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ABSTRACT 
 
Aims: To establish the common rules of exon combinatorics during RNA splicing. 
Study Design: Inferring a plausible statistical model of exon combinatorics from the annotated 
models of human genes during RNA splicing. 
Place and Duration of Study: Department of Genetics (Belarusian State University), Proteome and 
Genome Research Unit (Luxembourg Institute of Health), Department of Genetics (Lomonosov 
Moscow State University) and Moscow Center of Experimental Embryology and Reproductive 
Biotechnologies, between January 2017 and July 2019. 
Methodology: We used human mRNA and EST sequences from GenBank (1093522 unique 
records in total) and linear models of the human genes from Ensembl (58051 genes), AceView 
(72384 genes), ECgene (57172 genes), NCBI RefSeq (54262 genes), UCSC Genome Browser 
(58037 genes) and VEGA (54950 genes) to calculate a combinatorial index of human exons. We 
inferred the most plausible statistical model describing the distribution of combinatorial index of 
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human exons using Clauset’s mathematical formalism. Predictors of the combinatorial index values 
and functional outcomes of the predefined behavior of exons during splicing were also determined. 
Results: Power-law is the most plausible statistical model describing the combinatorics of exons 
during RNA splicing. The combinatorial index of human exons is defined by more than 90% by the 
138 features that have different importance. The most important of these features are the 
abundance of exon in transcripts, the strength of splice sites, the rank of exon in transcripts and the 
type of exon. Analysis of the marginal effects shows that different values of the same feature have 
unequal influence on the combinatorial index of human exons. Power-law behavior of exons during 
RNA splicing pre-determines structural diversity of transcripts, low sensitivity of splicing process to 
random perturbations and its high vulnerability to manipulation with highly combinative exons. 
Conclusion: Exons widely involved in alternative splicing are a part of the common power-law 
phenomenon in human cells. The power-law behavior of exons during RNA splicing gives the 
unique characteristics to human genes. 

 
 
Keywords: Human exons; RNA splicing; combinatorics; statistical modeling; power-law; predictors; 

functional outcomes. 
 

1. INTRODUCTION 
 
Alternative splicing is a unique process of 
unzipping genetic information archived in the 
nucleotide sequence of the gene. This is a 
widespread phenomenon in human cells and 
tissues. It was estimated that 92-94% of human 
genes produce appreciable levels of two or more 
distinct populations of RNA isoforms [1]. 
Alternative isoforms of transcripts may appear at 
the level of single cells or populations of cells of 
the same type [2,3], different tissues of the same 
individual or the same tissue but in different 
individuals [1,4] and at different stages of human 
development [5,6]. 
 
The main outcome of the alternative splicing is 
significant expansion of the complexity of the 
transcriptome, when a single gene can produce a 
wide variety of RNA molecules. These molecules 
may be translated into a variety of structurally 
and functionally distinct proteins [7]. Moreover, 
some of these molecules can be noncoding and 
may play a regulatory role [8]. A set of such 
diverse products of the same gene often forms a 
sub-network, which tightly integrates into the 
global cellular regulatory network and provides 
flexibility in cell function and adaptation [9,10]. 
 

The implementation of high-throughput OMICS-
technologies has substantially expanded our 
understanding of alternative splicing and its 
biological role. It also suggests that we see yet 
only the tip of the iceberg of the entire 
transcriptome complexity in a cell. The ever-
growing set of empirical data in this area requires 
the elucidation of common principles or rules by 
which the transcriptome of a cell forms and 
functions. We hope that through the knowledge 

of such rules further progress in this area will be 
achieved. Over the last decade there have 
already been some successes in this direction. In 
particular, some basic properties of the “splicing 
code” were disclosed [11,12]. However, we still 
don’t have full understanding of the rules of exon 
combinatorics and the systemic factors that drive 
and control the splicing process. 
 
