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ABSTRACT A two-beam optical trap was used to measure the bending stiffness of F-actin and reconstructed thin filaments. A
dumbbell was formed by a filament segment attached to two beads that were held in the two optical traps. One trap was static
and held a bead used as a force transducer, whereas an acoustooptical deflector moved the beam holding the second bead,
causing stretch of the dumbbell. The distance between the beads was measured using image analysis of micrographs. An
exact solution to the problem of bending of an elastic filament attached to two beads and subjected to a stretch was used
for data analysis. Substitution of noncanonical residues in the central part of tropomyosin with canonical ones, G126R and
D137L, and especially their combination, caused an increase in the bending stiffness of the thin filaments. The data confirm
that the effect of these mutations on the regulation of actin-myosin interactions may be caused by an increase in tropomyosin
stiffness.
INTRODUCTION
Contraction of striated muscles is powered by actin-myosin
interactions, which are controlled by the regulatory proteins,
tropomyosin (Tpm) and troponin (Tn), associated with the
actin filaments. Tpm molecules bind each other in a head-
to-tail manner (1,2) forming two long helices with a
~36 nm pitch coiling round the actin filament. The Tn com-
plex consisting of three subunits, Tn-C, Tn-I, and Tn-T,
binds the Tpm molecules and controls their position on
the actin filament: in the absence of Ca2þ Tpm sterically
blocks the myosin-binding sites on actin, whereas in the
presence of Ca2þ it releases these sites to enable the binding
of myosin heads (1,3).

Although Tpm mainly contains residues characteristic of
the canonical heptad repeats, which stabilize the coiled-coil
dimer of two a-helices, it has several noncanonical residues
that are thought to partially destabilize the dimer. Changes
in Tpm properties and the functional role of two noncanon-
ical residues, G126 and D137, located in the central part of
the Tpm molecule were recently studied (4–8). Substitution
of each of these residues with canonical ones, G126R or
D137L, and especially the combination of both these substi-
tutions led to a stabilization of the molecule seen by a sup-
pression of trypsinolysis (4) and an increase in thermal
stability as revealed by DSC (5,8). These substitutions
also changed the functional properties of the regulated
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thin filaments containing Tpm mutants: the ATPase rate
increased, the Ca2þ sensitivity of the actin-myosin interac-
tion also increased, and in a filament-gliding assay themove-
ment of the filaments over a myosin-covered surface was
accelerated (4–7). The effects of these substitutions on the
mechanical function of the actin-myosin complex in vitro
were discussed in terms of a combination of two factors: an
increase in the bending stiffness of Tpm and changes in the
myosin-Tpm interaction (7,8). However, these hypotheses
were not tested directly. It was shown theoretically (9,10)
and experimentally (9,11) that the bending stiffness of a
Tpm molecule may be an important parameter in the activa-
tion of thin filaments, particularly in the propagation of the
mechanical wave of activation along the filament.

Here, we use the optical trap technique for measuring the
bending stiffness of F-actin and reconstructed regulated thin
filaments (consisting of F-actin, Tpm, and Tn complex) to
test the effect of the previously mentioned stabilizing muta-
tions in the central part of Tpm. As two continuous Tpm
chains reinforce the actin filament, one would expect the to-
tal bending stiffness of the reconstructed filament to change
in a measurable way upon changes in the Tpm bending
stiffness.

Our stiffness analysis is based on the mechanical scheme
suggested earlier by Dupuis and colleagues (12). To increase
the precision of the measurements we used the exact solu-
tion of an elastic mechanical problem instead of the approx-
imate solution used by these authors. We also developed a
robust procedure for data analysis.
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MATERIALS AND METHODS

Proteins

All Tpm species used in this work were recombinant proteins that have an

Ala-Ser N-terminal extension to imitate naturally occurring N-terminal

acetylation of native Tpm (13). Recombinant human Tpm1.1 isoform 1

(a-striated Tpm; according to nomenclature (14)) C190A, D137L/C190A,

G126R/C190A, and G126R/D137L/C190A mutants were prepared as

described by Matyushenko et al. (7). The C190A mutant was used as a

reference that mimics the reduced state of cysteine in the Tmp molecule.

Rabbit skeletal muscle actin was prepared as described (15). F-actin was

polymerized by the addition of 2 mM ATP, 4 mMMgCl2, and 100 mMKCl

and labeled by rhodamine-phalloidin (Phalloidin-tetramethylrhodamine B,

Sigma-Aldrich (St. Louis, MO)). Rabbit skeletal muscle Tn was prepared as

described (16).
Optical trap

The dual beam optical trap setup similar to that described by Takagi et al.

(17) was built on the base of an inverted fluorescence microscope

(AxioObserver, Carl Zeiss Microscopy GmbH (Jena, Germany)) equipped

with a high numerical aperture objective (100�, NA 1.25 oil immersed,

Carl Zeiss Microscopy GmbH) and a charge-coupled device video camera

(CoolSNAPHQ2, Photometrics, Roper Technologies, Inc. (Sarasota, FL)).

