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A sliceness criterion for odd free knots

V. O. Manturov and D.A. Fedoseev

Abstract. The problem of concordance and cobordism of knots is a well-
known classical problem in low-dimensional topology. The purpose of this
paper is to show that for odd free knots, that is, free knots with all intersec-
tions odd, the question of whether the knot is slice (concordant to a trivial
knot) can be answered effectively by analysing pairing of the chords in
a knot diagram.
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§ 1. Introduction

1.1. Statement of the problem and basic definitions. In this paper, we will
call a 4-graph the following generalisation of a four-valent graph: a one-dimensional
complex Γ with each connected component homeomorphic to either a circle or
a four-valent graph. The vertices of a 4-graph are the vertices of its components
homeomorphic to four-valent graphs. The edges are the edges of four-valent graphs
as well as circle components. An edge homeomorphic to a circle will be called
a cyclic edge of a 4-graph.

Definition 1. A 4-graph Γ is called framed if, for each vertex, the four half-edges
incident to it are split into two pairs. The half-edges from one pair will be called
formally opposite.

In this paper, we study concordance (see Definition 10) of 4-valent graphs. In
particular, we identify when a 4-graph is slice, that is, concordant to a trivial graph
without vertices and with a single cyclic edge. The central result of the paper is
Theorem 1, which gives a criterion that leads to a solution of the slice problem
for a certain class of framed four-valent graphs (odd graphs) in terms of the chord
diagram of a graph (see Definition 5).

We recall the basic definitions necessary for the formulation and proof of the
main result of the paper.
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Definition 2. A classical knot is an isotopy class of a circle embedded in R3.
A diagram of a classical knot is its image under a generic projection onto

a two-dimensional subspace R2 ⊂ R3.

Different diagrams can correspond to the same classical knot. It is known that
two diagrams D1 and D2 represent the same classical knot if and only if they can be
connected by a chain of trivial isotopies and Reidemeister moves shown in Figure 1.

Figure 1. Reidemeister moves.

The following notion of concordance is important in the theory of classical knots.

Definition 3. Let K1 and K2 be two classical knots embedded in a four-dimen-
sional space R3× [0, 1] in such a way that K1 ⊂ R3×{0} and K2 ⊂ R3×{1}. The
knots K1 and K2 are called concordant if there is a smooth proper embedding f of
a cylinder C = S1×[0, 1] in R3×[0, 1] such that f(S1×{0}) = K1, f(S1×{1}) = K2.

Definition 4. A classical knot K is slice if it is concordant to a trivial knot.

Next we recall some basic definitions of the theory of virtual and free knots,
following [1] and [2].

Definition 5. A chord diagram is a 3-valent graph of the following form. It consists
of a circle, called the base circle, on which an even number of vertices is fixed. Each
vertex is connected by an edge to exactly one other vertex. A circle with an empty
set of vertices is also a (trivial) chord diagram.

Two chords in a chord diagram are called linked if their ends alternate in going
along the base circle of the diagram.

Every diagram of a classical knot corresponds to a chord diagram. Namely, con-
sider a knot K and its diagram D. By definition, K is the image of a circle S1 under
an embedding f , and D is the image of K under a projection π onto a generic sub-
space. For each crossing x of D we connect its two preimages x1, x2 ∈ (π ◦ f)−1(x)
by a chord. In this way S1 is turned into a chord diagram of K.

Furthermore, each chord of the diagram is framed, that is, it is labelled with
a sign and an arrow going from the preimage of the overcrossing to the preimage
of the undercrossing.

Reidemeister moves can be reformulated in the language of chord diagrams
(Figure 2). In this case two chord diagrams constructed from equivalent diagrams of
a classical knot can be connected by a sequence of Reidemeister moves.

However, not every framed chord diagram corresponds to a diagram of a classical
knot.

Definition 6. A virtual knot is an equivalence class of framed chord diagrams
under Reidemeister moves.
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Figure 2. Reidemeister moves of chord diagrams (only the part of the
diagram that changes under the move is shown).

Virtual knots can be coarsened further by forgetting the framing of chord dia-
grams (that is, forgetting the orientation and signs of the chords). The Reidemeister
movements for such diagrams are obtained from the moves shown in Figure 2 by
forgetting the arrows and signs on the chords.

Definition 7. A free knot is an equivalence class of chord diagrams under Reide-
meister moves.

