ТРУДЫ ВСЕРОССИЙСКОГО ЕЖЕГОДНОГО СЕМИНАРА ПО ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ, ПЕТРОЛОГИИ И ГЕОХИМИИ (ВЕСЭМПГ-2019)

Москва, 16–17 апреля 2019 г.

РОССИЙСКАЯ АКАДЕМИЯ НАУК Отделение наук о Земле

Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской революции Институт геохимии и аналитической химии им. В.И. Вернадского (ГЕОХИ РАН)

Федеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии (ИЭМ РАН)

Российское минералогическое общество

труды

ВСЕРОССИЙСКОГО ЕЖЕГОДНОГО СЕМИНАРА ПО ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ, ПЕТРОЛОГИИ И ГЕОХИМИИ

(ВЕСЭМПГ-2019)

Москва, 16-17 апреля 2019 г.

Москва

RUSSIAN ACADEMY OF SCIENCES Branch of Earth Sciences

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS)

Institute of Experimental Mineralogy (IEM RAS)

Russian mineralogical society

PROCEEDINGS OF RUSSIAN ANNUAL SEMINAR ON EXPERIMENTAL MINERALOGY, PETROLOGY AND GEOCHEMISTRY (RASEMPG - 2019)

Moscow, 16–17 April 2019

Moscow

УДК 550.4:550.4.02:550.426:550.3:552.6:523.3:502.1 ББК 26.30 26.31 Т782

Ответственный редактор проф. дгмн О.А. Луканин

Заместитель ответственного редактора проф. дгмн О.Г. Сафонов		Ответственный секретарь Е.Л. Тихомирова
	Редакционная коллегия	

академик Л.Н. Когарко чл.-корр. дхн О.Л. Кусков чл.-корр. дгмн Ю.Б. Шаповалов проф., дгмн А.А. Арискин дгмн А.Р. Котельников проф. дхн Ю.А. Литвин дхн Е.Г. Осадчий дгмн Ю.Н. Пальянов дхн Б.Н. Рыженко кгмн О.И. Яковлев

Труды Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии. Москва, 16–17 апреля 2019 года. / Отв. редактор О.А. Луканин, - М: ГЕОХИ РАН, 2019, 438 с. ISBN 978-5-905049-23-1.

Представлены краткие статьи по материалам докладов Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2019 года с описанием результатов оригинальных научных исследований, новых методов и идей, ориентированных на практическое решение широкого спектра проблем современной экспериментальной геохимии.

Editor-in-Chief	
prof. Dr of GeolMin. Sci. O.A. Lukan	in
Deputy	Executive
Editor-in-Chief	Secretary
Prof. Dr of GeolMin. Sci. O.G. Safonov	E.L. Tikhomirova

Editorial Board

Academician, Dr of Geol.-Min.Sci. L.N. Kogarko Corr.memb, Dr of Chem.Sci. O.L. Kuskov Corr.memb, Dr of Geol.-Min.Sci. Yu.B. Shapovalov Prof., Dr of Geol.-Min.Sci. A.A. Ariskin Prof., Dr of Geol.-Min.Sci. A.R. Kotel'nikov Prof., Dr of Chem.Sci. Yu.A. Litvin Dr of Chem.Sci. Eu.G. Osadchii Dr of Geol.-Min.Sci. Yu.N. Pal'yanov Dr of Chem.Sci. B.N. Ryzhenko Cand.of Geol.-Min.Sci. O.I. Yakovlev

Proceedings of Russian Anual Seminar on Experimental Mineralogy, Petrology and Geochemistry. Moscow, 2019 April 16–17. / Ed. O.A. Lukanin, M.: GEOKHI RAS, 2019, 438 p. ISBN 978-5-905049-23-1.

The results of original research, new methods and idea focused on practiciable decides of wide specra of problems of modern experimental geochemistry are presented in short papers on materials of Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry 2019.