A beam of infrared laser (Nd:YLF, 1064 nm wavelength, 5 W; Inversion-

Fiber (Novosibirsk, Russia)) was split into two orthogonally polarized

beams. The beams focused by the objective produced two independent op-

tical traps in the focal plane inside an experimental flow cell made of a mi-

croscope slide and a coverslip. The position of one of the traps, the motor

trap, was controlled by an acoustooptical deflector (Neos Technologies, Inc.

(Melbourne, FL)). The position of the second, the transducer trap, was

fixed. After passing through the flow cell, the beams were collected by a

high numerical aperture condenser (NA 1.4, Carl Zeiss Microscopy

GmbH) and focused onto two quadrant photodiodes (FD20KP, Russia).

The photodiode signals were digitized with a 12-bit ADC (USB3000,

R-technology (Moscow, Russia)). The flow cell was mounted on a three-

axis piezoplatform (E-761, Physik Instrumente, GmbH (Karlsruhe, Ger-

many) for manipulating its position with 10 nanometer precision in a

three-dimensional space.
FIGURE 1 Strain-force diagram for a dumbbell containing reconstructed

thin filaments containing the C190ATpm. (A) The dependence of the pull-

ing force on the dimensionless strain (squares), where h is the change in the

half-distance between the beads, and R is the radius of the bead. Inset shows

the micrographs of the beads for the first and the last data points before and

at the end of the 12-step stretches. The positions of the centers of gravity of

the bead images are shown by vertical lines. (B) One-dimensional profiles

of the light intensity for the bead configurations shown in (A). The thresh-

olds for determining the positions of the bead centers and the positions

themselves are also indicated by horizontal and vertical lines, respectively.
Experimental protocol and data analysis

Regulated actin filaments were reconstructed from the rhodamine-phalloi-

din labeled F-actin (0.08 nM), a Tpm mutant (0.1 mM), and Tn (0.1 mM) in

the presence of a saturating concentration of Ca2þ (~30 mM) or in the

absence of Ca2þ in the buffer containing: 25 mM KCl, 25 mM imidazole,

4 mM MgCl2, 1 mM EGTA, 20 mM DTT, and oxygen scavenger system

(0.5 mg/ml bovine serum albumin, 3.5 mg/ml glucose, 0.02 mg/ml cata-

lase, 0.15 mg/ml glucose oxidase) at pH 7.5. A 6–9-mm-long segment of

a reconstructed thin filament was held with its ends between two polysty-

rene beads (Sigma-Aldrich) of 0.9 mm diameter coated with N-ethylmalei-

mide-treated myosin used as a specific F-actin glue (18) to form a

dumbbell. The modification of myosin with N-ethylmaleimide and a

coating of the polystyrene beads were done according to Veigel et al.

(19). The beads of the dumbbell were held by the two laser traps within

the flow cell. The dumbbell was stretched by moving the motor bead by

a series of 50 nm steps. Signals of the axial displacements of the transducer

and motor beads with respect to their traps were recorded for 1 s after each

step. The averaged signal of the transducer bead displacement multiplied

by the transducer trap stiffness was used as a measure of the average force

pulling the dumbbell. The trap stiffness was calculated from the spectrum

of the Brownian noise of the transducer bead (20) at the beginning of each

stretch cycle when the actin filament in the dumbbell was completely

slack.
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The distance between the beads was measured from micrographs made

with a charge-coupled device camera as shown in Fig. 1. A strip of a micro-

graph covering both beads was cut along the line connecting the centers of

the beads (Fig. 1 A). The light intensity of the micrograph was integrated

across the strip to obtain the axial intensity profile (Fig. 1 B). The positions

of the centers of the beads were taken as the coordinates of centers of the

intensity peaks of each bead image (Fig. 1 B). For this, the center of gravity

of the top of the peak above the threshold level (that was set halfway be-

tween the peak and its bottom on the intensity profile) was calculated as

shown in Fig. 1 B. Selection of the strips, integration of the two-dimensional

intensity map, and determination of the positions of the peaks from one-

dimensional profiles were automated using homemade software. Although

the pixel size was 64.4 nm, the accuracy of the peak position determination

taking into account the intensity noise in the micrographs (Fig. 1) was

significantly less, ~4 nm.

The strain-force diagram was calculated from the measurements of force

and the distance between the beads (Fig. 1 A). Although 12 steps of 50 nm

correspond to a displacement of the motor trap by 12 � 50 nm ¼ 0.6 mm

that corresponds to the strain of 600 nm/2/450 nm z 0.667, the observed

change d ¼ h/R was smaller, only 0.53 because of the existing compliance

of the traps and of the filament-to-bead linkages.

