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Abstract. A new approach to the construction of computational algorithms for atmospheric 

and ocean dynamics problems is considered. The approach is based on the integral form of 

recording the laws of conservation of mass and angular momentum, geodetic grids with 

quadrangular cells and the cabaret scheme guaranteeing the absence of computational 

dissipation in flows in which the characteristics of one family are not crossed. The quality of 

the new algorithm is demonstrated on test and model problems. 

1.  Introduction 

One of the basic problems of large-scale dynamics of the atmosphere and the ocean is described by a 

system of two-dimensional (single-layer) shallow water equations (SWE) on the sphere [1]. It is one of 

the main blocks in solving complete baroclinic systems of prognostic equations and is used to assess 

the accuracy and efficiency of computational algorithms for solving direct and indirect problems. 

Important questions arising in the construction of methods for solving SWE are the choice of an 

appropriate form of recording differential equations and the search for effective algorithms for their 

numerical solution. Until now, they remain the subject of numerous studies of meteorologists and 

oceanographers. One of the difficulties that arise here is related to the system of coordinates on the 

sphere, which affects the form of writing equations and, as a consequence, the quality of discrete 

models. 

The work is devoted to a new approach to the construction of computational algorithms for 

atmospheric and ocean dynamics problems, based on the integral form of recording the laws of 

conservation of mass and angular momentum, geodesic computational meshes with quadrangular cells 

and the cabaret scheme providing time reversibility in the case, when the characteristics of one family 

do not cross. 

2.  Integral form of the shallow water equation on the sphere 

Consider a sphere of radius R  with center at the origin of the Cartesian coordinate system. Let 

 ,H r t R  is the thickness of the liquid layer at the point of the sphere r , g  is the gravitational 

acceleration. Equations describing the dynamics of such a thin layer are derived from the fundamental 
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conservation laws. On the sphere, such laws are the law of conservation of mass and angular 

momentum. 

The mass balance of an arbitrary region G  on the surface of a sphere is described by the integral 

equation: 

   0
G G

H
dS H w n dL

t



  

  , (1) 

where w  is the velocity vector, n  is the unit vector of the outward normal, dS  is the element of the 

area of the sphere, and dL is the element of the length of the boundary on the sphere. The integral 

equation of momentum balance for the same region has the form: 

       20
0 0 0;

2
G G G

g
H r w dS H r w w n dL H r n dL

t


 

 


             (2) 

where 0 is the constant density of the liquid. 

3.  Features of the method of control volume on the sphere 

Let us choose four points on the sphere that do not lie on one arc of a large circle. Let us connect those 

points by disjoint geodesic arcs , 1...4mL m   in counter-clockwise direction so that they form a 

spherical quadrangle 
CG  (a computational cell). For the cell 

CG , the law of conservation of mass 

takes the form: 

  
1/24

1 1/2

0

C

m

mG m

H
ds H w n dl

t



 


  


   (3) 

where n  is an outward unit vector perpendicular to the large circle mL . Below   is a unit vector lying 

in the plane of a large circle and tangent to the geodesic circle mL . For each side mL , we assume 

mH H const  ,  n n

m m
w w w n const    , mw w const   , where 

nw w n w     , 

which corresponds to the Riemann sum method of the second order of accuracy when integrating by 

the cell boundaries. We approximate (3) as follows: 

    
4 4

1 1

1 1
0nC C

m m m m mm
m m

H H
H w n L H w L

t S t S 

 
      

   
   (4) 

where CH  is the mean value of the depth in the cell cG ,  ,  1,..,4n

m m mH w L m   are the 

approximations of the integrals along the sides of the cell, and mL  is the length of the geodetic arc. 

The approximation of the law of conservation of angular momentum on the basis of the integral 

law (2) can be carried out in several stages. We take into account equality 

    
1/2

1/2

m

m m m

m

r n dL r n l





    , (5) 

where mr  is the coordinate of the middle of the arc mL , and 1/2 1/2m m ml r r     is the length of the 

chord of the sphere. Then the moment of the pressure force (the third term in (2)) is approximated as 

follows: 

      
1/24 4

2 2 2

1 11/2
2 2 2

m

m m m m m

m mG m

g g g
H r n dL H r n dL H r n l



  

        (6) 

The second term in equation (2) can be approximated in two stages: 
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        

   

1/ 2 1/ 24

1 1/ 2 1/ 2

1/ 2 1/ 24

1 1/ 2 1/ 2

m m

n

mG m m

m m

n n n

m m m m m

m m m

H r w w n dL H w r n w n d L H w r w n d L

H w w r n d L w w r d L









 

  

 

  

 
        

 

 
   

 

  

  

(7) 

For the first integral in (7) equation (5) is valid. For the second one: 

    
1/2

1/2

m

m m m

m

r dL r L 




     (8) 

Finally, after substitution (5) and (8) in (7): 

       
4

1

n n

m m m m m m m m m m

mG

H r w w n dL H w w r n l w r L 


          (9) 

The first integral in (2) is replaced by a quadrature: 

   
C

C C CC
C CG

H w r
H r w dS H r w S r H w S

t t t t

       
                         

 , (10) 

where the values marked with a subscript C  refer to the center of the cell. If the sphere rotates with 

angular velocity  then sin
r

r
t




 


: 

  sinC C C C
C

r
H w H r w

t


 
    

 
 (11) 

Finally, the approximation of equation (2) has the following form: 

 

   

   

4

1

4
2

1

sin
2

n n

C m m m m m m m m m m

mC

m m m m C C C
m

H w
r S H w w r n l w r L

t

g
H r n l H r w

 







 
            

      





 (12) 

Formulas (4), (12) form a closed system of difference-differential equations that approximates the 

laws of conservation of mass and angular momentum for single-layer shallow water on a smooth 

rotating sphere. Here we must take into account that the angular momentum in (4), (10) is described 

by only two independent components. 