ISBN 978-5-905049-23-1

© Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН), 2019

УДК: 552.13

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ СИСТЕМЫ ХРОМИТ-ИЛЬМЕНИТ-К₂СО₃-ЩАВЕЛЕВАЯ КИСЛОТА ПРИ 3,5 И 5 ГПа

Бутвина В.Г.¹, Воробей С.С.², Сафонов О.Г.¹, Варламов Д.А.¹ ¹ИЭМ РАН, ²Геол. ф-т МГУ. (butvina@iem.ac.ru)

EXPERIMENTAL STUDY OF CHROMITE-ILMENITE-K₂CO₃-OXALIC ACID AT 3,5 AND 5°GPa

Butvina V.G.¹, Vorobey S.S.², Safonov O.G.¹, Varlamov D.A.¹

¹*IEM RAS*, ²*Geol. f-ty MSU* (*butvina*@*iem.ac.ru*)

Abstract. In order to further study the effect of K-activity on the formation of K-Cr titanates and K silicate phases at pressures of 3.5 and 5 GPa, experiments on the interaction of the chromite-ilmenite system with K aqueous carbonate fluid were carried out at the NL-13T and NL-40 apparatus. As starting substances for experiments, natural chromite and natural ilmenite were used, which were mixed in ratios of 1:1 or 2:1 by weight. Previous results (Butvina et al., 2018) showed the possibility of crystallization of chromium priderite as a reaction product of high-chromium spinel and rutile with potassium aqueous carbonate fluid (melt) in the upper mantle. In particular, the obtained experimental data allow us to interpret the relationship between K-Cr-priderite and carbonate-silicate inclusions in chromites of Bohemian garnet peridotites. In this paper, the dependence of the crystallization intensity and the appearance of K-Cr titanates on the amount of K₂CO₃ in the system is investigated. Based on the obtained experimental data, the reactions of mantle metasomatism describing the process of formation of K-Cr titanates are derived. In the experimental study of the reaction of chromite and ilmenite with aqueous potassium-carbonate fluid (melt) phases of the pair of titanates (priderite, yimengite and yimengite, mathiasite) - indicator minerals, mantle metasomatism, which directly confirms the possibility of formation of yimengite, mathiasite and K-Crpriderite and other titanates, the result of mantle metasomatism of upper mantle peridotite under conditions of the highest activity of potassium (Safonov, Butvina, 2016).

Keywords: high T-P experiment, mantle metasomatism, K-Cr titanates, yimengite, priderite, mathiasite, indicator minerals, aqueous potassium-carbonate fluid

Введение

Предыдущие результаты (Бутвина и др., 2018) показали возможность кристаллизации хромистого прайдерита в качестве продукта реакции высокохромистой шпинели и рутила с калиевым водно-карбонатным флюидом (расплавом) В условиях верхней мантии. Экспериментальные данные исследователей (Foley et al., 1994; Konzett et al., 2005; Huggerty et al., 1983) указывают на очень широкую область существования К-Ва-титанатов, подтверждая возможность сосуществования этих фаз с алмазом в субконтинентальной верхней мантии в областях генерации кимберлитов I и II групп и лампроитов. Эти минералы могут быть ведущими концентраторами LILE и HFSE не только в литосферной мантии, но и в астеносфере, возможно, и до глубин переходной зоны (напр. Konzett et al., 2005).

Однако, очевидно, что за стабильность К-Ва-титанатов отвечают не только температура и давление, но и специфические химические условия. Эти минералы формируются тогда, когда способность концентрирования К и LILE во флогопите и калиевом рихтерите исчерпана. Образование минералов групп хауторнеит-имэнгит, линдслеит-матиасит и прайдерита характеризует наивысшие степени метасоматических изменений в условиях высоких активностей (концентраций) щелочных компонентов, прежде всего калия, во флюидах, заметно больших, чем необходимо для образования флогопита и калиевого рихтерита (Сафонов, Бутвина, 2016). Образование этих минералов обычно связывают с реакциями перидотитов с богатыми щелочами флюидами (расплавами) с низкой активностью SiO₂ (Konzett et al., 2013; Giuliani et al, 2012). Включения таких флюидов обнаружены в минералах ассоциаций MARID (Konzett et al., 2014) – наиболее близким к тем ассоциациям, в которых выявлены К-Ва-титанаты. Итак, эти минералы могут рассматриваться как индикаторы активности высокощелочных водно-углекислых флюидов или солевых расплавов в мантии. Однако нет ни экспериментальных, ни расчетных данных, которые бы ответили на вопрос, насколько высоки должны быть концентрации щелочносолевых компонентов во флюидах для появления этих минералов. В данной работе сделана попытка

экспериментально воспроизвести при Р-Т условиях верхней мантии реакции образования прайдерита, имэнгита и матиасита с участием калиевого водно-углекислого флюида.