Analysis of the human transcriptome shows that 
the number of various splicing events involving 
exons may vary significantly for different exons. 
A large set of exons are only involved in a single 
splicing event. On the other hand, human 
transcriptome contains a limited number of 
exons, which take part in many different splicing 
events. In this regard, we set a goal to figure out 
whether there are principles of local 
combinatorics of exons and if so, where and how 
it is predefined. 
 
In a context of this article, the term “local 
combinatorics of exons” refers to pairwise 
splicing events involving a given exon during 
formation of different RNA isoforms. In contrast, 
the term “extended combinatorics of exons” 
refers to splicing of different exons during 
formation of a given RNA isoform. For the 
purposes of this article, we also use the term 
“combinatorial properties of exons” which 
indicates a set of properties of exons which 
predetermine the diversity of their alternative 
splicing. Moreover, we introduced the “exon’s 
combinatorial index” (ECI) which is an equivalent 
to a topological index “node degree” of graph 
theory. In a context of splicing, ECI indicates the 
number of unique splicing events in which a 
given exon is involved. In further analytical work 
we used both a total-degree of exon (“total” 
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exon’s combinatorial index or simply total-ECI) 
as well as its decomposed variant (separated 
ingoing and outgoing degrees, or in-ECI and out-
ECI, respectively). Herewith, total-ECI indicates 
the sum of all the ingoing (forming of exon-exon 
junctions with upstream exons) and the outgoing 
(forming of exon-exon junctions with downstream 
exons) unique splicing events that involve an 
exon. The terms in- and out-ECI refer to the sum 
of all the ingoing or outgoing unique splicing 
events that involve an exon, respectively. 
 

2. MATERIALS AND METHODS 
 
For the purposes of this paper, human mRNA 
and ESTs sequences deposited in GenBank 
were downloaded via FTP-server of the UCSC 
Genome Browser. These sequences were 
aligned by BLAT [13] against GRCh38/hg38 
reference assembly of the human genome and 
were subjected to four levels of filtration: records 
with only one aligned block, mismatches, exons 
and/or introns length below the 5

th
 quantile of 

distribution (23 and 88 nucleotides in length for 
exons and introns, respectively) were deleted. 
The resulting collection of sequences we called 
Dataset 1 with 1093522 records. Additionally, we 
trimmed terminal exons of sequences from 
Dataset 1 and formed Dataset 2 with 627733 
records. 
 
Moreover, for further validations of GenBank-
based findings, linear models of the human 
genes from Ensembl (58051 genes, 546456 
exons and 370720 exon-exon junctions), 
AceView (72384 genes, 629892 exons and 
394462 exon-exon junctions), ECgene (57172 
genes, 583433 exons and 393678 exon-exon 
junctions), NCBI RefSeq (54262 genes, 413114 
exons and 165937 exon-exon junctions), UCSC 
Genome Browser (58037 genes, 546740 exons 
and 350863 exon-exon junctions) and VEGA 
(54950 genes, 587645 exons and 376591 exon-
exon junctions) were also downloaded as 
GTF/GFF files. All one-exon transcripts                   
were removed from these annotations and data 
were converted into an object of a class 
TranscriptDb and saved as a local SQLite 
database. 
 
Statistical modeling and statistical analysis of the 
above mentioned datasets was carried out             
using R programming language. All custom-
developed R codes used for the analysis are 
available upon request. The key steps of this 
analysis are described in the relevant sections of 
RESULTS. 

3. RESULTS AND DISCUSSION 
 

3.1 RESULTS 
 
3.1.1 Power-law behavior of local 

combinatorics of human exons 
 
Our work is based on the analysis of seven data 
sets: Full list of human mRNA and EST 
sequences from GenBank [14] and linear models 
of the human genes from Ensembl [15], AceView 
[16], ECgene [17], NCBI RefSeq [18], UCSC 
Genome Browser [13] and VEGA [19]. For a 
more compact representation and future use, 
these data were converted into exon graphs. 
Each of exon graphs is presented by a set of 
exons (vertices or nodes of a graph) connected 
to each other via a set of splicing events (edges 
or links of a graph) [20]. Such a graph is a 
directed acyclic graph in a sense that the exons 
present in any mature transcript of a gene are 
retained in the correct 5’ to 3’ linear order and the 
reverse edges are prohibited. 
 