The origin of the diagram was rather arbitrary as the initial part of the

strain-stress plot is flat and the positions of the beads, which correspond

to the position of the slack filament in the initial stages of the stretch, are

difficult to determine. We therefore left the origin as a free parameter

that should be determined from the experimental data. To estimate the

bending stiffness of the thin filament from the strain-force diagram, the di-

agram was fitted with the theoretical function described below.

At least three different dumbbells were tested with F-actin or with recon-

structed regulated thin filaments containing each of the Tpm constructs.

Several stretch-release cycles were repeated for each dumbbell. Occasion-

ally the strain-force diagrams contained one, or several steps with an abrupt

increase in the bead-to-bead distance accompanied by a relatively small

increment in force, or in other cases the strain-force relation remained

rather linear and did not show strain saturation even at high forces. We

considered such behavior as an indicator of breaking or damaged linkages

between a bead and a filament, and these data were omitted from the anal-

ysis as the theory used for the data analysis relies on the constancy of the

filament length between the points of attachment to the beads. Note that

these breaks occurred more often with F-actin than with the regulated

thin filaments. The Student’s t-test and the nonparametric Mann-Whitney
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U-test were used for statistical analysis of the difference in bending stiffness

compared to that of the C190A Tpm used as a reference.
Mathematical model

A schematic representation of the configuration of an actin filament bound

to one of the beads held by optical trap during stretch of the dumbbell is

given in Fig. 2. Without stretch, the filament is straight as its bending

moment is zero (inset in Fig. 2). Stretch causes filament bending and the

simultaneous rotation of the beads so that the tangent points on the beads

move closer to each other, the 4 angle decreases with the rise of stretching

force. The tangent angle q of the filament decreases progressively and be-

comes zero on the axis of symmetry between the beads (Fig. 2).

The dependence of the dimensionless force, gð2FR2=KÞ, where K is the

bending stiffness of the filament, on the dimensionless strain, d, and on

another dimensionless parameter that is the ratio of the bead radius to the

half-length of the filament segment between the beads, L, a ¼ R=L, can

be reduced to quadratures (Appendix A). Moreover, calculations show

that for a < 0.25 the function is practically independent of a, so that it

can be expressed by a function g ¼ f ðdÞ. The function f was calculated

numerically and then approximated by a simple formula (Appendix A).

Each set of the force-strain data ðdi;giÞ;¼ 1; 2;.; n obtained during the

stretch cycle of a dumbbell was fitted with this formula using a least squares

routine to obtain two fitting parameters, K and d0:

di ¼ Kf ðdi þ d0Þ
�
2R2; (1)

where d0 is the strain offset due to uncertainty in the origin of the strain-

force diagram.
RESULTS

Pooled data are shown in Fig. 3 for several stretch cycles
for F-actin and reconstructed thin filaments containing
the C190A, G126R/C190A, D137L/C190A, and G126R/
D137L/C190A Tpm for at least three different dumbbells
for each of the Tpm mutants.

The optimalK values, which provide the least mean square
fit (Eq. 1) for individual cycles were averaged to give 3.55
0.5 � 10�26 N$m2 (here and hereafter mean 5 SE, n ¼ 11)
for the F-actin, 5.4 5 0.6 � 10�26 N$m2 (n ¼ 7) for
FIGURE 2 Two beads of radii R held by optical traps are connected by an

actin filament (bold line) to form a dumbbell as shown in the inset; the solid

lines show the bead positions and the configuration of the filament under

stretch of the dumbbell by a tensile force F. The unstrained positions of

the beads and configuration of the filament are shown by the dashed lines.

The middle of the filament is shown in the stretched and nonstretched

dumbbell positions to symmetrize the picture. The left bead and a half of

the filament are shown on an expanded scale; the symmetry plane is shown

as a dot-dash vertical line on the right. The, stretching force, F, and the

angle to the point of filament attachment on the bead, 4, are also shown.
C190A Tpm, and 9.3 5 1.0 � 10�26 N$m2 (n ¼ 6) for the
C190A/G126R/D137L mutants. K values statistics for
F-actin and reconstructed thin filaments with Tpm mutants
in the absence and presence of a saturating concentration of
Ca2þ is summarized in Table 1.

The addition of C190ATpm and Tn to F-actin induced a
statistically significant 54% increase in the bending filament
stiffness (Table 1).