Экспериментальная методика и стартовые смеси. Эксперименты проводились при давлениях 3,5 и 5 ГПа на установках НЛ-13Т и НЛ-40 в Институте экспериментальной минералогии им. академика Д.С. Коржинского РАН.

NºNº	Минеральный состав, (мас.%)	Флюид, (мас.%)	Содержани е флюида в системе, %	Выдержк а, час.	Р, ГПа	Синтез прайдерита, имэнгита, матиасита
Sp1	Шпинель	K ₂ CO ₃	30	21	5	-,-,-
Sp2	Шпинель: рутил (1:1)	К ₂ СО ₃ :щ.к. (9:1)	20	23	5	+,-,-
A1	Шпинель: рутил (1:1)	К ₂ СО ₃ :щ.к. (9:1)	10	20	5	+,-,-
A2	Шпинель: рутил (2:1)	К ₂ СО ₃ :щ.к. (9:1)	10	24	5	+,-,-
B1	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (9:1)	10	22	5	+,+,-
B1-1	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (7:3)	10	22	5	-,+,+
B1-2	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (5:5)	10	22	5	-,+,-
B1-3	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (3:7)	10	22	5	-,-,-
B1-4	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (1:9)	10	22	5	-,-,-
B2	Шпинель: ильменит (2:1)	К ₂ СО ₃ :щ.к. (9:1)	10	20	5	+,+,-
M-0	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (9:1)	10	8	3,5	-,+,+
M-1	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (7:3)	10	8	3,5	-,+,+
M-2	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (5:5)	10	8	3,5	-,+,+
M-3	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (3:7)	10	8	3,5	-,-,-
M-4	Шпинель: ильменит (1:1)	К ₂ СО ₃ :щ.к. (1:9)	10	8	3,5	-,-,-

Таблица 1. Условия и результаты экспериментов по синтезу К-Сг титанатов при 3,5 и 5 ГПа и 1200°С

Системы шпинель- K_2CO_3 , шпинель-рутил- K_2CO_3 -щавелевая кислота (далее щ.к.), шпинельильменит- K_2CO_3 -щ.к. В качестве стартовых веществ для экспериментов использовались природный хромит и синтетический порошок TiO₂ или природный ильменит, которые смешивались в соотношениях 1:1 или 2:1 по массе. Хромит состава (Mg_{0.49-0.54}Fe_{0.50-0.54}Mn_{0.01-0.02}Zn_{0.01-0.02})(Al_{0.17}- $_{0.20}Cr_{1.55-1.61}Fe_{0.10-0.22}Ti_{0.03-0.07})O_4$ (см. табл.1) был отобран из ксенолита гранатового лерцолита кимберлитовой трубки Пионерская, Якутия. Ильменит состава Fe_{0.98}Mg_{0.01}Mn_{0.06}Ti_{0.93}Al_{0.01}Nb_{0.01}O₃, представляет ксенокристалл из кимберлита трубки Удачная, Якутия. В качестве флюидной составляющей использовалась смесь K₂CO₃ и щавелевой кислоты в разных соотношениях (9:1; 7:3; 5:5; 3:7; 1:9) по массе. Смеси хромит + TiO₂ смешивалась с «флюидной» смесью в соотношениях 4:1 и 9:1, а хромит + ильменит – в соотношении 9:1 по массе. Условия проведения экспериментов представлены в табл. 1.

Обсуждение экспериментальных результатов

Система шпинель-ильменит-К₂СО₃-щ.к.