The results of the topological analysis of 
reconstructed exon graphs suggest that the ECI 
values follow a power-law distribution with a 
heavy right tail: the vast majority of exons have 
low ECI value, while a small proportion of the 
exons are characterized by a very high ECI value 
(Fig. 1A). However, power-law is only one of the 
members of a broad family of distributions with 
heavy right tails [21]. In addition, the selection of 
the correct statistical model for that kind of data 
is not a trivial task because of the 
incompleteness of the empirical biological data 
and their high variability (especially in the area of 
the heavy tail). Therefore, we had to use a three-
step approach based on the mathematical 
formalism developed by Clauset A. et al. [22,23] 
to find an appropriate statistical model and to 
check our preliminary hypothesis. 
 
First, we rejected those statistical models that 
clearly did not fit the empirical distributions and 
chose five closest models: Power-law 
distribution, truncated power-law distribution (or 
power-law with exponential cut-off), exponential 
distribution, stretched exponential distribution (or 
complementary cumulative Weibull distribution) 
and log-normal distribution. Next, selected 
statistical models were fitted to the empirical 
distributions according to “xmin” paradigm [22]: 
only heavy tail of the empirical distribution was 
the subject of our attention because it contains 
the most outstanding sub-set of values of the 
distribution. Finally, Kolmogorov-Smirnov test 
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and log-likelihood ratio test were used to assess 
the plausibility of the statistical hypothesis and to 
directly compare the alternative statistical models 
[22,24,25]. 

 
The above-mentioned approach allowed us to 
identify several features of empirical distributions. 
First, the results of our statistical modeling allow 
to postulate that the ECI values of human exons 
follow a truncated form of the power-law with an 
exponential cut-off (Fig. 1B, Table 1). Herewith, 
an exponential component of the distribution can 
be substantially reduced by filtering out the 5’- 
and 3’-terminal exons (with in-ECI = 0 and out-
ECI = 0, respectively) together with the edges 
and first neighbours from exon graphs (data not 

shown). However, it should be noted that for the 
three data sets (gene models from AceView, 
NCBI RefSeq and VEGA) there remains 
uncertainty when truncated power-law is 
compared with stretched exponential or log-
normal models: log-likelihood ratio test does not 
favor one model over the other and only 
Kolmogorov-Smirnov test gives a slight 
preference for the power-law with exponential 
cut-off. Second, the beginning of the heavy tail 
(lower bound) for different data sets ranges from 
5 to 15. Third, in the frame of a truncated power-
law model the scaling parameter α lies within the 
range from 2.378 to 7.248 and rate parameter λ 
falls into the broad range from 5.713×10-9 to 
1.77×10

-1
 for different data sets. 

 

 
 
Fig. 1. Removal of uncertainty by filtering out the terminal exons leads to a clear manifestation 

of the power-law component in the human transcriptome 
(A) Frequency (upper panel) and complementary CDF (lower panel) plots of the ECI values distribution from the 
whole set of human transcripts and exons. Truncated power-law with an exponential cut-off is the best statistical 
model for this empirical distribution among the set of competitive models of distributions with heavy right tail; (B) 
Frequency (upper panel) and complementary CDF (lower panel) plots of the ECI values distribution after removal 
of the terminal exons from transcripts and after data reanalysis. For these transformed data, there exists a clear 
superiority of the power-law model as compared to other statistical models; (C) Removal of the terminal exons 
from transcripts leads to significant change in the ECI values of exons (upper panel). Herewith, the exons with 

initially high values of the ECI underwent the most profound changes (lower panel) 
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Table 1. Log-likelihood ratio test (A) and statistical tests on plausibility (B) confirm the presence of a power-law component in the human 
transcriptome 