4.  Cabaret scheme 

The cabaret scheme is based on quadrangular geodetic calculating grids. The initial data for the 

velocities and the height of the free surface are given both in the centers of the calculated cells and in 

the centers of their faces. Thus, the number of variables in the cabaret scheme is three times greater 

than in the classical methods. Variables related to cell centers are called conservative and represent the 

mean values of the corresponding cell values. The variables given in the midpoints of the faces are 

called flux ones and define convective fluxes. Calculated grids with the described distribution of 

variables have not been previously encountered in the problems of atmospheric and ocean dynamics 

and are not included in the well-known classification of Arakawa [2]. We call them G-grids. 

The computational procedure in the cabaret scheme includes three phases. In the first phase, the 

values of the conservative variables on the intermediate time layer are found from the explicit 

difference schemes obtained above by the control volume method (4) and (12): 

 

1/2 4

1

1
0

2

tt t
nC C

m m m

m

H H
H w l

S





  
   
  

  
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   
   

   

1/ 2
4

1
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1/ 22 1/ 2

1

2

sin
2

t t t

n nC C
C C m m m m m m m m m m

m

t

tt

m m m m C C CC
m

H w H w
r S H w w r n l w r L

g
H r n l H r w S

 












  
           

 

 
        

 





 

In the second phase flux variables are calculated for the next time layer 1t  . This part of the 

algorithm is the most specific, and distinguishes the cabaret scheme from all other schemes. Its 

detailed description does not fit into the format of this publication. We only note here that the second 

phase involves the procedure of linear extrapolation of the local Riemann invariants and the procedure 

of nonlinear correction of their new values on the basis of the maximum principle. This procedure is 

described in detail in the monograph [3]. 

In the third and last phase, new values of conservative variables are determined from the new flux 

variables found in the second phase: 

 

11 1/2 4

1

1
0

2

tt t
nC C

m m m

m

H H
H w l

S

 



  
   
  

  
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1 1/ 2 1
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2
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t t t
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t t tt t t

m m m m C C C CC C C
m

H w H w
r S H w w r n l w r L

g
H r n l H r w H r w H r w S
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



  





  



  
           

 

                  





 

 

5.  Examples of test calculations 

Consider the first task from the test set [4]. On a full sphere of radius of 
66.37122 10  meters only 

the equation of continuity is solved, and the velocity field is fixed in time. The initial perturbation of 

depth is at the equator, and the velocity field is chosen so that transported profile is not distorted in the 

analytical case. After one circle around the sphere, which occurs over 12 days, the form of the 

perturbation is compared with the initial one. Several angles of inclination of the flow to the equator 

are considered. The calculation was carried out on a quad sphere grid C90 with a number of cells 

90x90x6. Below the sections the initial and final profiles are given for different angles: 

0   0.05   
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/ 2 0.05    / 2   

The loss in the amplitude of the disturbance is 7-8 percent for all directions of the flow. 

The second problem uses the complete system of equations. On a sector of a non-rotating sphere, a 

circular flow is defined by formulas: 

 

2 2

0 0
0 2

0 0 0

, , , exp 1
4

r
H H u v

g r r r

   
 



    
          

   

, 

where  0 0,   is the center of the vortex, 0r  is the radius of the vortex, r  is the distance to the center, 

and 40  , 0,3   are the parameters of the vortex. Such a flow is stationary. The flow is 

calculated up to 200 circles of the vortex. The figure shows the grid (part of the quad sphere grid) and 

the initial distribution of the parameter H  on it, as well as the graphic of the dependence 
minH  and 

maxH  (in the figure, this is the deviation from the background value 0H ) from the calculated time 

given in the term of the number of circles of the rotation. 

 

 
It can be seen that the intensity of the vortex does not change. 

6.  Conclusion 

A system of differential-difference equations approximating on the sphere a system of integral laws of 

conservation of mass and angular momentum for single-layer shallow water is obtained by a finite 

volume method on the G-grid. The approach used here is of independent interest, since it can be used 

to construct various computational algorithms, including triangular grids. 

To describe vector variables, it is not necessary to introduce a global parametrization on the whole 

sphere, which solves the problem of singular points at the poles. The velocities are characterized by 

two components; the appearance of a component normal to the sphere surface is excluded. Balance 

equations are written through flows defined on the faces. The obtained DDEs are conservative and 

were used as a basis for implementing the cabaret scheme on the sphere. 
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The cabaret scheme on the sphere retains all its distinctive features: it is defined on the minimal 

possible computational template, is explicit, nondissipative, and conditionally stable for 0.5CFL  . 

The nondissipation of the scheme leads to the fact that the acoustic perturbations do not decay and 

stationary vortices do not dissipate when the radius is greater than three cells. 

The results of test and model calculations illustrating the properties of the scheme on the sphere are 

presented. 
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