There is a one-to-one correspondence between chord diagrams and framed
4-valent graphs (see Definition 1) with one unicursal component. We can therefore
introduce the following equivalence relation on framed 4-graphs.

Definition 8. Two framed 4-graphs Γ1 and Γ2 are said to be equivalent if their
chord diagrams can be connected by a sequence of Reidemeister moves.

Virtual knots can be defined by diagrams on two-dimensional surfaces in which it
is indicated at every vertex which pair of opposite edges forms an overcrossing; the
other pair then forms an undercrossing. Forgetting this information gives a general
position curve immersed in an oriented two-dimensional surface. A 4-graph embed-
ded in a two-dimensional surface has a natural rotation structure at each vertex,
a cyclic order of the outgoing half-edges. A framed 4-graph is obtained from a graph
with rotation structure by forgetting the order of the half-edges and remembering
only which half-edges are opposite. So (a, b, c, d) and (a, d, c, b) represent the same
framing at a vertex (since the half-edge a is opposite to c in both cases), although
the cyclic orders are different (since b follows a in one case, and d follows a in the
other).

It follows that framed 4-graphs are obtained from diagrams of virtual knots
(or knots in thickened surfaces Sg × [0, 1]) by forgetting two ‘bits’ of information
at each vertex, the overcrossing-undercrossing structure and the cyclic order, while
keeping the information about opposite half-edges.
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Equivalent virtual knots clearly define equivalent framed 4-graphs, since the
Reidemeister moves for graphs are obtained from the Reidemeister moves for virtual
knots by forgetting the orientation. Therefore, a sharp coarsening occurs when one
passes from virtual knots to free knots.

The concordance relation for virtual knots (see [2]) generates naturally the con-
cordance relation for free knots. In particular, a slice virtual knot (a virtual knot
concordant to a trivial virtual knot) gives rise to a slice-free knot. More precisely,
the concepts of concordance and slice carry over to framed graphs as follows.

Definition 9. A finite two-dimensional complex K is called standard if each of its
points has a boundary of one of the types shown in Figures 3 and 4.

Figure 3. Types of interior points of a standard two-dimensional complex.

Figure 4. Types of boundary points of a standard two-dimensional complex.

Definition 10. Two framed 4-graphs Γ1 and Γ2 are called concordant if there
exists a standard two-dimensional complex K, called the slicing complex, satisfying
the following conditions:

(1) there is a continuous map f : S1 × [0, 1] → K such that f(S1 × [0, 1]) = K;
(2) f(S1 × {0}) = Γ1 and f(S1 × {1}) = Γ2;
(3) in a neighbourhood of the preimage of each vertex v of the graph Γi, i = 1, 2,

the boundary component of the cylinder is mapped to the union of two opposite
half-edges according to the framing of the graph.

A framed 4-graph Γ is slice if it is concordant to a trivial graph (given by a circle
without vertices).

If Γ is slice, then by gluing the trivial circle with a disc, we get a complex that
is the image of a disc, called a slicing disc for Γ.

It is easy to see that any two graphs which differ by a Reidemeister move of their
chord diagrams are concordant. Therefore, concordance is an equivalence relation
for free knots.

It follows that any invariant of free knots and their concordance lifts tautolog-
ically to an invariant of virtual knots. The same can be said about invariants of
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slice virtual knots (and knots in thickened surfaces). Thus, all invariants of free
knots (and their concordance) can be ‘lifted’ to invariants of virtual knots (and
their concordance).

The question of the existence of nontrivial free knots had been open for five
years; see [3] and [4]. Thanks to the parity theory [1], new subtle invariants of
virtual knots have appeared; see [2] and [5]. These invariants take values in the
pictures and allow one to describe properties of all diagrams of a given virtual knot
by looking at a single diagram.

Concordance of virtual knots is a coarser equivalence relation than their isotopy
as circles embedded in a thickened surface Sg × [0, 1]. Likewise, concordance of
framed 4-graphs is a coarser equivalence relation than the equivalence generating
free knots.

The first nontrivial invariant of concordance for free knots (and an obstruction
to being slice) was obtained in [2]. Although this invariant was introduced as an
element of a certain group, it is essentially an integer invariant.

The purpose of this paper is to obtain a subtle obstruction to a rough equivalence
of rough objects.

It turns out that for a special class of free knots defined below (see Definition 11),
a slice can be recognised from its chord diagram by a finite verification procedure
(Theorem 1).

