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Abstract: Genetic variation in chromosomally polymor-
phic Sicista subtilis complex and related Sicista betulina
species group was analysed using two mitochondrial
markers (COI and Cytb). The S. subtilis group is shown to
include six lineages, five of which correspond to species
currently recognized based on cytogenetic and genetic
data: Sicista nordmanni, Sicista trizona, S. subtilis sensu
stricto, Sicista severtzovi and Sicista cimlanica. A previ-
ously unknown genetic lineage of S. subtilis was found in
the North Caucasus. The existence of two divergent line-
ages within Sicista strandi is supported. It is suggested
that the speciation rate in Sicista was strongly affected by
rapid chromosomal evolution.

Keywords: birch mice; DNA barcoding; Palearctic; phylo-
geography; steppe fauna.

Introduction

While most birch mice (Sicista) inhabit forests and
meadows of the temperate Palearctic, the members of the
Sicista subtilis species group represent a unique case of
adaptation to arid/semiarid environments as they occur
in the steppe and semidesert zones of Eastern Europe,
Kazakhstan and Siberia. Morphological taxonomies
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of the genus, which were based on external morphol-
ogy and glans penis anatomy (Méhely 1913, Vinogradov
1925, Ognev 1948), regarded steppe birch mice as a single
species with several subspecies. However, subsequent
cytogenetic studies revealed a plethora of cryptic species
and karyomorphs (e.g. Sokolov et al. 1986, Shenbrot et al.
1995), the status of which is debatable. According to the
most comprehensive review (Kovalskaya et al. 2000, 2011),
there are six main karyomorphs, which can be regarded as
separate species:

Sicista subtilis sensu stricto (Pallas, 1773); 2n=24;
NFa=38-44. Its range extends from the Volga River far
eastwards to Khakassia, Tuva and the west Baikal region
(Shenbrot et al. 1995, Kovalskaya and Fedorovich 1997).

Sicista nordmanni (Keyserling et Blasius, 1840);
2n=26; NFa=46. It can be found in most of the territory of
southern Ukraine (Zagorodniuk and Kondratenko 2000),
in an adjacent small part of Russia (Kovalskaya et al. 2011)
and in the area extending to south-eastern and eastern
Romania (Ausliander et al. 1959, Cserkész et al. 2015).

Sicista severtzovi Ognev, 1935; 2n=26; NFa=46.
This taxon has a complicated history. It was originally
described as a subspecies that was supposed to include
dark-coloured birch mice from the northern part of the
Russian steppes. Later, it was elevated to full species rank
based on a specific karyotype (2n=18-20, NFa=26-28)
described from the western part of its presumed range
(Sokolov et al. 1986). However, a subsequent study showed
that the chromosome complement of birch mice from
the vicinity of terra typica (northern Voronezh region) is
different and, hence, that the previous cytogenetic data
should be attributed to another taxon. According to Koval-
skaya et al. (2011), the distribution of S. severtzovi sensu
stricto is limited by the Don and Hoper rivers (in the west,
south and east), whereas the northern limits remain to be
determined.

Sicista cimlanica Kovalskaya et al. 2000; 2n=22;
NFa=33-34. This birch mouse is known only from the
Tsimla Sands in the lower Don basin. It was originally
described as a subspecies of Sicista severtzovi and its
status was not discussed in Kovalskaya et al. (2011).
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Nevertheless, taking into account the high level of karyo-
typic differentiation between S. severtzovi and S. cimlanica,
it appears appropriate to treat the latter as a full species.

Sicista sp. 1 (Kovalskaya et al. 2011); 2n=22-26;
NFa=39-44. Based on available chromosomal data, the
range of Sicista sp. 1 is bordered by the Don and Hoper
rivers in the west and by the Volga River in the east. It is
likely that its southernmost extension coincides with the
narrowest part of the divide of the Volga and Don rivers, a
region that provides contact with Sicista subtilis s. str. The
northern distributional limit of Sicista sp. 1is uncertain.

Sicista sp. 2 (Kovalskaya et al. 2011); 2n=16-22;
NFa=26-29. Animals that were tentatively grouped in
this taxon were collected at the confluence of the Don and
Severskii Donetz rivers. The karyotype of this taxon was at
first erroneously attributed to Sicista severtzovi.