Серии опытов В1, В1-1, В1-2, В1-3, В1-4 (при 5 ГПа- см. табл.1) и М-0, М-1, М-2, М-3, М-4 (при 3.5 ГПа-см. табл.1) были проведены при разных отношениях К₂CO₃: щ.к. во флюиде для изучения кристаллизационной способности К-Сг титанатов от активности К в системе. Видно (табл.1), что

при наибольшем количестве К в системе (9% K₂CO₃) образуются самые обогащенные К титанаты – прайдерит и имэнгит (при 5 ГПа) и имэнгит и матиасит (при 3.5 ГПа), при 5 и 7 % K₂CO₃ прайдерит не образуется, в ходе эксперимента идет интенсивное образование имэнгита субидиоморфной и идиоморфной гексагональной формы размером 10-100 мкм, а также появляется обедненный К титанат – матиасит, менее 5 % K₂CO₃ в системе титанаты не образуются при обоих давлениях. Опыт В2 (см. табл.1) показал, что 30% ильменита в системе достаточно для образования и прайдерита, и имэнгита, т.е. опыт В2 воспроизводит полностью опыт В1.

Система шпинель-рутил-К₂СО₃- щ.к. Опыт Sp2 (табл.2,4,5).

В данной системе за счет того, что мало Fe для образования имэнгита, образуется прайдерит. Соотношения Fe (Fe²⁺+Fe³⁺), Ti и Cr в формулах прайдерита, синтезированных в системах с рутилом и ильменитом, мало отличаются. В продуктах опыта прайдерит находится в ассоциации с новообразованным хромитом (табл.2), который содержит меньше Fe₂O₃, Cr₂O₃, больше TiO₂ по сравнению с первоначальным. Опираясь на составы фаз данного опыта, можно записать следующую реакцию образования:

$$\begin{split} K_2O + 5.786203 TiO_2 + 0.459471O_2 + 1.103516 Cr_2O_3 + 24.498376 Chr2 = \\ = 1.169591 Pri + 9.452462 Chr + 14.568025 Chr1. \end{split}$$

Таблица 2. Представительные анализы (в. ф.е.) составов парагенетических минералов (продуктов) в опытах по синтезу К-Сг титанатов при 5ГПа и 1200^оС

№опыта		B1					
Эл/Минерал	Yim	Pri1	Ilm1	Ilm2		Rt1	
Ti	4,76	6,15	0,93	0,98		0,85	
Cr	2,87	1,56	-	0,01		0,20	
Fe ³⁺	0,25	0,15	0,08	0,03		-	
Fe ²⁺	3,30	0,10	0,95	0,70		-	
Al	0,35	0,06	0,02	-		-	
K	1,01	1,77	-	-		-	
Mg	0,47	0,06	0,04	0,28		-	
Продолжение таблицы 2.							
№опыта	Sp2			B1-1			
Эл/Минерал	Chr1	Chr2	Pri2	Yim1	Yim2	Ilm3	
Ti	0,10	0,14	6,23	4,34	4,25	0,97	
Cr	1,47	1,46	1,47	2,99	3,31	0,02	
Fe ³⁺	0,02	-	0,11	0,68	0,42	0,04	
Fe ²⁺	0,31	0,46	-	2,61	2,74	0,74	
Al	0,31	0,26	0,13	0,69	0,66	-	
K	-	-	1,71	1,00	1,01	-	
Mg	0,79	0,68	0,12	0,67	0,67	0,23	

Система шпинель-ильменит- K_2CO_3 -щ.к. Опыт B1 (табл. 1,2). В данной системе компонентов Fe, Ti и K достаточно для образования и прайдерита, и имэнгита. Составы имэнгита, полученного при реакции хромита и ильменита с флюидом, образуют тренд, отражающий изоморфизм (Fe²⁺+Fe³⁺)+Ti \leftrightarrow Cr при постоянстве соотношения (Fe²⁺+Fe³⁺)/Ti. Имэнгит характеризуется относительно низким содержанием Al₂O₃ и MgO. Он содержит до 3.5 мас. % Nb₂O₅, при том, что сосуществующий с ним прайдерит не содержит этот компонент (табл. 2). Опираясь на составы полученных новообразованных фаз (табл.2), можно составить три обменные и реакции образования K-Cr титанатов:

> $Rt1 + 0.105649Chr + 0.124873K_2O + 0.210133Ilm1 =$ = 0.114438Pri1 + 0.046724Yim + 0.025989Cr₂O₃ + 0.127047Ilm2 (1)

