ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

кандидата физико-математических наук, старшего научного сотрудника Отделения физики твердого тела Физического института имени П.Н. Лебедева РАН Клименко Олега Александровича на диссертационную работу ЧУЧУПАЛА Сергея Вячеславовича «Поглощение волн терагерцового диапазона в нелинейно-оптических кристаллах ZnGeP₂», представленную на соискание учёной степени кандидата физико-математических наук по специальности 01.04.03 — радиофизика.

Диссертационная работа Чучупала С.В. посвящена экспериментальному исследованию механизмов поглощения излучения терагерцового (ТГц) диапазона частот в полупроводниковых нелинейно-оптических кристаллах дифосфида цинка-германия ZnGeP₂. Интерес к кристаллам ZnGeP₂ обусловлен возможностью генерации в них ТГц излучения на разностной частоте при накачке лазерным излучением инфракрасного (ИК) или оптического диапазонов. Помимо выраженных нелинейно-оптических свойств кристаллы ZnGeP₂ обладают также высоким порогом оптического пробоя, хорошей теплопроводностью, механической прочностью и другими характеристиками, делающими данный материал весьма перспективным для создания на его основе источников ТГц излучения. Однако существующий на данный момент дефицит информации о диэлектрических параметрах монокристаллов ZnGeP₂, определяющих поглощение излучения в ТГц-диапазоне, затрудняет практическое применение данного материала. В связи с этим, актуальность тематики диссертации не вызывает сомнений.

В качестве основных экспериментальных методов исследования были выбраны Фурье- и ЛОВ-спектроскопия (ЛОВ – лампа обратной волны). В работе представлены полученные на Фурье-спектрометре «Bruker IFS-113v» спектры отражения и пропускания излучения кристаллом $ZnGeP_2$ в диапазоне $30-5000~cm^{-1}$ при комнатной температуре, спектры пропускания в диапазоне $40-300~cm^{-1}$ в интервале температур 10-300~K и полученные на оригинальном ЛОВ-спектрометре «Эпсилон» спектры пропускания излучения в диапазоне $5-32~cm^{-1}$ в интервале температур 10-300~K. Проведенный в работе анализ экспериментальных данных с использованием различных теоретических моделей взаимодействия фононов и свободных электронов с электромагнитным излучением позволил определить вклады однофононных и многофононных механизмов и влияние электронов проводимости на поглощение $T\Gamma$ ц излучения в кристалле $ZnGeP_2$. Кроме того, на основе

экспериментальных данных автором были получены частотные зависимости динамической проводимости, действительной и мнимой частей диэлектрической проницаемости, коэффициента поглощения монокристалла ZnGeP₂ в ТГц диапазоне частот.

Интересной и практически значимой особенностью данной работы является исследование влияния облучения кристалла $ZnGeP_2$ быстрыми электронами на поглощение $T\Gamma$ ц излучения, поскольку облучение электронами при определенных параметрах (энергия электронов 4 MэB, доза $1.8\cdot10^{17}$ см⁻²) уменьшает поглощение лазерного излучения ИК диапазона и более чем на порядок снижает величину проводимости в кристаллах $ZnGeP_2$.

Наиболее важными новыми результатами, полученными автором, представляются следующие:

- 1. Впервые проведено методами ТГц- и ИК-спектроскопии экспериментальное исследование механизмов поглощения электромагнитных волн ТГц диапазона в кристалле $ZnGeP_2$. Получены спектры пропускания и отражения монокристалла $ZnGeP_2$, необлученного и облучённого электронами с энергией 4 МэВ и дозой $1,8\cdot10^{17}$ см⁻², в диапазоне частот $5-5\,000$ см⁻¹ и в интервале температур 10-300 К.
- 2. В результате анализа экспериментальных данных установлено, что поглощение электромагнитных волн монокристаллом ZnGeP₂ в диапазоне частот 5 350 см⁻¹ формируется однофононными и двухфононными разностными процессами. При этом влияние свободных носителей на поглощение излучения в ТГц диапазоне пренебрежимо мало.
- 3. Обнаружено, что облучение кристалла $ZnGeP_2$ электронами с энергией 4 МэВ и дозой $1.8\cdot10^{17}$ см⁻² не оказывает существенного влияния на поглощение кристаллом излучения $T\Gamma$ ц диапазона и приводит к уменьшению коэффициента оптического преломления материала в данном диапазоне частот на ~1.6% (диэлектрической проницаемости на ~3%).
- 4. Показано, что эффективное снижение поглощения излучения ТГц диапазона происходит при охлаждении образца до температуры 80 100 К. При дальнейшем снижении температуры остаточное поглощение не изменяется.