It should be emphasized that considerable chromo-
somal variation is also found within three chromosomal
species (Sicista subtilis s. str., Sicista sp. 1, Sicista sp. 2),
with the highest level of polymorphism observed in Sicista
sp. 1. At the same time, some parts of the range are still
studied insufficiently; thus, there are no cytogenetic data
for most of the North Caucasus.

Today, there are only a few molecular studies focused
on birch mice (Cserkész et al. 2015, 2016, Baskevich et al.
2016, Rusin et al. 2018), and many of the aspects of their
phylogeography and phylogenetic relationships still
remain unclear. The available data (Pisano et al. 2015,
Lebedev et al. 2019) demonstrated that the Sicista subtilis
group is relatively close to the Sicista betulina group. The
taxonomy of the latter was also revised based on chromo-
somal data (Sokolov et al. 1989), which allowed the rec-
ognition of Sicista strandi Formosov, 1931, with 2n=44
occurring in the South-East Europe as a distinct species
from S. betulina (Pallas, 1779) that is characterized by
2n=32.

The only molecular study on variation in the Sicista
subtilis group (Cserkész et al. 2015) has revealed several
important facts. Sicista trizona (Petenyi, 1882) was found
as a separate lineage placed as sister to Sicista nordmanni,
which is also substantially differentiated from all other
species. Other representatives of the S. subtilis group
under study were found to be very close. Based on these
results, Cserkész et al. (2015) considered S. nordmanni and
S. trizona as separate species and lumped the rest under
S. subtilis. This taxonomic decision is in sharp contradic-
tion with the cytogenetic data, which suggest that chro-
mosomal differentiation provides an effective barrier to
gene flow among Sicista severtzovi, Sicista sp. 1 and Sicista
sp. 2. It should be noted that Cserkész et al. (2015) did not
study true S. severtzovi sensu Kovalskaya et al. (2011) and
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did not examine any samples from the Asian part of the
range.

The current study is based on extended samples
covering most of the range of the Sicista subtilis group
and including animals that were karyotyped in previous
studies. Therefore, the main focus is placed on the corre-
lation between molecular variation and chromosomal dif-
ferentiation in the S. subtilis and Sicista betulina groups.

Materials and methods

We analysed the alignment consisting of 65 sequences of
cytochrome oxidase I (COI, 657 bp), most of which were
taken from online projects housed by the Barcode of Life
Data System (BOLD; www.boldsystem.org). Detailed infor-
mation and process IDs of all sequences are presented in
Table 1. We also sequenced the complete mitochondrial
cytochrome b (cytb) gene for 10 specimens using the proto-
col described by Rusin et al. (2018). Twenty-eight sequences
of cytb and seven sequences of COI were added from the
GenBank (Cserkész et al. 2015, 2016, Baskevich et al. 2016,
Schaffer et al. 2017). We did not include cytb sequences
of Sicista betulina and Sicista strandi from Cserkézs et al.
(2015) because they likely belong to a pseudogene lineage
as shown by Rusin et al. (2018). Sequences obtained in
this study were deposited in the GenBank with accession
numbers MK758092-MK758103. Sicista concolor (Biichner,
1892) NC027579 (Yue et al. 2015) was used as the distant
outgroup for Sicista subtilis and S. betulina species groups.

To assess the relationships among mitochondrial
lineages, neighbour-joining trees were reconstructed in
MEGA X (Kumar et al. 2018) for cytb and COI alignments
separately. Clade support was estimated based on 1000
bootstrap pseudoreplicates. Formal species delimitation
analysis was performed in ABGD (Puillandre et al. 2012)
based on the matrix of uncorrected p-distances among
COI sequences. The routine was conducted both with the
alignment of the Sicista subtilis species group and the
complete data matrix, also including the Sicista betulina
species group. Estimates of node ages were obtained
with the use of BEAST 1.8.4 (Drummond et al. 2012). The
details of the molecular clock analysis are provided in
Supplementary material 1.

