## Министерство образования и науки Российской Федерации Федеральное государственной бюджетное образовательное учреждение высшего образования «Иркутский государственный университет»

## **МАГНИТНЫЕ МАТЕРИАЛЫ. НОВЫЕ ТЕХНОЛОГИИ**

Тезисы докладов VII Байкальской Международной конференции

Пос. Листвянка, Иркутская область, Российская Федерация 22–26 августа 2016 г.

## MAGNETIC MATERIALS. NEW TECNOLOGIES

Abstracts of 7<sup>th</sup> Baikal International Conference

Lystvyanka village, Irkutsk region, Russia August  $22^{nd} - 26^{th}$  2016

## FERROMAGNETISM OF POLYCRYSTALLINE Si<sub>1-x</sub>Mn<sub>x</sub> (x~0.5) FILMS WITH A SELF-ORGANIZING STRUCTURE

Nikolaev S.N.<sup>1</sup>, Semisalova A.S.<sup>2,3</sup>, <u>Rylkov V.V.</u><sup>1,4\*</sup>, Chernoglazov K.Yu.<sup>1</sup>, Tugushev V.V.<sup>1</sup>, Zenkevich A.V.<sup>5,6</sup>, Vasiliev A.L.<sup>1</sup>, Pashaev E.M.<sup>1</sup>, Chesnokov Yu.M.<sup>1</sup>, Likhachev I.A.<sup>1</sup>, Perov N.S.<sup>3</sup>, Matveyev Yu.A.<sup>5,6</sup>, Novodvorskii O.A.<sup>7</sup>, Vedeneev A.S.<sup>4</sup>, Granovsky A.B.<sup>3</sup>, Bugaev A.S.<sup>4,5</sup>, Wang Y.<sup>2</sup>, Zhou S.<sup>2</sup>

<sup>1</sup>National Research Centre "Kurchatov Institute", 123182 Moscow, Russia <sup>2</sup>Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany

<sup>3</sup>Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia <sup>4</sup>Kotel'nikov Institute of Radio Engineering and Electronics RAS, 141190 Fryazino, Russia <sup>5</sup>Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia <sup>6</sup>National Research Nuclear University "MEPhI", 115409 Moscow, Russia <sup>7</sup>Institute on Laser and Information Technologies RAS, 140700 Shatura, Moscow Region, Russia \*e-mail: vvrylkov@mail.ru

The results of a comprehensive study of magnetic, magneto-transport and structural properties of nonstoichiometric  $Mn_xSi_{1-x}$  ( $x\approx0.51\text{-}0.52$ ) films grown by the Pulsed Laser Deposition (PLD) technique onto  $Al_2O_3(0001)$  single crystal substrates at  $T=340^{\circ}C$  are presented. A highlight of used PLD method is the non-conventional ("shadow") geometry with Kr as a scattering gas during the sample growth [1]. It is found that the films exhibit high-temperature (HT) ferromagnetism (FM) with the Curie temperature  $T_C \approx 370$  K accompanied by positive sign anomalous Hall effect (AHE); they also reveal the polycrystalline structure with unusual distribution of grains in size and shape. It is established that HT FM order is originated from the bottom interfacial self-organizing nanocrystalline layer which consists of small ( $\sim 5$  nm) rounded grains. The upper layer adopted

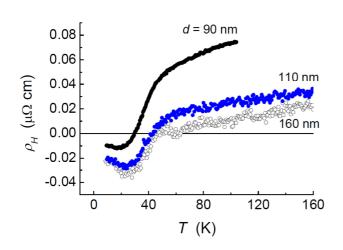



Fig.1. The temperature dependences of Hall resistivity  $\rho_H(T)$  measured in the field B = 1.2 T for samples with various  $Mn_xSi_{1-x}$  film thickness ( $d \approx 90$ , 110 and 160 nm).

columnar structure with the lateral grain size ≥50 nm, possesses low temperature (LT) type of FM order with  $T_C \approx 46$  K and contributes essentially to the magnetization at  $T \le 50$  K. Under these conditions, AHE changes its sign from positive to negative at value of T = 30-50K depending on film thickness (Fig.1). We attribute observed properties to the synergy of distribution of Mn<sub>x</sub>Si<sub>1-x</sub> crystallites in size and shape as well as peculiarities of defect-induced FM order in shadow geometry grown  $Mn_xSi_{1\text{-}x}$ polycrystalline  $(x \approx 0.51 - 0.52)$ films.

The work was supported by the RSF (grant No 16-19-10233).

[1] V.V. Rylkov, A.S. Bugaev, O.A. Novodvorskii et al., J. Magn. Magn. Mater., V.383, 39-43 (2015).