The presence of the D137L/C190A Tpm and especially
G126R/D137L/C190A Tpm lead to a further increase in
the bending stiffness of the reconstructed thin filaments
compared to that with the C190A Tpm mutant. The
G126R/C190A mutations in Tpm also induced an increase
in the bending stiffness, although it was not statistically sig-
nificant. The data show that stabilizing mutations in the cen-
tral part of Tpm induce measurable increases in the stiffness
of reconstructed thin filament. Surprisingly, the filament
stiffness did not increase in the absence of Ca2þ. Under
these conditions, Tn binds to the actin filament, shifting
the position of the Tpm strand on the thin filament, thereby
switching the activated regulated filament to the blocked
state. We found that in the absence of Ca2þ there was a ten-
dency (though statistically insignificant) for a decrease in
stiffness with both C190A and G126R/D137L/C190A
Tpm mutants (Table 1).
DISCUSSION

Comparison with previous studies

For the first time, changes in the flexural rigidity of thin fil-
aments induced by the presence of Tpm have been assessed
by the spectroscopy of elastic light scattering (21,22).
Currently, there are two approaches to measure the flexing
rigidity of actin filaments. The first is based on the analysis
of the Brownian bending motion of the filaments, using the
wormlike chain (WLC) theory (e.g., 23–26). The other is the
direct measurements of the strain-force relation of a
segment of a filament with a two-beam optical trap devel-
oped by Dupuis et al. (12). The theory used for quantitative
analysis of these data considers actin filament as an elastic
bar with a uniform bending stiffness. Dupuis et al. (12)
showed that filament stretch is accompanied by a rotation
of the beads similar to that illustrated in Fig. 1. The approx-
imate theory they used was based on an assumption that the
shape of the bent segment of an actin filament can be
approximated with an arc of a circle. The theory was applied
to the data presented as the dumbbell compliance plotted
against stretch force. The best fit corresponded to the K
value 1.53 5 0.37 � 10�26 N$m2 for rhodamine-phalloidin
F-actin.

We used the same approach for studying the bending stiff-
ness of actin filament reinforced by Tpm. Several improve-
ments were introduced. An exact solution of the elastic
problem was obtained instead of the approximate one
Biophysical Journal 109(2) 373–379



FIGURE 3 Pooled data for the fitted strain-force

diagrams obtained from several stretch cycles for

at least three dumbbells (shown by different sym-

bols) for F-actin (A) and reconstructed thin fila-

ments containing either Tpm C190A (B) or Tpms

G126R/C190A (C), D137L/C190A (D), and

G126R/D137L/C190A (E). Continuous lines are

the theoretical fitting curves calculated with Eq. 1

using optimized parameters K and d0, which pro-

vide the least mean-square deviation from the

data points. Averaged traces for all panels (A–E)

are presented in Fig. S1.

TABLE 1 Bending stiffness of F-actin and reconstructed thin

filaments with Tpm mutants

Filaments

Bending Stiffness, K � 1026 N$m2,

Mean 5 SE (Full Range, n)

F-actin 3.5 5 0.5 (1.3�5.6, 11)a,b

with Tpm and Tn þSa2þ �Sa2þ

C190A 5.4 5 0.6 (3.5�7.5, 7) 4.9 5 0.8 (3.7�7.4, 7)

G126R/C190A 6.95 0.6 (5.6�8.4, 5)

D137L/C190A 8.0 5 0.8 (6.0�12.1, 7)a,b

G126R/D137L/

C190A

9.3 5 1.0 (5.2�11.9, 6)a,b 8.3 5 1.3 (6.3�14.9, 6)b

The significance of the difference from the C190ATpm mutant in the pres-

ence of Ca2þ at p < 0.05 for the Student’s t-test (a) and the Mann-Whitney

U-test (b) are shown.

376 Nabiev et al.
employed by Dupuis et al. (12). The bead displacement was
measured directly from the micrographs instead of its esti-
mation from the signal of the bead held by the movable
trap. This estimation is based on the assumption that the
trap stiffness is constant. However, the stiffness of the
movable trap changes with its position. For this reason
direct measurement of the distance between the beads is
more reliable. The displacement of the bead in the fixed
beam with constant stiffness corresponded to the force
signal. In addition, the bending stiffness was estimated
here from the raw strain-force relation, not from the ten-
sion-compliance relation used by Dupuis with colleagues
(12) as the calculation of the dumbbell compliance (i.e.,
the derivative of the noisy force and displacement data) in-
creases noise. These improvements notably increase the pre-
cision of the method (Fig. S1 in the Supporting Material).

The rigidity of the rhodamine-phalloidin-labeled F-actin
estimated by Dupuis et al. (12) is ~43% of that found
here. This difference can be explained by the differences
in the theories used for data interpretation (Fig. S1) and
data analysis procedures.

Another approach for measuring the bending stiffness of
actin filaments is based on the visualization of the filaments
subjected to the Brownian bending and data analysis with
the WLC theory (9,11,23–27). The major parameter in the
WLC theory is the persistence length, Lp, which is deter-
mined by the bending stiffness K and absolute temperature
T: Lp ¼ K/kBT, where kB is the Boltzmann constant. Several
groups measured Lp (and therefore K) using approaches
developed by Gittes et al. (24) and Ott et al. (25) by
measuring the parameters of Brownian fluctuations from
the shape changes of fluorescently labeled actin filaments.
For rhodamine-phalloidin actin filaments, the estimations
for K were 7.3 � 10�26 N$m2 (24) and 7.0 � 10�26 N$m2
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(25). Isambert et al. (26) also estimated K to be between
6.5 � 10�26 N$m2 and 8 � 10�26 N$m2 depending on poly-
merization conditions. These figures are about twice that
found here for the same preparation of F-actin.