The obstruction for a free knot to be slice can be understood as follows. For any
framing-preserving embedding of a given framed 4-graph Γ in a surface Sg, and for
any three-dimensional manifold M with boundary Sg, there is no smooth map of
a disc to M such that the boundary of the disc is mapped onto Γ preserving the
orientation.

Nontriviality of virtual knots implies nontriviality of knots and links in differ-
ent three-dimensional manifolds. In particular, if there is a multicomponent link
L = K ′ ⊔ K in S3 such that one of its components K ′ is a fibred link, then the
nontriviality of K in the complement of K ′ implies the non-triviality of L. Nontriv-
iality of knots in the complement of K ′ can be deduced from nontriviality of virtual
(or free) nodes. Similarly, one can raise the question of concordance of classical
links of a special type, and obstructions to this concordance can be obtained from
obstructions to concordance of free knots.

In a recent work by Chrisman and the first author [6], a programme was initiated
to use virtual knots to study classical links whose components are not necessarily
fibred knots. Questions of concordance and being slice arise naturally for the cor-
responding classes of links.

1.2. Statement of the main results. The concept of Gaussian parity is defined
as follows for free knots (and therefore for framed 4-valent graphs).

Definition 11. Consider a framed 4-graph Γ and its chord diagram D(Γ). Each
vertex v of Γ corresponds to a chord d(v). The Gaussian parity of the vertex v is
the parity of the number of chords linked with d(v).

A graph is called odd of all its vertices are odd.

We need one more concept before stating the main result of the paper. Let Γ be
a framed 4-graph and let D(Γ) be the corresponding chord diagram.
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Definition 12. A pairing P of chords in the diagram D(Γ) is a partition of all
chords {di} into pairwise disjoint sets Pi consisting of one or two elements, such
that whenever Pi consists of two chords ci and di, each endpoint of ci corresponds
uniquely to one of the endpoints of di.

Define the chord diagram C(P) consisting of chords whose endpoints coincide
with the endpoints of the chords of the diagram D, and each chord of C(P) either
coincides with a chord of D forming a singleton family, or connects two correspond-
ing endpoints of two different chords from a two-element family.

We see that a pairing P of chords in a chord diagram D leads to a new dia-
gram C(P). There may be different pairing of chords in the same diagram.

Definition 13. We say that a pairing P is intersection-free if the chords of the
diagram C(P) are not pairwise linked.

Example 1. The pairing in Figure 5 has the form

{{c1}, {c2, d2}, {c3, d3}};

the figure on the right shows a fold point on the chord c1, which is paired with
itself.

Figure 5. The existence of a suitable pairing implies that a knot is slice.

Here is the main theorem in this paper.

Theorem 1. If a diagram K of a free knot is odd, then K is slice if and only if its
chords admit an intersection-free pairing.

Example 2. Consider a free knot with chord diagram shown in Figure 6. It has 10
chords: five ‘long’ ones, a1, a2, a3, a4 and a5, and five ‘short’ ones, b1, b2, b3, b4

and b5. We show below that this chord diagram does not admit an intersection-free
pairing.

First observe that in an intersection-free pairing, an odd chord must be paired
with another odd chord. Indeed, orient the circle of the chord diagram arbitrarily
and consider an even chord e with endpoints e1 and e2 and an odd chord o with end-
points o1 and o2. We can assume without loss of generality that the arc a1 = ê1o1

does not contain the points e2 and o2 (the endpoints of the arc are specified in the
order defined by the orientation). Similarly, the arc a2 = ê2o2 does not contain
the points e1 and o1. Then the numbers of ends of the chords on a1 and a2 have
different parity. Therefore, the pairing of e with o must have intersections.
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Figure 6. A free knot which is not slice.

Analysing different cases of pairing, one can easily notice that two short chords
cannot be paired with each other. It follows that each long chord must be paired
with a short chord.

Further, no chord can be paired with itself, since each of the arcs subtended
by each of the chords contains an odd number of endpoints of the other chords.
Therefore, if a chord λ were paired with itself, then after pairing one could find
a chord µ with endpoints on the two different arcs subtended by λ, so the pairing
would have intersections.

If b1 is paired with a1, then each of the ‘long’ chords a2, a3, a4 and a5 must be
paired with a long chord, leading to a contradictory pairing of short chords.