 $Rt1 + 0.142749Chr + 0.168723K_2O + 0.298481TiO_2 + 0.283922Ilm1 =$

$$= 0.154624 Pri1 + 0.063131 Yim + 0.171660 Ilm2$$
(2)

$$0.923197 \text{Chr} + 1.091184 \text{K}_{2}\text{O} + 0.646730 \text{Cr}_{2}\text{O}_{3} + 7.427572 \text{TiO}_{2} + 1.836211 \text{IIm}_{1} = \\ = \text{Pri}_{1} + 0.408285 \text{Yim} + 1.110175 \text{IIm}_{2}$$
(3)

Система шпинель-ильменит-K₂CO₃-щ.к. Опыт B1-1 (табл.1,2). При уменьшении в системе компонента К (7 и менее мас.% K₂CO₃), прайдерит не образуется. В ходе реакции образования имэнгита синтезируется магнезиальный ильменит (Ilm3, табл.2):

 $5.290510 Chr + 1.078295 K_2 O + 7.608525 TiO_2 + 9.869991 Ilm = Yim1 + 1.145138 Yim2 + 0.681967 Cr_2 O_3 \\ + 8.087943 Ilm3$

Итак, в ходе экспериментов изучена возможность образования редких титанатов и отмечена зависимость их образования от содержания K₂CO₃ в системе: в обогащенной K системе образуются прайдерит и имэнгит, с понижением K в системе исчезает прайдерит, появляется матиасит наряду с имэнгитом. При содеражании K₂CO₃ менее 5 мас. % K-Cr титанаты не образуются.

Заключение

Исследована зависимость интенсивности кристаллизации и появления К-Сг титанатов от количества K₂CO₃ в системе. Основываясь на полученных экспериментальных данных, выведены реакции мантийного метасоматоза, описывающие процесс образования К-Сг титанатов. При экспериментальном изучении реакции хромита и ильменита с калиевым водно-карбонатным флюидом (расплавом) получены пары фаз титанатов (прайдерит, имэнгит и имэнгит, матиасит) – минералов-индикаторов мантийного метасоматоза, что напрямую подтверждает возможность образования имэнгита, матиасита и К-Сг-прайдерита, а также других титанатов, в результате мантийного метасоматоза верхнемантийных перидотитов в условиях наиболее высоких активностей калия (Сафонов, Бутвина, 2016).

Работа выполнена при поддержке: НИР АААА-А18-118020590148-3.

Литература

- Бутвина В.Г., Воробей С.С., Сафонов О.Г. Образование имэнгита и хромистого прайдерита в результате взаимодействия хромита и ильменита с калиевым водно-карбонатным флюидом при 5.0 ГПа. // В сборнике: Физико-химические и петрофизические исследования в науках о Земле Материалы Девятнадцатой международной конференции. 2018. С. 57-60.
- Сафонов О.Г., Бутвина В.Г. // Геохимия. 2016. № 10. С. 893-908
- Foley S., Hofer H., Brey G. 1994. High-pressure synthesis of priderite and members of lindsleyitemathiasite and hawthorneite-yimengite series // Contrib. Mineral. Petrol., V. 117, pp. 164-174.
- Giuliani A., Kamenetsky V.S., Phillips D., Kendrick M.A., Wyatt B.A., Goemann K. // Geology. 2012. V. 40. № 11. P. 967-970.
- Haggerty S. E., Smyth J. R., Erlank A. J., Rickard R.S., Danchin R. V. (1983) Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle. //Am Mineral, 68, 494-505.
- Konzett J., Yang H., Frost D.J. // Journal of Petrology. 2005. V. 46. № 4. P. 749-781.
- Konzett J., Krenn K., Rubatto D., Hauzenberger C., and Stalder R. (2014) The formation of saline mantle fluids by open-system crystallization of hydrous silicate–rich vein assemblages—Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa. //Geochim. Cosmochim. Acta 147, 1–25.
- Konzett J., Wirth R., Hauzenberger Ch., Whitehouse M. 2013. Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases // Lithos. V. 182-183, pp. 165-184.