Binding of Tpm (with or without Tn) induced an increase
in the flexural rigidity of F-actin by a factor of 1.5–2, if
F-actin did not contain phalloidin (21,26–28). The K values
varied from 3.7 � 10�26 N$m2 for F-actin without Tpm to
7.4–8.8 � 10�26 N$m2 for F-actin Tpm complex (26,27).
If Tn was added, K increased from 5.1 in the presence of
Ca2þ to 8.5 without it (26). A stiffening of the reconstructed
thin filaments upon Ca2þ removal has also been found using
the light scattering spectroscopy (22).

When F-actin was reinforced by phalloidin, addition of
Tpm had little if any effect on its bending stiffness (26).
In our experiments K of rhodamine-phalloidin F-actin
increased by 40% without Ca2þ and by 54% with Ca2þ

upon addition of Tpm and Tn (Table 1).
We can therefore conclude that our estimates of K are

lower than those obtained by applying the WLC theory to
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the Brownian bending of actin filaments, although our esti-
mates are significantly higher than those reported earlier
(12) with the use of optical trap.
Merits and limitations of the optical trap method
for measuring bending stiffness

We believe that the difference between the K values esti-
mated here and those obtained from the WLC theory is
caused by a limitation in the accuracy of the quantitative
description of the shape of a bent filament. The apparent
width of the fluorescent filament images is several hundred
nanometers due to the diffraction limit. Thus, high-frequency
small-amplitude fluctuations in the shape are unavoidably
smoothed. For this reason the estimation of Lp based onmea-
surement of the tangent angles along the filament (25) leads
to an underestimation of the angle between the tangents at
different filament points and therefore to an overestimation
of K. In addition, even in a narrow flow cell, 1.5–3 mm
deep, Brownian bending of a filament is three-dimensional:
data analysis assuming that a filament is confined to two-
dimensional (26) may cause additional errors.

The method exploited here requires a rather sophisticated
setup. However, with it, the force and bead displacement
measurements are straightforward, data analysis is auto-
mated, and sample-to-sample statistics can be collected.
Although the data quality critically depends on the robust-
ness of the bead-to-filament links and data selection is needed
to obtain reliable and reproducible results, the sensitivity of
the method allowed us to determine changes in the filament
stiffness caused by the substitution of one or two residues.

Our model assumes that Brownian bending motion has a
negligible effect on the distance between the ends of an actin
filament in the dumbbell, and the problem can be formulated
in terms of a classical theory of elasticity (Appendix A). To
validate this assumption we estimated the shortening of the
unstretched filament caused by Brownian bending, and the
apparent stiffness associated with the filament straightening
upon stretch as follows. The root mean-square distance be-
tween the points of filament attachment to the beads, LRMS,
is given by the formula (29):

LRMS ¼ L

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðε� 1þ expð�εÞÞ

p
;

where ε ¼ L=Lp, L is a half-length of the filament segment

between the beads. In our experiments L was in the range
of 3–4.5 mm and Lp was between 10 and 20 mm, so that ε
ranged from 0.15 to 0.45. Therefore, the difference between
L and LRMS can be calculated using Taylor series expansion:

L� LRMS ¼ L� L

ffiffiffiffiffiffiffiffiffiffiffi
1� ε

3

r
¼ Lε

6
;

or 0.075 to 0.34 mm. The corresponding d value was there-

fore in the range of 0.17–0.75. The apparent tensile stiffness,
Sa, associated with straightening of the thermally shortened
filament in the stiff approximation (ε <1) can be described
as (30): Sa¼ K2/(kB T L4). Using the range of L and K values
in our experiments, Sa is calculated to be between 1 and
26 fN/mm. As this value is negligibly small compared to
the apparent dumbbell stiffness found in our experiments
(Fig. 1), one can neglect this effect and use only the elastic-
ity theory, and ignore Brownian filament bending.

As the force level needed to straighten the filament was
far below the resolution limit of our experiments, the offset
of the strain-force curve of the straightened filament, d0,
should be left as a free parameter. We therefore started a
stretch cycle at a bead-to-bead distance where no measur-
able force or significant correlation between the Brownian
motion of two beads was detected. We then performed
step stretches of the dumbbell until obvious signs of
breakage in the bonds between the filament and a bead
were observed. A breaking event was detected by a large in-
crease in the distance between the beads without a signifi-
cant increase in force. To avoid more subtle effects of
bond breakage on the results of our analysis we selected
only those stretch cycles where the dumbbell length satu-
rated, despite further increases in force, and also ignored
stretch cycles where the strain-force diagram remained
linear, even at high force.
Implications of the results