Практическая значимость диссертационной работы вполне очевидна, поскольку полученные результаты послужат основой для расчёта параметров нелинейно-оптического кристалла ZnGeP₂, необходимых для создания источников ТГц-излучения.

По диссертации имеются следующие замечания:

1. При комплексном анализе полученных на ЛОВ- и Фурье-спектрометрах данных поглощения и пропускания излучения кристаллами ZnGeP2 автор использует

программную среду WASF, в которой на основе различных теоретических моделей производятся расчеты частотных зависимостей основных величин: пропускания, отражения, мнимой и действительной частей диэлектрической проницаемости, поглощения, динамической проводимости. При этом из текста не понятно, как определяются число и параметры модельных осцилляторов (частота, поглощение, диэлектрический вклад), играющие ключевую роль при расчетах.

- 2. В разделе 2.6, анализируя результатов измерений на ЛОВ-спектрометре при различных температурах образца, автор объясняет частотный сдвиг интерференционной картины в спектре пропускания (рисунок 32) изменением диэлектрической проницаемости кристалла. Хотя подобный сдвиг может быть связан с изменением линейных размеров образца вследствие охлаждения, в диссертационной работе это не обсуждается.
- 3. Для определения суммарного диэлектрического вклада фононных резонансов автор анализирует изменение с температурой интерференционной картины в спектре пропускания в области низких частот (5 30 см⁻¹), поскольку частоты всех резонансов находятся выше этой области. Подобная интерференционная картина в спектрах пропускания наблюдается и в более высокочастотных областях (например, 150 180 см⁻¹). Было бы интересно провести аналогичный анализ в этих областях и сопоставить его результаты с данными таблиц 1 и 2, поскольку некоторые из фононных резонансов, перечисленных в таблицах 1 и 2, находятся ниже по частоте и не дают вклада в высокочастотную диэлектрическую проницаемость.
- 4. Несмотря на значительный объем данных Фурье-спектроскопии, в работе не приводится ни одной интерферограммы Фурье, являющейся первичным результатом измерений по отношению к спектрам.
- 5. Отсутствуют данные по разрешению ЛОВ- и Фурье-спектрометров.

Сделанные замечания не снижают высокой оценки представленной диссертации и полученных в ней результатов. Научные положения, выносимые на защиту, являются новыми и оригинальными, а все основные выводы обоснованными и достоверными. Достоверность полученных результатов обеспечивается использованием достаточно совершенных современных экспериментальных методик, тщательным анализом полученных результатов и сопоставлением с известными литературными данными. В целом, представленная к защите диссертация выполнена на высоком научном уровне. Изложенные в ней результаты прошли апробацию на 6 всероссийских и международных конференциях. Основные результаты опубликованы в 4 статьях в рецензируемых научных журналах, реко-

мендованных ВАК РФ. Автореферат и публикации достаточно полно и правильно отражают содержание диссертации.

Диссертация Чучупала Сергея Вячеславовича «Поглощение волн терагерцового диапазона в нелинейно-оптических кристаллах ZnGeP₂» представляет собой законченную научно-квалификационную работу, выполненную на высоком научном уровне. По своей актуальности, новизне, объёму выполненных исследований и ценности полученных результатов диссертационная работа отвечает всем требованиям, установленным в п. 9 «Положения о порядке присуждения учёных степеней», утверждённом постановлением Правительства РФ № 842 от 24.09.2013, предъявляемым к диссертационным работам на соискание учёной степени кандидата физико-математических наук. Считаю, что Чучупал Сергей Вячеславович заслуживает присуждения искомой учёной степени кандидата физико-математических наук по специальности 01.04.03 — радиофизика.

Старший научный сотрудник
Отделения физики твердого тела
Федерального государственного
бюджетного учреждения науки
Физический институт имени П.Н. Лебедева
Российской академии наук,
кандидат физико-математических наук

Клименко Олег Александрович

119991, г. Москва, Ленинский пр-т, д. 53

Телефон: +7 (499) 132-67-44

E-mail: oleg.klimenko@mail.ru

Подпись Клименко О.А. заверяю.

Секретарь Учёного совета ФИАН

кандидат физико-математических наук

14.07.2016

Цвентух Михаил Михайлович