Pairing of a1 with b3 (or with b4) makes it impossible to pair b5 (respectively, b2)
with any other chord. Similarly, pairing a1 with b2 (or with b5) makes it impossible
to pair b4 (respectively, b3).

Remark 1. The example shown in Figure 5 illustrates the situation when a chord
paired with itself (a chord generating a cusp) is required to construct a slicing disc.

It is easy to construct an example of a slicing disc with triple points. Such an
example is shown in Figure 7.

Figure 7. A slicing disc with triple points and cusps.

In the figure on the left, the paired chords are denoted by the same letters a, b
and c. The pairing shown in the figure on the right has three intersections, but the
corresponding double lines can be identified in such a way that the triple point is
at the intersection of three double lines. As a result, we obtain a slicing disc for
the original knot.



1500 V.O. Manturov and D.A. Fedoseev

The knot with the chord diagram shown in the figure on the left is slice, since its
chord diagram is obtained by applying the third Reidemeister move to a diagram
of the connected sum K #K of two trivial free knots with obvious pairing, and the
Reidemeister moves preserve slice knots. Moreover, the third Reidemeister move
on a chord diagram creates a triple point on the slicing complex.

The following construction allows one to obtain families of nontrivial slice knots.
Let K be a free knot and let K be its mirror image. Take a point x ∈ K and let
f(x) ∈ K be its image under the mirror map. Consider the connected sum K # K
at the points x and f(x); see Figure 8.

Figure 8. Connected sum of chord diagrams of a knot and its mirror image.

The following statement is trivial.

Statement. The free knot K # K is slice.

The structure of this paper is as follows. In § 2 we give some facts from the
theory of two-dimensional knots required in the proof of the main theorem. In § 3
we define the operation of resolution on two-dimensional knots. In § 4 we prove the
main theorem (Theorem 1) of this paper.

§ 2. Two-dimensional knots

Two-dimensional knots are analogues of one-dimensional knots. A two-dimen-
sional knot is a knotted sphere in four-dimensional space. We recall the basic
definitions and facts of this theory, following [7] and [8].
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Definition 14. A two-dimensional knot (respectively, a two-dimensional n-com-
ponent link) is a smooth embedding of a 2-sphere S2 (respectively, of a disjoint
union of n spheres) in general position in R4 or S4 up to isotopy.

As in the case of one-dimensional knots, 2-knots can be represented by diagrams.

Definition 15. A 3-dimensional diagram of a 2-knot K is a generic projection of K
onto a subspace R3 of R4. Here a projection is generic if each point in its image is
either a regular point, or a transverse double point, or a transverse triple point, or
a cusp point (of the Whitney umbrella).

Two diagrams represent the same knot if and only if one diagram can be trans-
formed into the other by a sequence of Roseman moves, shown in Figure 9, and
trivial isotopies. The Roseman moves are the two-dimensional analogues of the
Reidemeister moves.

Figure 9. Roseman moves.

Another way to represent 2-knots is spherical diagrams. These diagrams are
two-dimensional analogues of chord (Gaussian) diagrams of one-dimensional knots.

Definition 16. A spherical (Gaussian) diagram of a 2-knot is a two-dimensional
complex consisting of the sphere S2 and a set D of labelled curves on the sphere
with the following properties:

(1) each curve is either closed or ends with two cusps; the number of cusps is
finite;
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(2) each curve in D is paired with exactly one other curve from the set; one curve
in the pair is labelled as the upper one, both curves are oriented (equipped with
arrows), and the pairing is pointwise, continuous and consistent with the orientation
of the curves;

(3) two curves ending at the same cusp are paired, and both their arrows point
either towards the cusp or away from it;

(4) if two curves intersect, then the curves paired with them also intersect (there-
fore, a triple point appears on the sphere S2 three times);

(5) all triple points are geometric (see Figure 10 and Remark 2).

Remark 2. We comment on the notion of a geometric triple point.
A triple point appears three times on a spherical diagram according to prop-

erty (4) in Definition 16. Neighbourhoods of the three preimages of a triple point
are shown in Figure 10. Paired curves are denoted by the same letters a, b and c,
and the signs indicate the top (sign ‘+’) and bottom (sign ‘−’) curves in the pair.
The arrows indicate the orientation of the paired curves.

Figure 10. Three local leaves of a spherical diagram in a neighbourhood of
a geometric triple point (the ‘+’ sign indicates the top curve in a pair, and
‘−’ indicates the bottom curve).