Our data confirm that the substitutions of the Tpm residues
G126 and D137 with the canonical ones, Arg and Leu,
respectively, increase the stiffness of the Tpm coiled-coil.
The stiffening of the reconstructed actin filaments in the
presence of these mutants reported can be attributed to an
increase in the bending stiffness of Tpm as the other param-
eters such as the actin filaments and the experimental condi-
tions remained unchanged for all Tpm constructs. The more
pronounced effect of the D137L mutation compared to the
G126R Tpm mutant may be caused by the different posi-
tions of these two residues in the heptad repeat within the
coiled-coil Tpm structure. Although the noncanonical resi-
due D137 is localized at the position d of the coiled-coil
where a hydrophobic residue is normally present, the
G126 residue is at the g position that normally is occupied
by a charged residue that participates in a weaker electro-
static interaction with an oppositely charged residue of the
paired Tpm chain. A similar interpretation explains the in-
crease in thermal stability of the G126R and D137L Tpm
mutants compared to the wild-type protein (8). As one
would expect, the substitution of both D137 and G126 res-
idues with canonical ones induced an enhanced increase in
the bending stiffness of the reconstructed regulated actin fil-
aments. Our findings are in accordance with the observed in-
crease in thermal stability (5,8) and decrease in trypsin
cleavage (4) of these mutants. Filament stiffening correlates
well with the increased Ca-sensitivity of the sliding velocity
Biophysical Journal 109(2) 373–379
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of the regulated thin filament containing these mutants in the
actin-myosin in vitro motility assay (6,7).
CONCLUSIONS

We demonstrate a method for determining the bending stiff-
ness of actin filaments using a two-beam optical trap. The
method relies on the direct measurement of changes in the
bead-to-bead distance caused by applied forces, and subse-
quent fit of the data to an exact solution of an elastic prob-
lem. The resolution of the method is sufficient to distinguish
the effect of one or two point mutations in the Tpm mole-
cules on the stiffness of reconstructed thin filaments. The
results confirm our assumption that changes in the actin-
myosin interaction and its regulation by Ca2þ ions caused
by the stabilizing mutations in the central part of the Tpm
molecule (6,7) may result from an increase in Tpm bending
stiffness possibly by an increase in the effective length of the
regulatory unit (4,10).
FIGURE 4 The theoretical dependence of the dimensionless force, g,

and angle, 4, on the dimensionless bead displacement, d, obtained by com-

puter calculations using the theory developed here are shown by continuous

lines. The same dependencies calculated with the theory of Dupuis et al.

(12) are denoted with subscript index D and shown by dashed lines. The dif-

ference, Dg, between the computer calculated g value and its approxima-

tion is shown in the bottom plot by a continuous line. It is <0.12, i.e.,

lies within the precision of our experiments. Dotted line shows the differ-

ence between the two theories.
APPENDIX A: MATHEMATICAL MODEL

We denote q the angle between the tangent line of the actin filament and the

line connecting the centers of the two beads of the dumbbell (Fig. 2). The

equilibrium equation of the actin filament that is considered as an inexten-

sible elastic bar can be written as (31).

K
d2qðsÞ
ds2

� FsinqðsÞ ¼ 0; (A1)

where K is the bending stiffness and s is the natural parameter or the dis-

tance along the actin filament measured from the point of its attachment

to the left bead (Fig. 2). The boundary conditions for Eq. A1 are as follows

(see also Fig. 2):

qð0Þ ¼ p

2
� 4; qðLÞ ¼ 0; (A2)

where L is the half-length of the segment of the actin filament between the

points of its attachment to the beads and 4 is the angle between the direc-

tions toward the second bead and toward the point of the filament attach-

ment (Fig. 2).

Multiplying Eq. A1 by dqðsÞ=ds, integrating it over s and using the

boundary condition Eq. A2 one obtains

K

2F

�
dqðsÞ
ds

�2

þ cosqðsÞ ¼ const ¼ K

2F

�
dqðsÞ
ds

�2

þ sin4:

(A3)

As the total torque applied to the bead should be zero, we additionally

have

K

R

dqðsÞ
ds

þ RFsin4 ¼ 0:

We then introduce dimensionless parameters: the natural parameter x

along the filament, x ¼ s/R and the normalized stretching force, g ¼
2FR2/K, to give the solution of Eq. A3 in the form
Biophysical Journal 109(2) 373–379
x ¼ 2

Zp2�4

q

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2sin24þ 4gðsin4� cosqÞ

q ; (A4)

which represents an elliptical integral. Substituting Eq. A4 into Eq. A2

gives the identity:
1

a
¼ 2

Zp2�4

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2sin24þ 4gðsin4� cosqÞ

q ; (A5)

where a ¼ R/L is a constant. For the given values of a and g, Eq. A5 de-

termines 4 as a function of the stretching force F. The dimensionless
displacement d ¼ h/R (where h is the displacement of each bead with

respect to the center of the dumbbell caused by the stretch as shown in

the inset in Fig. 2) can then be calculated as follows:

d ¼ cos4� 1

a
þ 2

Zp2�4

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2sin24þ 4gðsin4� cosqÞ

q :

(A6)

Computer calculations show that for a <0.25 (i.e., for beads of 0.9 mm

diameter a filament length should be longer than 3.6 mm) the relationship

between g and d is practically independent of a. The dependence of the

dimensionless force, g, on the dimensionless bead displacement, d, for

small a calculated numerically from Eq. A6 with the additional condition

Eq. A5 is shown in Fig. 4 together with its simple approximation:
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gðdÞ ¼ a1

 
a2d

2 � dþ a3

 
1� 1

ð1� dÞ2
!!