 
A 

Dataset Basic model LLR 
test 

Competing statistical model 
Power-law Truncated 

power-law 
Yule-Simon Exponential Stretched 

exponential 
Log-normal Poison 

 Dataset 1 Power-law R – -446.6 -20.6 41.22 -17.7 -19.6 51.03 
p – 3.0e-196 2.3e-94 0.0 2.8e-70 3.5e-85 0.0 

Truncated 
power-law 

R 446.6 – 30.5 47.34 20.6 30.9 51.23 
p 1 – 0.0 0.0 0.0 0.0 0.0 

 Dataset 2 Power-law R – -0.8 4.2 11.12 3.6 -0.6 13.64 
p – 0.2 2.3e-05 0.0 3.4e-04 0.5 0.0 

Truncated 
power-law 

R 0.8 – 4.8 11.37 4.0 0.8 13.76 
p 1 – 2.0e-06 0.0 5.2e-05 0.4 0.0 

B 
Dataset Test Competing statistical model 

Power-law Truncated 
power-law 

Yule-simon Exponential Stretched 
exponential 

Log-normal Poison 

 Dataset 1 AIC 345205.6 344314.5 345304.3 363155.6 344595.3 344593.7 897718.6 
BIC 345214.5 344332.3 345313.2 363164.5 344613.1 344611.5 897727.5 
KS distance 0.01715 0.02909 0.01553 0.17865 0.03159 0.03015 0.23341 

 Dataset 2 AIC 39064.8 39065.2 39158.1 40201.8 39140.2 39065.6 42408.7 
BIC 39072.7 39081.1 39166.0 40209.7 39156.1 39081.4 42416.6 
KS distance 0.00188 0.04049 0.01658 0.05476 0.04989 0.05232 0.08236 
AIC - Akaike information criterion; BIC - Schwarz Bayesian criterion; KS distance - Kolmogorov-Smirnov distance; LLR - log-likelihood ration
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It should be noted that the observed empirical 
distributions with power-law component cannot 
be produced by random attachment of exons 
during the splicing step of gene expression (Fig. 
1C). On the other hand, this class of distributions 
can be easily generated by a preferential attach-
ment process [26]. In a frame of preferential 
attachment model, different exons have different 
attractiveness to connect to other exons. The 
results of our modeling indicate that artificial data 
can be fitted to any of our empirical data set by 
varying the power parameter α (Fig. 1C). 
However, the exact nature of the observed 
difference in exon attractiveness has not been 
considered. This question is investigated below. 
 
3.1.2 Predictors of the value of ECIs in 

human transcriptome 
 
It seems to be true that almost all (if not all) 
processes in the cell are controlled by complex 
multilevel mechanisms [27,28] and splicing 
process is unlikely to be an exception. So, we 
hypothesized that the value of ECI is determined 
by multiple predictors. To find those, we 

assembled a compendium of 22114 features               
of the target exons (ECIs of which are the  
objects of analysis) and their upstream and 
downstream first neighboring exons and  
adjacent introns. This compendium included 
seven classes of features: abundance of exons 
in transcripts, connectivity of first neighboring 
exons, sequence features of the target                
exons, sequence features of the first neighboring 
exons, length of the adjacent introns, rank                    
of the exons in transcripts and functional type                
of the target exons (Fig. 2). We took the  
Ensembl data set as the main object of research, 
and the other sets of data were used for cross-
validation of the results. The relationship 
between a feature and an ECI as well as 
contribution of the feature to the value of the ECI 
was assessed by the pairwise Spearman’s rank 
correlation coefficient and by data mining. Data 
mining was based on machine learning by 
regression random forests. This learning 
algorithm was chosen by comparison with the 
two other algorithms (lasso regression and 
generalized boosting regression) as the most 
suitable for the task. 