Results and discussion

The results of the analysis of the two mitochondrial genes
(Figure 1) demonstrated significant structures within
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Table1 (continued)

Col BOLD/GenBank Cytb GenBank

Probe Voucher

code

Locality (*, coordinates are given

lineage (this study) for the nearest landmark)

Taxa (Kovalskaya Taxa (Cserkész Mitochondrial

etal.2011)

etal. 2016)

SKMZMO041_07
SKMZMO042_07

IEE_120

Sub60 IEE_100

36. Russia, Republic of

Sub61

Khakassia, Novonikolaevka;

53°12'N, 91°16’E

KY967415 (Rusin et al. 2018)

Tuva_32

Sub62 ZMMU/tc-VSL-Sicista

37. Russia, Tuva Republic, 90km

north from Kyzyl *; 52°32'N,

94°18’E

ZMMU, Zoological Museum of Moscow University, main collection; ZMMU/tc, Zoological Museum of Moscow University, tissue collection; IEE, Institute of Ecology and Evolution, tissue

collection.
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both Sicista subtilis and Sicista betulina species groups.
Species delimitation (ABGD analysis) produced different
numbers of clusters (ranging from six to 11, depending on
the value of the prior and the alignment type); however, in
most cases, the S. subtilis group was divided into six line-
ages, while the S. betulina group was divided into three
(Figure 1). Lineages within species groups are distributed
allopatrically (Figure 2). As follows from the comparison
with the cytogenetic data presented in Kovalskaya et al.
(2011), there is fairly good correspondence between the
distribution of the mitochondrial DNA (mtDNA) lineages
and karyotypes throughout most of the range (Figure 2,
Table 1).

The “NORD” lineage is distributed from the Belgorod
region to south-western Ukraine and eastern Romania
and corresponds to Sicista nordmanni, while the “TRI”
lineage from Hungary and Transylvania correspond to
Sicista trizona, as shown by Cherkész et al. (2015). In
agreement with the latter study, our data demonstrate the
isolated position of S. nordmanni and S. trizona, which are
placed as sister branches. The Kimura-2-parameter (K2P)
distance between these two western lineages is 6.0% (COI)
and 7.8% (cytb).

Four other lineages cluster together, with the K2P dis-
tances between them being 1.9-4.2% (COI) and 3.0-6.3%
(cytb). The most distant lineage from the others (2.9-4.2%
COI; 5.8-6.3% cytb) is the “NC” one, which was found
in two points in the North Caucasus (Figure 2, Table 1,
localities 23 and 24). The specimen from Kalmykia (local-
ity 24) was examined cytogenetically using routine stain-
ing and G-banding (Kovalskaya et al. 2011). Its karyotype
(2n =24, NFa=44) was found to be very close to that of the
Sicista subtilis s. str. This is the only case when the same
karyotype is shared by animals belonging to two different
genetic lineages. The status of the “NC” lineage deserves
a separate study.

The “SUB” lineage is distributed from the Volga River,
where it is found on both banks, eastwards to eastern
Kazakhstan, Khakassia and Tuva and corresponds to
Sicista subtilis s. str. There is no clear structure within this
lineage. Despite large geographic distance between the
westernmost and easternmost localities, the difference
among specimens is low (<1.0% COI). This result suggests
the lack of differentiation between typical Sicista subtilis
subtilis, Sicista subtilis vaga (Pallas, 1779) (Kazakhstan)
and Sicista subtilis sibirica Ognev, 1935 (forest steppes of
South Siberia), which were described based on external
morphology (details of coloration).

The “SEV” lineage is found only in the Voronezh
region and corresponds to Sicista severtzovi s. str. as
defined by Kovalskaya et al. 2011.

Brought to you by | Cambridge University Library
Authenticated
Download Date | 8/19/19 7:43 AM



DE GRUYTER V. Lebedev et al.: Genetic variation in the Sicista subtilis species group =—— 7
A col . B cyw
Sicista concolor
BetOB'Iemz Bet02— 100
9 Bet03 _~“BET” — |: Bet1 ;
% Ee}gg " S, betulina 100
of - =39 =
pEe9 (2n = 32; NFa = 60) J/}[Bem 100
Bet07 " [Bet16 100
0 B “STRN”— [Bettz % —
Bet10 S. strandi Bet19
| Bet11 (2n = 44; NFa = 50-52) =
Betts T /. « | Sub0Y 400
— L Bettd 5 SS It%f?cﬁ SUbOZJ 100
L] e71Bet13| /(2n = 44 NFa = 50-52) 7| Subo3 100
99 et 7 Sub04:| 100
1004 Bote Sub05 9%
Bet20 «TRI
100, Sub03 - “TRI” - Sub06
— B s
Sub04 (2n = 26; NFa = 46) Sub10
" oub13
—“NORD”—
S. nordmani Subt4} 100
(2n =26; NFa = 46) Sub12 100
rrrrrrrr SUb37— 100
% T “NC”— >|Sub3s
S. subtilis Sub39
(2n = 24; NFa = 44)
— - “SUB” 89
Suba3 S. subtilis
(2n = 24;NFa = 38-44)
Sub28
Sub37 e “SEV” e T
guggg & S. severtzovi
1001 SU639 (2n = 26; NFa = 46)
b18 “cim”
Sub15 o —
B Sicista sp. 2 Sub20
Sub20 (2n = 16-22; NFa = 26-29)  [Subs2
__— S. cimlanica-———"" Sub35
"~ (2n =22; NFa = 33-34) Sub36:
. Sicistasp. 1——_____ [Sub30
" (2n = 22-26; NFa = 39-44) " |sub3t
0.02