A triple point is geometric if its preimages have neighbourhoods which look
exactly as shown in Figure 10. Only geometric triple points are allowed.

Roseman moves can be easily translated into the language of spherical diagrams.

Definition 17. Consider the set of spherical diagrams and the following opera-
tions:

A. Roseman moves 1–7;
B. simultaneous change of orientation of two paired curves;
C. swapping the ‘top’ curve with the ‘bottom’ one in a pair.
A free two-dimensional knot is an equivalence class of spherical diagrams under

operations A, B and C; see [7].

Along with two-dimensional knots and free two-dimensional knots, we can con-
sider two-dimensional (free) knots with boundary.

Definition 18. A two-dimensional (classical) knot with boundary is a generic
smooth embedding of a 2-disc D2 in R4 or S4 up to isotopy.

Definition 19. A diagram of a 2-knot K with boundary is a generic projection
of K onto a subspace R3 in R4. Here a projection is generic if each point in its
image is either a regular point, or a transverse double point, or a transverse triple
point, or a cusp point (of a Whitney umbrella). In addition, it is required that the
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image of the boundary ∂D of the disc does not intersect the image of the interior
of the disc.

Equivalence of diagrams of two-dimensional knots with boundary is defined by
means of Roseman moves, as in the case of knots without boundary. It is required
that Roseman moves do not involve the boundary of the knot.

Definition 20. A spherical diagram of a 2-knot with boundary is a two-dimen-
sional complex consisting of the disc D2 and a set D of labelled curves on the disc
with the following properties:

(1) each curve is either closed, or ends with two cusps, or ends at the boundary
of the disc; the number of cusps is finite;

(2) each curve in D is paired with exactly one other curve from the set; one curve
in the pair is labelled as the upper one, both curves are oriented (equipped with
arrows), and the pairing is pointwise, continuous and consistent with the orientation
of the curves;

(3) two curves ending at the same cusp are paired, and both their arrows point
either towards the cusp or away from it;

(4) if a curve ends at the boundary of the disc, then the curve paired with it also
ends at the boundary, and both arrows of the paired curves point either towards
the boundary or away from it;

(5) if two curves intersect, then the curves paired with them also intersect (there-
fore, a triple point appears three times on D2);

(6) all triple points are geometric.

A free two-dimensional knot with boundary is an equivalence class of spherical
diagrams with boundary under operations A, B and C from Definition 17.

In what follows, we will call a double line of a diagram of a two-dimensional
knot with boundary (and the curves corresponding to it on the spherical diagram)
internal if it is either closed or ends with two cusps.

It follows from Definition 10 that if a framed 4-graph Γ is slice, then its slicing
complex corresponds to a spherical diagram with boundary. Conversely, let Γ be
a graph. Note that any spherical diagram with boundary defines a pairing of the
ends of the curves lying on its boundary. Suppose there is a chord diagram of Γ
that can be obtained from a spherical diagram D with boundary by removing all
double lines from D and connecting the corresponding points on the boundary by
chords. (In this case we say that the boundary of D corresponds to the graph Γ.)
Then Γ is slice.

This observation allows us to use the technique of two-dimensional knots to study
slice framed 4-graphs and will be used in the proof of Theorem 1.

In [2] and [7] the Gaussian parity of double lines of (free) two-dimensional knots
with or without boundary was defined as follows.

Consider a double line of a 2-knot and the corresponding curves η1 and η2 on the
spherical diagram. For each point on the double line, we connect the corresponding
points x1 ∈ η1 and x2 ∈ η2 on the spherical diagram by a curve γ that intersects
the curves of the diagram transversely at a finite number of points and does not
pass through triple points and cusps. We also impose a compatibility condition
near the endpoints of γ. Namely, consider two vectors v1 and v2 tangent to γ at its
endpoints x1 and x2, respectively. We assume that the bases (η̇1, v1) and (η̇2, v2)
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define the opposite orientations of the sphere S; here η̇i denotes the unit tangent
vector to ηi.

Now we calculate the number of intersections of γ with the set of curves of the
spherical diagram modulo two. The resulting number is called the parity of the point
on the double line under consideration. It is easy to verify that the parity is well
defined along the entire double line, and therefore we have actually defined the
parity of the double line. It is also easy to verify that a double line approaching
a cusp is even, and at a triple point, either all three double lines are even, or two
are odd and one is even.