 

 
 
Fig. 2. Small subset of features from exons and flanking introns can determine the value of the 

ECI in tissue-independent fashion 
(A) Features of the five different classes (sequence features, sequence-related features, functional features, 

epigenetic features and features related to structure of a gene) were extracted from three classes of the 
genomic/RNA elements: Target exon and its flanking intronic sequences, upstream first neighboring exons and 
their flanking intronic sequences and downstream first neighboring exons and corresponding flanking intronic 

sequences; (B) Importance of these features for the prediction of the ECI value was inferred from random forest 
classification by Gini index and from random forest-based multiple nonlinear regression by mean square error; 

(C) Random forest-based classification shows that the maximum accuracy in prediction of the ECI is achieved by 
using no more than top-20 features; (D) Top-20 features allow to achieve a maximum in explaining the ECI 

variance and high accuracy in prediction of the ECI values by random forest-based multiple nonlinear regression 
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We found that for any gene of interest the 
presence of multiple exons, a wide spectrum of 
produced transcripts and different abundance of 
exons in these transcripts are minimal 
prerequisites for non-equivalency of the ECI 
value. The Most interesting was the effect of the 
abundance of exons in transcripts. On one hand, 
there is a high positive correlation between the 
value of ECIs and the abundance of target exons 
in transcripts, and data mining revealed high 
importance of this predictor. However, the 
converse statement is not true: Not all exons 
widely represented in transcripts are 
characterized by high combinatorial capacity. 
Moreover, profiles of the marginal effects point 
out to the unequal importance of the different 
values of this feature in the determination of the 
ECI. On the other hand, the abundance itself is 
determined by multiple factors as was shown 
early [11]. 
 
The Second class of features (connectivity of first 
neighboring exons) has a moderate or little effect 
on the value of ECI as revealed by correlation 
analysis and data mining by random forests. In 
general, exon graphs are disassortative (with 
value of disassortativity index up to -0.247): the 
exons with high values of ECI prefer to attach to 
the exons with low value and vice versa. 
 
In our compendium, classes sequence features 
of target and first neighboring exons include 
length of exons, linear density of minimal free 
energy of exons, strength of the 5‘ and 3’ splice 
sites, regional counts of the short motifs (1-3 
nucleotides), frequency of the known splicing 
enhancer and silencer motifs and count of the 
new predicted motifs associated with high 
combinatorial exons (MAHCE). One of our 
approaches in identification of MAHCE was 
correlation-based approach. This approach 
allowed us to cluster many sequences while 
discarding irrelevant oligomers. In turn, the 
decrease in the number of the unique sequences 
led to a reduction in the dimension of the space 
of variables and allowed to use the machine 
learning algorithms for the identification of 
important predictors. 
 
Despite the large number of studied structural 
features as well as cis-elements, and carefully 
carried out analysis we didn't find strong 
predictors. The most significant was the 
relationship between the strength of the splice 
sites and the value of the ECI. It should be noted 
that there is a clear cross-relationship between 
the value of the in- or out-ECI and the strength of 

the respective splice site as well as increased 
correlation at use of the total (overall) score of 
the strength of splice sites. Herewith, the profiles 
of marginal effects of the splice site strength of 
the target and first neighboring exons are 
completely different. The remaining cis-elements 
have a moderate or little effect on the value of 
ECI (both the total-ECI and the in- and out-ECI) 
as was revealed by correlation analysis and data 
mining by random forests. A similar situation was 
observed such parameters such as length of 
exons and stability of their secondary structure. 
 
From next class of features, we studied the 
minimal, maximal and mean length of the 
adjacent introns in relation to the ECI value. 
These predictors were successfully selected by 
feature selection algorithm as important for 
prediction of the ECI, but with low contribution 
(no more than 9.33% average increase in 
squared out-of-bag residuals), which agrees with 
results of correlation analysis. 
 