Figure 1: Phylogenetic relationships among mitochondrial lineages of Sicista subtilis and Sicista betulina species groups.
The neighbour-joining trees reconstructed based on the alignments of two mitochondrial genes: (A) CO/ and (B) Cytb. The numbers above
and below branches correspond to bootstrap support values and are not shown for the intrapopulation clusters.
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Figure 2: Geographical variation in mitochondrial DNA of Sicista subtilis and Sicista betulina groups.
Designations of localities and mitochondrial lineages correspond to those in the Table 1.
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The “CIM” lineage is distributed from the Tsimla
sands in the south to the Belgorod region in the north
and includes animals that are attributed to Sicista sp. 1,
Sicista sp. 2 and Sicista cimlanica based on cytogenetic
data (Kovalskaya et al. 2000, 2011). Within this lineage,
all animals belonging to Sicista sp. 2 (points 16 and 17)
form a subclade. Unfortunately, only one locality within
the range of highly polymorphic Sicista sp. 1 was sampled.
The “SEV” and the “CIM” lineages are consistently placed
as sister branches, and the K2P distances between them
are 2.5% (COI) and 3.0% (cytb).

The “BET” lineage corresponds to Sicista betulina and
occurs from Central Europe to Central Siberia. The codon
position 175 in the COI alignment contains a stop-codon
(TAA) in most sequences, potentially suggesting that a
pseudogene was amplified by the standard International
Barcode of Life (IBOL) procedure for this species. However,
these putative pseudogene sequences are rather close to
the single sequence that does not contain stop-codons
(KY754549, Schaffer et al. 2017) and demonstrate no
unusual amino-acid replacements relative to the latter. Our
cytb data suggest that mitochondrial variation in the “BET”
lineage is low throughout the range; however, the isolates
of this species from North Europe remain unstudied.

Lineages “STR N” and “STR S” both belong to Sicista
strandi. “STR N” is found in the north-western part of
the species range, while “STR S” occurs in the southern
and eastern parts. The level of divergence of cytb and
COI between these two lineages is 6% (K2P-distance),
which may indicate species-level divergence according
to the genetic species concept (Bradley and Baker 2001).
The degree of nuclear differentiation between “STR N”
and “STR S” (Lebedev et al. 2019) is consistent with the
mitochondrial results. Chromosomal variation within
S. strandi was examined by Baskevich et al. (2005), and
minor differences in C-heterochromatin banding pat-
terns between northern and southern populations were
revealed. However, to determine the status of the two lin-
eages, additional studies based on extensive geographic
sampling are required.