;

where a1 ¼ 1.2139, a2 ¼ 0.385, a5 ¼ 0.555, which provides quite a good

fit (Fig. 4).

For practical convenience we used the approximate theoretical function

g for data fitting instead of the more precise one obtained from the numer-

ical solution.
SUPPORTING MATERIAL

One figure is available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(15)00588-3.
AUTHOR CONTRIBUTIONS

S.N. built the setup, performed research, and analyzed data; D.O. contrib-

uted setup control software; G.K. and D.S. prepared actin and troponin;

A.M. prepared tropomyosin mutants; N.K. contributed analytic tools and

analyzed data; D.L. prepared tropomyosin mutants; A.T. designed research,

analyzed data, and wrote the article; S.B. built the setup, designed research,

and wrote the article.
ACKNOWLEDGMENTS

The authors thankMr. Feodor Syomin for help in software development and

Prof. M.A. Ferenczi for critical reading of the manuscript and useful

discussion.

This work was supported by the Russian Foundation for Basic Research

(RFBR) grants 13-04-40101-N (to S.B.), 13-04-40099-N (to D.L.), 13-

04-40100-N (to A.T.), 15-04-02174 (to N.K.), and the Program ‘‘Molecular

and Cell Biology’’ of the Russian Academy of Sciences (to D.L.).
REFERENCES

1. Nevzorov, I. A., and D. I. Levitsky. 2011. Tropomyosin: double helix
from the protein world. Biochemistry (Mosc). 76:1507–1527.

2. Orzechowski, M., X. E. Li,., W. Lehman. 2014. An atomic model of
the tropomyosin cable on F-actin. Biophys. J. 107:694–699.

3. McKillop, D. F. A., and M. A. Geeves. 1993. Regulation of the inter-
action between actin and myosin subfragment 1: evidence for three
states of the thin filament. Biophys. J. 65:693–701.

4. Sumida, J. P., E. Wu, and S. S. Lehrer. 2008. Conserved Asp-137 im-
parts flexibility to tropomyosin and affects function. J. Biol. Chem.
283:6728–6734.

5. Nevzorov, I. A., O. P. Nikolaeva, ., D. I. Levitsky. 2011. Conserved
noncanonical residue Gly-126 confers instability to the middle part
of the tropomyosin molecule. J. Biol. Chem. 286:15766–15772.

6. Shchepkin, D. V., A. M. Matyushenko, ., D. I. Levitsky. 2013. Stabi-
lization of the central part of tropomyosin molecule alters the Ca2þ-
sensitivity of actin-myosin interaction. Acta Naturae. 5:126–129.

7. Matyushenko, A. M., N. V. Artemova, ., D. I. Levitsky. 2014. Struc-
tural and functional effects of two stabilizing substitutions, D137L and
G126R, in the middle part of a-tropomyosin molecule. FEBS J.
281:2004–2016.

8. Matyushenko, A. M., N. V. Artemova,., D. I. Levitsky. 2015. Effects
of two stabilizing substitutions, D137L and G126R, in the middle part
of a-tropomyosin on the domain structure of its molecule. Biophys.
Chem. 196:77–85.
9. Li, X. E., W. Suphamungmee, ., W. Lehman. 2012. The flexibility of
two tropomyosin mutants, D175N and E180G, that cause hypertrophic
cardiomyopathy. Biochem. Biophys. Res. Commun. 424:493–496.

10. Metalnikova, N. A., and A. K. Tsaturyan. 2013. A mechanistic model
of Ca regulation of thin filaments in cardiac muscle. Biophys. J.
105:941–950.

11. Loong, C. K., M. A. Badr, and P. B. Chase. 2012. Tropomyosin flexural
rigidity and single Ca2þ regulatory unit dynamics: implications for
cooperative regulation of cardiac muscle contraction and cardiomyo-
cyte hypertrophy. Front. Physiol. 3:80.

12. Dupuis, D. E., W. H. Guilford, ., D. M. Warshaw. 1997. Actin fila-
ment mechanics in the laser trap. J. Muscle Res. Cell Motil. 18:17–30.

13. Monteiro, P. B., R. C. Lataro, ., Fde. C. Reinach. 1994. Functional
alpha-tropomyosin produced in Escherichia coli. A dipeptide extension
can substitute the amino-terminal acetyl group. J. Biol. Chem.
269:10461–10466.