One of the most informative and important 
features in prediction of the value of ECI was the 
position of exon in transcripts. We used two 
different approaches to determine this metric: 
averaged short (total-, in- and/or out-) distance of 
exon to another exons in exon graph and direct 
determination of averaged exon position (exon 
rank) relative to the start (5’-end) and/or to the 
end (3’-end) in the transcripts of the gene of 
interest. Simple ratio of these two parameters 
gives us the position of the exon relative to the 
center of transcripts (the centrality of exon 
position in transcripts). The centrality of exon 
position was expressed either in relative units 
(where 1 is a relative center of transcripts, which 
include the exon of interest) or in absolute 
distance (measured in the number of exons) from 
the center of transcripts. In the latter case, zero 
position indicates the center of transcripts which 
include the exon of interest. If exon is located to 
the left of the center (closer to the 5'-end of 
transcripts), its position has a negative sign, 
otherwise a positive sign. 
 
All exons with high values of total-ECI show 
nonrandom positional distribution and tend to 
occupy central position in transcripts (Fig. 3). 
Permutation of the values of predictors from this 
class of features increases more than 30% of 
squared out-of-bag residuals in a case of target 
exons, and more than 20% in a case of first 
neighboring exons. Again, as was mentioned for 
other features, profiles of the marginal effects 
point out to the unequal importance of the 
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different values of this predictor in the 
determination of the ECI with clear transition 
point near the central position. 
 
Finally, we studied a possible influence of 
evolutionary conservatism of exon and its 
functional type on the value of the ECI. We found 
that a group of exons with high values of ECIs 
(≥10) is characterized by an average level of 
conservatism. However, we observed a low 
positive correlation between the conservatism of 
exon and the value of its ECI and, thus, this 
variable was not selected as important by feature 
selection algorithm. As for functional type of 
exon, ANOVA and data mining by random 
forests confirm the importance of this feature in 
determination of the value of ECI. In particular, 
there is a clear link between the multifunctionality 
(when exon is annotated as a multitype exon) of 

exon and high value of ECI, and permutation of 
the values of this feature increases more than 
30% of squared out-of-bag residuals. 
 
In summary, as it was originally supposed, 
among the features we studied there was no 
single predictor or a small group of predictors 
that would entirely determine the value of the ECI 
of human exons. On the contrary, the value of 
the ECI is defined more than 90% by the 
multidimensional space of predictors (138 
features in a case of total-ECI of Ensembl exons) 
that have different importance. The most 
important of these predictors are abundance of 
exon in transcripts, strength of splice sites, rank 
of exon in transcripts and type of exon. 
Furthermore, analysis of the marginal effects 
shows that even different values of the same 
predictor have an unequal influence on the ECI. 

 

 
 

Fig. 3. The most important predictor of the ECI value of the target exon is a structure of its 
upstream and/or downstream neighboring exon-coding genomic regions 

(A) Genomic structure of the small part of UTY gene is used as example. Exon-coding genomic regions that 
belong to this part of the gene are depicted as GR. The number of exons originated from each genomic region 
(size of group of overlapping exons, or SiGOE) is indicated in parentheses. Target exon is colored in dark blue. 

This exon has ECI = 10 and 70% of its splicing events happening with exons from two genomic regions 
GR_122975 and GR_122978; (B) Empirical distribution of sizes of groups of overlapping exons from human 

genome follows a power-law function; (C) The relationship between the ECI value of target exon and the average 
size of its neighboring upstream and/or downstream groups of overlapping exons. This relationship is close to 

linear; (D) Marginal effects of size of neighboring upstream (USE) and downstream (DSE) groups of overlapping 
exons on the ECI value of the target exon. The effect of size of overlapping group that owns the exon (TE) is also 

shown 
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3.1.3 Exon graphs with power-law structure: 
The functional outcomes 

 
To establish the biological significance of power-
law structure of the exon graphs, we compared 
this type of graphs with artificial full exon graphs 
based on three criteria: Diversity of the 
generated transcripts, flexibility of the alternative 
splicing and robustness to the random 
perturbations. In our modeling, we used sub-set 
of top-100 exon graphs (in terms of the number 
of vertices) from Ensembl-based human 
transcriptome exon graph. These empirical exon 
graphs (which we called power-law exon graphs) 
have topology with power-law component while 
our artificial full exon graphs do not have this 
component in the distribution of the ECI. 
 