Comparison to the previous data by Cserkész et al.
(2016) indicates that the latter authors underestimated
the true level of variation of Sicista subtilis, as they did
not examine true Sicista severtzovi and populations from
the North Caucasus. Following Bradley and Baker (2001),
this level of differentiation in the S. subtilis group may cor-
respond to both intraspecific and interspecific variation
but is, however, more consistent with the former. Based
on this consideration, Cserkezs et al. (2016) regarded the
small distance between “SUB” and “CIM” (which they
believed to represent S. severtzovi) as an indication of
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their conspecificity. However, high resolution G-banding
shows that S. subtilis s. str. and S. severtzovi are separated
by a substantial number of Robertsonian and non-Rob-
ertsonian transformations, including five tandem trans-
locations (Kovalskaya et al. 2011), and the same is true
for comparisons between other karyomorphs of S. subtilis
sensu lato (2-7 tandem translocations). According to the
latter work, “the high number and complex nature of at
least some of the chromosomal rearrangements distin-
guishing the various taxa are likely to result in reproduc-
tive isolation between them”. Therefore, it seems plausible
that S. subtilis s. I. represents a rare case of extremely rapid
speciation via fixation of aberrant karyotypes. The gene
flow between the incipient species is blocked not through
gene divergence but rather due to meiotic incompatibil-
ity. Similar cases of genetically close but chromosomally
divergent species are known in other groups of mammals.
Two species of voles Microtus (Alexandromys) evoronensis
and Microtus (Alexandromys) mujanensis are both rather
close genetically to a widespread and polymorphic Micro-
tus maximowiczii (p-distance of 2.4 and 1.7%, respectively);
however, their karyotypes are separated from that of the
latter by numerous rearrangements and the hybridiza-
tion data indicate sterility in F1 males (Meyer et al. 1996).
Another example is presented by the Sorex araneus-anti-
norii species pair (cytb p-distance — 2.3%, Briinner et al.
2002, Bannikova and Lebedev 2010), which may have
diverged as late as the Late/Middle Pleistocene boundary.
Here, the examination of the hybrid zone demonstrated
that the gene flow between these two chromosomally dis-
tinct species is limited (Briinner et al. 2002). We believe
that the discrimination of species based on genetic diver-
gence should be performed with more caution in groups
with intensive chromosome evolution.

Molecular clock results (Supplementary Table S1)
performed by two methods suggest that the divergence
among the four closely related lineages of east Europe
probably occurred in the second half of the Middle Pleis-
tocene (400-250 kya). The steppe birch-mice are not suf-
ficiently cold-tolerant to accommodate harsh conditions
of glacial maxima throughout their contemporary range;
hence, one should conclude that during the cold phases
of the late Middle and Late Pleistocene, different lineages
must have survived in different steppe refugia of south-
eastern Europe. The existence of multiple refugia in this
region is also supported by the data on genetic varia-
tion in Sicista strandi, as well by the phylogeographic or
vicariance patterns in other steppe rodents, including the
grey hamster Nothocricetulus (ex Cricetulus) migratorius
(Lebedev et al. 2018), mole vole Ellobius talpinus (Bogda-
nov et al. 2015) and mole rat Spalax spp. (Nemeth et al.
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2013), although the details of the geographic structure
vary among taxa. One may hypothesize that many of the
refugial populations of steppe birch mice could be associ-
ated with isolated sand dune systems or “sand islands”
sensu Sludski (1964) located in the steppes of the Don
basin, which now harbours the largest diversity of chro-
mosomal variants (Sicista severtzovi, Sicista cimlanica,
Sicista sp. 1, Sicista sp. 2).

The lack of pronounced divergence in the eastern
part of the range of the “SUB” lineage suggests its recent
eastward expansion, presumably from the Volga region.
This expansion can be hypothesized to take place in either
postglacial or marine isotope stage 3 (MIS3) interglacial
time. In contrast to other cases (Nothocricetulus migrato-
rius, Ellobius talpinus, Spermophilus pygmaeus), the Volga
is not the barrier between the lineages of Sicista subtilis
s. L. as the “SUB” lineage is found on both banks. However,
its distribution on the western bank is restricted to a rather
narrow band along the river valley (points 26-28). The
exact place of origin of the “SUB” lineage and the scenario
of its dispersal remain to be elucidated.

Although our genetic data are generally concordant
with chromosomal evidence, it only represents the gene-
alogy of a single marker, so all results should be verified
with nuclear DNA analysis. The most important point to
be clarified by future studies is the nature of variation
observed among populations belonging to the “CIM”
lineage. The mechanisms responsible for the formation of
the complex mosaic of cytotypes are unclear. The available
data neither contradict nor firmly support the reciprocal
monophyly of the sub-lineages corresponding to Sicista
cimlanica s. str., Sicista sp. 1 and Sicista sp. 2; however, it is
evident that their divergence could be a recent (Late Pleis-
tocene) event. If forthcoming nuclear studies corroborate
the observed mitochondrial pattern and confirm the lack
of gene flow among these taxa, it will validate the hypoth-
esis that the rates of speciation in the Sicista subtilis group
could be extremely high.
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