets, Construction of families of three-dimensional polytopes, characteristic patches of fullerenes and Pogorelov polytopes, Izvestiya: Mathematics, 81:5 (2017).
[2] Erokhovets N. Construction of Fullerenes and Pogorelov Polytopes with 5-, 6- and one 7-Gonal Face// Symmetry. 2018. V. 10,No 3, 67.
[3] N. Yu. Erokhovets, Three-dimensional right-angled polytopes of finite volume in the Lobachevsky space: combinatorics and constructions, Proc. Steklov Inst. Math., 305, 2019 (to appear).