As was expected, full exon graphs are capable of 
producing significantly more diverse transcripts 
than exon graphs with power-law component. 
For example, directed walk along the tree of 
exon graphs shows that full exon graphs 
generate 6.6 fold more different transcripts than 
power-law exon graphs and 210.4-fold more than 
it was experimentally verified (p = 1×10

-16
). 

However, the length of such transcripts is clearly 
smaller than the length of transcripts generated 
by power-law exon graphs as well as empirical 
transcripts. In addition, a full crawl of the power-
law exon graphs shows that they have great 
hidden potential to generate a variety of 
transcripts, a superior variety to known 
transcripts (1472.2-fold). Herewith, this potential 
can be seen not only in the structural diversity, 
but in the ability to generate long transcripts: 
there are clearly two distant peaks compared to 
the empirical data. 
 
Next, of interest was a flexibility of the alternative 
splicing with different types of exon graphs. We 
modeled the situation when any fraction of the 
ranked exons was purposefully skipped or 
included in the mature transcripts. Power-law 
exon graphs are extremely sensitive to 
manipulation with top-ranked exons: active 
inclusion or skipping even of a small fraction of 
these exons into splicing process may 
substantially change the possibilities for the 
formation of a variety of transcripts. At the same 
time, full exon graphs do not have such flexibility. 
This applies to both the structural diversity of 
transcripts, and a variety of lengths of transcripts. 
 
Finally, we modeled the effect of random 
perturbations on the different types of exon 
graphs and tested their ability to withstand such 

perturbations. Exact physical nature of random 
perturbations may be different, for example, it 
can be an accidental loss of exon(-s) because of 
the deletion at genomic DNA level or failure to 
include exon(-s) into mature RNA because of 
mutations of the splicing cis-regulatory elements. 
The results of our modeling indicate that full exon 
graphs are significantly more robust to random 
factors than power-law exon graphs. This 
difference is most clearly seen in the case where 
the robustness is estimated to change the length 
of the generated transcripts. 
 

4. DISCUSSION 
 
Power-law distributions appear in an enormous 
variety of fundamentally different complex 
systems: from engineering to biological and 
social systems [29,21]. Biological systems as the 
most complex systems are particularly rich in this 
phenomenon which is manifested at all levels of 
the organization of living organisms, from the 
molecular to the ecosystem level [30,29,31]. 
Therefore, it is not surprising that the 
combinatorial properties of human exons are 
subject to the same law. Why this phenomenon 
is so common in biological systems? Perhaps 
this is due the unique properties the system 
acquires, when the distribution of some of its 
parameters obeys power-law. 
 
The first of these properties is scale-free 
distribution [21]. We have observed this property 
in our data sets. For example, random sampling 
of GenBank data didn’t change the ratio between 
the numbers of exons with high and low values of 
ECI or randomly sampled sub-set of Ensembl 
data didn’t change the form of distribution (data 
not shown). The main outcome of scale-free is 
the scalability of the system without losing its 
characteristics. So, we may speculate that 
power-law component allows to adaptively scale 
up or scale down the transcriptome in individual 
human cells in response to environmental 
conditions without changing the critical system 
parameters. 
 