14. Geeves, M. A., S. E. Hitchcock-DeGregori, and P. W. Gunning. 2014.
A systematic nomenclature for mammalian tropomyosin isoforms.
J. Muscle Res. Cell Motil. 36:147–153.

15. Pardee, J. D., and J. A. Spudich. 1982. Purification of muscle actin.
Methods Cell Biol. 24:271–289.

16. Potter, J. D. 1982. Preparation of troponin and its subunits. Methods
Enzymol. 85:241–263.

17. Takagi, Y., E. E. Homsher, ., H. Shuman. 2006. Force generation in
single conventional actomyosin complexes under high dynamic load.
Biophys. J. 90:1295–1307.

18. Meeusen, R. L., and W. Z. Cande. 1979. N-ethylmaleimide-modified
heavy meromyosin. A probe for actomyosin interactions. J. Cell
Biol. 82:57–65.

19. Veigel, C., M. L. Bartoo,., J. E. Molloy. 1998. The stiffness of rabbit
skeletal actomyosin cross-bridges determined with an optical tweezers
transducer. Biophys. J. 75:1424–1438.

20. Neuman, K. C., and S. M. Block. 2004. Optical trapping. Rev. Sci. Ins-
trum. 75:2787–2809.

21. Fujime, S., and S. Ishiwata. 1971. Dynamic study of F-actin by quasie-
lastic scattering of laser light. J. Mol. Biol. 62:251–265.

22. Ishiwata, S., and S. Fujime. 1972. Effect of calcium ions on the flexi-
bility of reconstituted thin filaments of muscle studied by quasielastic
scattering of laser light. J. Mol. Biol. 68:511–522.

23. Yanagida, T., M. Nakase, ., F. Oosawa. 1984. Direct observation of
motion of single F-actin filaments in the presence of myosin. Nature.
307:58–60.

24. Gittes, F., B. Mickey, ., J. Howard. 1993. Flexural rigidity of micro-
tubules and actin filaments measured from thermal fluctuations in
shape. J. Cell Biol. 120:923–934.

25. Ott, A., M. Magnasco, ., A. Libchaber. 1993. Measurement of the
persistence length of polymerized actin using fluorescence microscopy.
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics.
48:R1642–R1645.

26. Isambert, H., P. Venier, ., M. F. Carlier. 1995. Flexibility of actin fil-
aments derived from thermal fluctuations. Effect of bound nucleotide,
phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270:11437–
11444.

27. Greenberg, M. J., C. L. Wang, ., J. R. Moore. 2008. Modulation of
actin mechanics by caldesmon and tropomyosin. Cell Motil. Cytoskel-
eton. 65:156–164.

28. Goldmann, W. H. 2000. Binding of tropomyosin-troponin to actin in-
creases filament bending stiffness. Biochem. Biophys. Res. Commun.
276:1225–1228.

29. Kroy, K., and E. Frey. 1996. Force-extension relation and plateau
modulus for wormlike chains. Phys. Rev. Lett. 77:306–309.

30. MacKintosh, F. C., J. Käs, and P. A. Janmey. 1995. Elasticity of semi-
flexible biopolymer networks. Phys. Rev. Lett. 75:4425–4428.

31. Landau, L. D., and E. M. Lifshitz. 1975. Theory of Elasticity, 2nd En-
glish ed. Pergamon Press, Oxford, UK.
Biophysical Journal 109(2) 373–379

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00588-3
http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00588-3
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref1
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref1
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref2
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref2
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref3
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref3
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref3
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref5
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref5
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref5
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref9
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref9
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref9
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref10
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref10
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref10
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref11
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref11
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref11
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref11
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref11
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref12
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref12
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref13
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref13
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref13
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref13
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref14
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref14
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref14
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref15
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref15
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref16
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref16
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref17
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref17
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref17
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref18
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref18
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref18
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref19
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref19
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref19
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref20
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref20
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref21
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref21
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref22
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref22
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref22
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref23
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref23
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref23
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref24
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref24
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref24
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref25
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref25
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref25
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref25
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref26
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref26
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref26
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref26
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref27
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref27
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref27
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref28
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref28
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref28
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref29
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref29
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref30
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref30
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref31
http://refhub.elsevier.com/S0006-3495(15)00588-3/sref31

	Stabilizing the Central Part of Tropomyosin Increases the Bending Stiffness of the Thin Filament
	Introduction
	Materials and Methods
	Proteins
	Optical trap
	Experimental protocol and data analysis
	Mathematical model

	Results
	Discussion
	Comparison with previous studies
	Merits and limitations of the optical trap method for measuring bending stiffness
	Implications of the results

	Conclusions
	Appendix A: Mathematical Model
	Supporting Material
	Author Contributions
	Acknowledgments
	References