The definition of Gaussian parity for two-dimensional knots with boundary is
the same as in the case of knots without boundary. It is important to note that the
parity of a double line ending at the boundary coincides with the Gaussian parity
of its endpoint as a vertex of the corresponding chord diagram, because we can take
γ to be an arc of the boundary circle of the diagram.

§ 3. Resolution of two-dimensional knots

In one-dimensional knot theory, resolution of a crossing means cutting out this
crossing together with a small neighbourhood and gluing two pairs of half-edges in
one of the two possible ways:

→ or →

Resolution is an important operation used to construct knot invariants. In partic-
ular, different polynomial invariants, such as the Kauffman bracket, are constructed
using the resolution of crossings of a knot diagram.

In the two-dimensional case, not intersections, but double lines are subject to res-
olution. Locally, a two-dimensional resolution can be viewed as a one-dimensional
resolution on a transverse section multiplied by a straight-line interval. The dif-
ficulty lies in defining the resolution of a double line (or a family of double lines)
in a consistent way. In this paper, we propose an approach to defining resolutions
based on spherical diagrams.

Consider paired curves γ and γ′ on a spherical diagram of a knot. The procedure
of resolving the double line corresponding to this pair of curves consists of the
following steps.

1. Cut the diagram along the curves γ and γ′. The resulting multicomponent
complex has four boundary components: γ1, γ′1, γ2, γ′2.

2. Glue the components along the boundary components in a way compatible
with the orientation and the curves intersecting the boundary using the following
rule: a curve with a dash is glued to a curve without a dash; see Figure 11.

3. To complete the process, we need to understand what happens to the triple
points on the double line being resolved.

It is easy to see that the resolution of the curve γ induces a natural one-dimen-
sional resolution of the third preimage of the encountered triple point; see Figure 12.
The type of this resolution depends on the choice of pairing of the glued curves:
γ1 with γ′1, or γ1 with γ′2.

Note that the resolution of a self-intersecting double line is well defined. In this
case, new cusps appear; see Figure 13.
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Figure 11. Resolution of a double line: the curve γ is paired with γ′; the
spherical diagram is cut along these curves and then glued together in one
of the two possible ways.

Figure 12. Resolution of a double line a removes the curves a and a′ from
the diagram and induces a one-dimensional resolution of the crossing of the
curves b′ and c′.
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Figure 13. Resolution of a self-intersecting double line a removes the curves
a and a′ from the diagram and creates cusps.

The procedure described above defines a resolution of a double line. Resolution
of a set of double lines is performed in succession, in any order. We introduce the
notation: if a diagram D2 is obtained from a diagram D1 by resolving one double
line, then we write D1  D2.

To prove Theorem 1, we need the following lemma.

Lemma 1. For any diagram of a free 2-knot without boundary there exists a reso-
lution giving a trivial free knot.

Proof. A double line can be resolved in two ways. One of them creates an additional
connected component (thereby transforming the knot into a link), and the other
does not change the number of connected components. This follows from the fact
that any closed curve on a sphere bounds a set of discs. Therefore, the cutting
procedure can be understood as removing a certain set of open discs from the
sphere. Furthermore, one of the two possible ways of gluing the obtained boundaries
is to paste these discs back, possibly with a flip. This operation does not create
additional connected components.

Let us take a closer look at what happens to the complex after the resolution
that preserves the number of connected components.

1. If the resolved double line corresponds to two paired curves with common
endpoints, then the resolution consists in cutting out a disc from the sphere and
pasting it back with a flip. Hence the surface obtained as a result of resolution is
still a sphere.

2. If the resolved double line corresponds to two disjoint closed curves, then the
resolution consists in cutting out two discs from the sphere and pasting each of
them into the hole left by the other. Hence the resulting surface is still a sphere.

3. If the resolved double line corresponds to two intersecting closed curves, then
the resolution consists in cutting out a disc from the sphere and pasting it back
with a flip, as in the first case. Hence the resulting surface is still a sphere.
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Therefore, the diagram remains spherical after a resolution that preserves the
number of connected components. We denote a resolution preserving the number
of connected components by D1  0 D2.

Given a diagram D of a 2-knot, we refer to the triple (the number of triple points,
the number of double lines, the number of cusps) as the complexity of D and denote
it by Ψ(D). We order such triples lexicographically. Note that a resolution of
a double line reduces the complexity, that is, D1  0 D2 implies Ψ(D2) < Ψ(D1).
Indeed, if the resolved double line does not pass through triple points, then the
resolution does not change the number of triple points and reduces the number of
double lines, and therefore reduces the complexity. If the resolved double line passes
through triple points, then the resolution reduces the number of triple points, and
therefore the complexity.