The second property of the systems with power-
law component is adaptive flexibility. It was 
shown in the model and experimental studies 
that power-law distribution of any systemic 
parameter is a sign that the system is in the 
vicinity of phase transition or critical point [21,32]. 
Being close to the critical point, the system can 
be quickly reconstructed and can adapt to 
changing environmental conditions [33]. Our 
results are consistent with these ideas. In 
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particular, our modeling shows that actively 
involving into splicing process or skipping even of 
a small fraction of the exons with high value of 
ECI may substantially change the possibilities for 
the formation of a variety of transcripts. 
Moreover, the theoretically possible diversity 
calculated on the basis of the structure of exon 
graphs is much greater than the experimentally 
confirmed diversity of the transcripts in human 
transcriptome. Consequently, human genes have 
significant hidden potential to produce different 
RNA molecules. Of course, it may be also due to 
incompleteness of empirical data or the 
existence of obscure limits on the formation of 
some variants of the transcripts, and this can be 
the topic of a separate study. 
 
The third property of systems with power-law 
component is their sensitivity to accidental 
damages. Despite the fact that the complex 
biological systems can stably operate in various 
conditions, they yet are fragile [34]. We see this 
in our model studies, the results of which show 

that the exon graphs are sensitive to random 
perturbations. To improve the robustness of such 
fragile living systems, the nature has taken the 
path of increasing diversity and complexity of 
regulatory mechanisms [27,28]. Splicing process 
is controlled by a variety of mechanisms based 
on a redundant inner diversity of the cis- and 
trans-regulatory factors. These factors are 
organized in a spatially and functionally 
distributed intracellular network with multiple 
positive and negative forward and feedback 
reverse regulatory circuits (Braunschweig U. et 
al., 2013). We believe that because of this, we 
could not find one or more predictors which 
would completely determine the value of the ECI. 
Instead of that, we found more than one hundred 
features that are involved in determining the 
value of ECI. A similar situation exists with other 
properties of splicing, for example, more than two 
hundreds predictors that determine the inclusion 
or exclusion of exon in/from the mature 
transcripts were identified in different types of 
human tissues [11]. 

 

 
 

Fig. 4. Power-law phenomena in RNA splicing 
Each exon of multi-exon genes can be characterized by a set of splicing-related features. Some of these features 

affect the normal distribution of ECI values and lead to the formation of a power-law distribution. The extreme 
manifestation of the power-law distribution is the appearance of “exons-switches”. In addition, the power-law 
component gives specific properties to the human genes and splicing process: it pre-determines structural 

diversity of transcripts of a gene, low sensitivity of splicing process to random perturbations and its high 
vulnerability to manipulation with highly combinative exons 
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In light of the problem of predictors, the most 
interesting and unexpected for the ECI were 
such features as the position of the exon in 
transcripts and the functional type of exon. In 
fact, the high-combinatorial exons are not only 
“hot points” of alternative splicing but they prefer 
to be located near the alternative transcription 
start and termination sites (however these exons 
usually are not 5’- or 3’-terminal exons). Exon 8b 
of human RUNX1T1 gene is a typical example. 
And our metric “centrality of exon position in 
transcripts” reflects only average position of exon 
in transcripts that include the exon of interest. 
However, this feature is highly informative. 
Moreover, we also believe that highly 
combinative exons due to the specificity of their 
location are usually multifunctional (these exons 
can be 5’UTR, 5’UTR/CDS, CDS, CDS/3’UTR 
and/or 3’UTR exon depends on transcript) and 
are characterized by a middle level of 
conservatism. 
 
5. CONCLUSION 
 
In summary, our results confirm the existence           
of the “exons-switches” of alternative splicing         
[1]. However, we have made substantial 
refinements in this concept. In particular, we 
showed that the “exons-switches” are part of            
the common power-law phenomenon in human 
cells. We also found that the combinatorial 
properties of human exons are defined by more 
than 90% by the multidimensional space of 
predictors that have different importance and 
different profiles of the marginal effects. Finally, 
we found that the power-law component gives 
the unique characteristics to the human genes 
(Fig. 4). 
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