Let D be a diagram of a free two-dimensional knot. Consider the chain D1 =
D  0 D2  0 · · · , where the double line resolved at each step is chosen arbitrarily.
Since the complexity decreases, that is, Ψ(D) = Ψ(D1) > Ψ(D2) > · · · , we obtain
Ψ(Dn) = 0 for some n. A diagram of complexity zero does not have cusps, triple
points and double lines, which means that it is a diagram of a trivial knot. The
lemma is proved.

The operation of resolution can be defined in the same way for internal double
lines of (free) two-dimensional knots with boundary. The following statement is
proved in the same way as Lemma 1.

Lemma 2. For any diagram D of a free two-dimensional knot with boundary, there
exists a resolution giving a diagram D′ which coincides with D in a small neigh-
bourhood of the boundary and does not have internal double lines.

These lemmas, which allow one to eliminate interior double lines of free two-
dimensional knots using resolution, are central to the proof of the main result of
this paper.

§ 4. Proof of the main Theorem 1

Consider a framed 4-graph Γ and its diagram D(Γ). Assume that D(Γ) is an
odd diagram (that is, all its chords are odd). We shall prove that Γ is slice if and
only if D(Γ) admits an intersection-free pairing.

1. Suppose the diagram D = D(Γ) admits an intersection-free pairing P. This
means that there exists a chord diagram D(P) whose circle looks the same as the
circle of the diagram D and the chords of D(P) are pairwise unlinked (in particular,
no chord of D is paired with itself). A chord diagram can be viewed as a disc with
a set of curves connecting points on its boundary. Note that the chords of D(P) are
naturally split into pairs. Indeed, the pairing P consists in splitting the chords of
D into disjoint two-element subsets Pi. We say that two chords c and d of D(P)
form a pair if the set of their ends {c1, c2, d1, d2} coincides with the set of ends
{c̃1, c̃2, d̃1, d̃2} of chords of some subset Pi = {c̃, d̃}. Without loss of generality, we
can assume that c1 = c̃1, c2 = d̃1, d1 = c̃2 and d2 = d̃2. Then we orient c and d as
follows: c1 → c2, d1 → d2.

Therefore, the chord diagram D(P) defines a spherical diagram of a two-dimen-
sional knot with boundary corresponding to the graph Γ. Thus, Γ is slice.
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We also note that all the curves of the obtained spherical diagram of the slic-
ing complex do not intersect and their endpoints lie on the boundary of the disc.
Therefore, the resulting complex has no cusps and triple points.

2. We prove the reverse implication. Suppose the graph Γ is slice, that is, there
exists a slicing complex K. We shall show that then there exists a slicing complex K̃
without triple points and cusps.

Consider the complex K. By Lemma 2 there exists a complex K̃ coinciding
with K in a small neighbourhood of the boundary and containing no internal lines.
Since small neighborhoods of the boundaries of K and K̃ are identical, the com-
plex K̃ is also a slicing complex for Γ. We show that it has all the necessary
properties.

Indeed, the Gaussian parity of any double line of a complex for which an endpoint
lies on the boundary coincides with the Gaussian parity of its endpoint, which is
a vertex of Γ. Since Γ is odd by assumption, all double lines of the complex Γ̃ are
odd. However, the properties of Gaussian parity imply that any double line ending
with a cusp is even, and among the three double lines incident to one triple point,
either one or three are even. Therefore, the complex Γ̃ has no cusps and triple
points.

Now we consider a spherical diagram (with boundary) of the complex K̃. It
consists of a disc whose boundary coincides with the base circle of the chord diagram
of Γ and disjoint curves connecting points on the boundary of the disc. Obviously,
the spherical diagram defines an intersection-free pairing of the chord diagram of Γ
(see Definition 13). Theorem 1 is proved.

It is important to note that the existence of an intersection-free pairing for a given
chord diagram is verified in a finite algorithmic way (by explicit enumeration of the
ends of the chords). Thus, Theorem 1 gives a constructive criterion for a free odd
knot to be slice.

Finally, note the we have actually proved that any slice framed 4-graph is ele-
mentary slice, that is, does not have cusps or triple points.
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